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Abstract 
 
Background. Despite the high prevalence of disabling post-stroke cognitive sequalae, these 

impairments are often underdiagnosed and rarely monitored longitudinally. Provision of 
unsupervised remote online cognitive technology would provide a scalable solution to this 

problem. However, despite recent advances, such technology is currently lacking, with existing 
tools either not meeting the scalability challenge or not optimised for specific applications in post-

stroke cognitive impairment. To address this gap, we designed and developed a comprehensive 
online battery highly optimised for detecting cognitive impairments in stroke survivors. 

 

Method: The technology is optimised to allow both diagnosis and monitoring of post-stroke 

deficits, and for remote unsupervised administration. Participants performed 22 computerised 
tasks, and answered neuropsychiatric questionnaires and patient reported outcomes. 90 stroke 

survivors (Mean age = 62.1 years; 68% and 32% in the acute and subacute/chronic phase after 
stroke respectively) and over 6,000 age-matched healthy older adults were recruited. Patient 

outcome measures were derived from Bayesian Regression modelling of the large normative 
sample and validated against standard clinical scales.  

 

Results. Our online technology has greater sensitivity to post-stroke cognitive impairment than 

pen-and-paper tests such as the MOCA (mean sensitivity 81.75% and 52.25% respectively, 
P<0.001). Further, our outcomes show a stronger correlation with post-stroke quality of life 

(r(78)=0.51, R2=0.26, P<0.001) when compared to MOCA, which only explains half of this 
variance (r(78)=0.38, R2=0.14, P< 0.001). An additional set of experiments confirm that the online 

tasks yield highly reliable outcomes, with consistent performance observed across supervised 
versus unsupervised settings, and minimal learning effects across multiple timepoints. 
 

Conclusion. The current online cognitive monitoring technology is feasible, sensitive, and reliable 

when assessing patients with stroke. The technology offers an economical and scalable method 
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for assessing post-stroke cognition in the clinical setting and sensitively monitoring cognitive 
outcomes in clinical trials for stroke. 
 

Introduction 
 
 

Stroke is a leading cause of death and disability globally, with cognitive sequalae 

affecting three-quarters of survivors.1 The spectrum of cognitive impairments associated 
with stroke encompasses domain-specific deficits, such as aphasia, neglect, and 

memory impairment as well as domain-general deficits usually associated with co-
existing small vessel disease such as executive / attentional dysfunction and reduction 

in processing speed.2 Collectively, these impairments have a detrimental impact on 
poststroke recovery, engagement with therapeutic interventions and lower quality of life 

among patients.3,4 Consequently, early detection of these impairments has been 
recommended by key stake holders and national and international guidelines for stroke 

management.5–7 
 

Despite a lack of universally accepted approaches for identifying post-stroke cognitive 
deficits, there is consensus that stroke survivors should be screened and monitored for 

cognitive impairment using a stroke-specific cognitive assessment.5,8 There remains 
considerable variability in clinical practice, with deployed assessments ranging from 
extensive neuropsychological test batteries tailored to a specific cognitive domain (e.g., 

language), to global measures of cognition using brief screening tools like the MoCA 
which were not developed for stroke.9 This choice is often driven by personal 

preferences, availability, cost and time pressures, leaving little prospect for 
generalisability of findings across sites. 

 
Availability of a cost-effective, reliable, scalable and comprehensive screening tool that 

provides a stroke-specific deep phenotyping of cognition would be transformative for 
clinical diagnosis, as well as enabling much-needed large-scale population-based 
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research for studying the mechanisms of post-stroke cognitive recovery. To address this 
gap, we developed a novel digital adaptive technology: The Imperial Comprehensive 

Cognitive Assessment in Cerebrovascular Disease (IC3).10 IC3 is a digital assessment 
battery highly optimised for stroke survivors and designed to require minimal input from 

a clinician in detecting both domain-general and domain-specific cognitive deficits in 
patients after stroke. It provides a comprehensive profile of performance across 

cognitive domains known to be impaired following stroke, including memory, language, 
executive function, attention, numeracy, praxis as well as hand motor ability and clinical 

and neuropsychiatric questionnaires.  
 

First, we present and analyse extensive normative data derived from over 6,000 UK-
based older adults using the IC3 technology, highlighting its ability to map cognition at 

a large scale, in a time- and cost-efficient manner. Leveraging the large sample size, and 
state-of-the-art Bayesian modelling, we create patient-specific predictive scores that 

account for the effects of demographic and neuropsychiatric variables as well as 
language proficiency, dyslexia and device on cognitive performance. IC3’s validity as a 

remote cognitive screening tool is tested through a robust set of sub-analyses that 
quantify its reliability and feasibility, equivalence in performance between supervised and 

non-supervised settings, and learning effects across 4 timepoints. 
 
We examine whether in patients with stroke, the IC3-derived scores map onto well-

established first-line clinical screening tools (MoCA), have comparable sensitivity to mild 
cognitive impairment and with patient reported functional outcome measures (post-

stroke quality of life), and explain as much or more variation than the first-line clinical 
screening tool (MoCA). Using factor analysis, we examine whether IC3 scores map 

intuitively onto cognitive domains often affected in stroke. We discuss the results in 
relation to the feasibility and validity of the IC3 battery as a technology for monitoring 

cognition across populations with stroke and cerebrovascular diseases. 
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Method 

Participants 
 
The different participant cohorts employed in this study are described below and shown 

in Figure 1. 
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Figure 1. Overview of the study cohorts discussed in this study, along with the analysis 
conducted on each group.  
 

 

Normative cohort. A study invitation was extended to 25,000 individuals, over the age 

of 40, residing in Great Britain, all of whom had previously participated in the Great British 

Intelligence Test (a nationwide initiative aimed at mapping cognition within the general 
population) and consented to being recontacted for other studies.11 Ultimately, 7,095 

healthy older adults provided their consent and initiated the IC3 cognitive battery, with 
5,639 participants (79.5%) successfully completing all 22 tasks. The data were collected 

remotely online, between October and November 2022. Participation in the study was 
voluntary with no monetary incentive. In addition, we collected data from 138 individuals 

via the Imperial Clinical Research Facility participant registry for reliability and validity 
purposes. The combined normative cohort contained 6364 healthy older adults, 

following participant exclusion and pre-processing steps (detailed in Supplementary 
Material 3).  

 

Normative sub-cohorts used for the reliability and validity analyses (Figure 1, Sub 

Cohort A-C). A smaller sample of controls who performed the assessment multiple 

times was collected separately to test the battery’s reliability and validity. These were 

recruited using the Imperial Clinical Research Facility participant registry. A total of 94 
participants (Sub-cohort A) completed the assessment twice, as part of the test-retest 

reliability analysis. Of the 94 participants, 44 (Sub-cohort B) performed the assessment 
both supervised (in person), and unsupervised (remote) with the order counterbalanced. 

The remainder (50/94) completed both sessions unsupervised. A subset (N=30/94; Sub-
Cohort C) completed the assessment remotely 4 times in total over the course of two 

weeks, to allow for the estimation of any potential learning effects. No monetary reward 
was provided, aside from travel reimbursements where appropriate.  

 

Patients with stroke cohort. Patients with radiologically confirmed stroke were 

recruited from Imperial College Healthcare NHS Trust. Exclusion criteria included pre-

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.06.24313173doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.06.24313173
http://creativecommons.org/licenses/by-nd/4.0/


 7 

stroke diagnosis of dementia, pure brain stem stroke, severe visuospatial problems, 
severe mental health diagnoses, fatigue limiting engagement with the IC3 beyond 15 

minutes and inability to understand task instructions.  Consecutively recruited patients 
underwent the digital IC3 assessment (see Supplementary Material 5.1. for detailed 

demographic information). The scores were compared with clinical pen-and-paper 
cognitive screens (MoCA). 

 
All participants gave informed consent. The data was acquired as part of a longitudinal 

observational clinical study approved by UK's Health Research Authority (Registered 
under NCT05885295; IRAS:299333; REC:21/SW/0124). Patients also underwent blood 

biomarker testing and brain imaging which will not be analysed in this paper. A lesion 
overlap map is shown in Supplementary Material 5.2. demonstrates the lesion 

distribution in patients who had MRI brain imaging. 

Cognitive tasks, speech-based tasks and neuropsychiatric 

questionnaires 
 

A graphical overview and a detailed description of the cognitive assessments are 
available in Figure 2 and Supplementary Material 1. respectively. These cover 18 short 

cognitive tasks with additional 4 optional speech production tasks, collectively covering 
a wide range of cognitive domains known to be affected post-stroke. The tasks were 

followed by clinically-validated questionnaires (Apathy Evaluation Scale Fatigue Scale, 
Geriatric Depression Scale, and Instrumental Activities of Daily Living).12–15 
 

IC3 is deployable via a web-browser on practically any modern smartphone, tablet, or 
computer/laptop device via a weblink and is implemented through Cognitron 

(https://www.cognitron.co.uk/), a state-of-the art platform for remote 
neuropsychological testing that is rapidly being adopted by large scale population 

studies both in the UK and internationally.16,17  
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Figure 2. Graphical overview of 22 IC3 tasks organised by the main cognitive domains 
tested: memory, language, executive, attention, motor ability, numeracy and praxis. The 
four optional speech production tasks (naming, repetition, reading, picture description) 
allow speech to be recorded and manually analysed offline.  
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Cognitive and speech data pre-processing 
 
Given the remote nature of the cognitive testing, to ensure that the normative data was 
derived from fully engaged, healthy participants who understood the task instructions, 

we implemented three levels of data filtering (subject-level, task-level, and trial-level), by 
filtering out data that was invalid or of poor quality. See Supplementary Materials 3. for 

a detailed description. For the four optional speech production tasks data was manually 
analysed offline by 6 trained expert raters with high inter-rater reliability (average 

intraclass correlation=0.86). See Supplementary Materials 2 for speech marking 
guidelines.  
 

IC3 validation 

 
A series of analyses quantified IC3’s reliability, equivalent performance between 

supervised and non-supervised settings, and learning effects (see Supplementary 
Materials 5.3. – 5.7. for more details). 

Bayesian modelling on the large normative sample derives 

patient-specific predictive scores 
 
Constrained by relatively small normative sample sizes, existing cognitive batteries have 

traditionally been limited to accounting for the effects of demographic factors by 
stratifying the normative sample into even smaller sub-groups, often limited to one or 

two variables (age and occasionally education). In this study, we leverage the large 
normative sample of 6364 individuals and Bayesian modelling (see below), to create 

patient-specific predictive scores with higher precision, accounting for 8 additional 
confounding factors (age, sex, education, language proficiency, testing device, 
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depression, dyslexia, anxiety; highlighted with an asterisk in Supplementary Material 
5.1.). 

 

State-of-the-art Bayesian posterior predictions for modelling the relationship 

between cognition and confounding factors in controls. Bayesian regression 

analyses containing all 8 covariates were performed separately for all tasks, to estimate 
the effects of each of the covariates on individual task performance. For the optional 

speech production tasks (repetition, naming, reading), the smaller sample (N=130) 
precluded the inclusion of depression, anxiety and dyslexia as covariates. For full details 
of Bayesian regression models and how the coefficient were derived, see Supplementary 

Materials 4.1.- 4.2.). 

 

Patient-specific impairment thresholds. Bayesian modelling was used to create 

patient-specific impairment thresholds correcting for the aforementioned confounding 

variables. This was done by (i) training the Bayesian regression models on the normative 
sample as described above, (ii) using the derived posterior distributions to estimate 

patient-specific predicted performance, converted to standard deviation (SD) units, and 
iii) subtracting the observed patient performance (also in SD units) from the predicted 

performance derived from step ‘ii’. A resulting negative “deviation from norm” score 
suggests that the patient had a deficit in that specific task by a given magnitude in SD 

units, such that a score of -1 represents an impairment of 1 SD from a corresponding 
demographically matched control group. Using these estimates, boundaries for the 

severity of the cognitive impairments were arbitrarily assigned as -1.5 (mild), -2.0 
(moderate) and -2.5 (severe) SD below the mean, in line with previous post-stroke 

cognitive tests.18 
 

 

Results 
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Normative sample 
 

Participant characteristics. The cleaned normative sample consisted of 6364 

individuals. The number of participants were varied for each task (N= 4782-6290) 
depending on task-specific data filtering and the fact that tasks at the end of the 
assessment had fewer timepoints. Supplementary Material 5.1. outlines the 

demographics and additional confounding factors that may affect cognitive 
performance. 

 
Relationships between cognition and confounding demographic factors in the 

normative sample. Standardised coefficients were obtained from task-specific 

Bayesian regression models for the 8 confounding covariates (mean R2:11.29%; range: 
1.3-53.5). The lower range of the R2 was driven by tasks with ceiling effects and low 

inter-subject variability in the controls (e.g., 3.9/4.0 and 3.8/4.00 for Orientation and Task 
Recall mean performance respectively). 

 
The strength of the association between each of the 8 covariates and cognition are 

shown in Figure 3 where warm and cool colours represent positive and negative 
standardised coefficients. Cognitive performance generally worsened with age as shown 
by negative coefficients shown in purple. The exception is Semantic Judgement in 

keeping with previous literature demonstrating age-related improvement in language 
function.19 Dyslexia and English as a second language had a strong negative effect on 

performance particularly on tasks involving language and numeracy skills.  Device was 
a strong confounding factor in task that relied on speed and motor dexterity as the main 

outcome measure (e.g. Simple Rection Time, Choice Reaction Time and Motor Control). 
This association is understandable given faster responses on touch screen compared to 

mouse/trackpad-operated devices. Higher education levels were related to better 
cognitive performance across tasks that involved language and numeracy, with the least 

effect on tasks that primarily captured motor dexterity (e.g., Motor Control, Choice 
Reaction Task, Simple Reaction Time tasks). Overall, the regression models provide 
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intuitive and interpretable relationships between cognition and the 8 confounding 
factors.  

 
 
Figure 3. Relationship between cognitive performance and 8 confounding factors in the 
large normative sample, quantified via standardised regression coefficients. The 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.06.24313173doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.06.24313173
http://creativecommons.org/licenses/by-nd/4.0/


 13 

regression reference categories for Education and Device were ‘≤GCSE-educated’ and 
‘Desktop Computer’, respectively. Negative coefficients (cool colours) indicate the 
covariate was associated with worse cognitive performance. Empty cells represent 
coefficients not used in the modelling for the optional speech production tasks given the 
smaller normative sample. Regression coefficients for tasks with normally distributed 
data are in standard deviation units, and those with non-gaussian distribution are in log-
odd units. Positive coefficients are indicative of better performance. ‘*’ = Uncorrected 
statistically significant predictors. 
 

 
 

Reliability of IC3 technology 

Internal consistency amongst tasks 
 

The task-level internal consistency was generally good, particularly for tasks with high 
variability on the primary outcome measure, with 17/21 tasks showing split-half alpha 

values surpassing the standard threshold for good internal consistency (α = 0.70). See 
Supplementary Material 5.3. for more detailed methodology. Nevertheless, a small 

subset of tasks exhibited lower alpha values (i.e., Orientation, Task Recall, Gesture 
Recognition, and Calculation, marked with ‘†’ in Supplementary Table 2). A well-known 

limitation of the split-half reliability is its dependency on a large number of trials, with 
shorter tasks having inherently low reliability estimates.20 Thus, the low alpha values may 

be attributed to the low number of trials (4-6) in these short screening tasks, despite the 
tasks being preferable in clinical settings due to their lower burden on patients. A further 

factor is the ceiling effect in these short tasks such that, a single error results in a 
significant change in the trial’s relative ranking and estimated covariance between trials. 

High test-retest reliability across time 
 
There was no significant difference (FDR corrected) in performance between two 

sessions on any of the IC3 tasks with strong equivalence across all measures in sub-
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cohort A (Supplementary Material 5.4.). There was moderate to high correlation between 
sessions for tasks with high variance within the group, and smaller correlation for those 

with low variance due to ceiling effects despite similar group means across sessions. 
When diurnal associations with performance were examined across inter-session time 

interval and that of time of day when the assessment was performed, the results showed 
that these time-related factors did not explain change in cognitive scores across the two 

sessions (Supplementary Material 5.5.). Overall, these results demonstrated a stable 
performance of the control group on IC3 across time. 

 

The remote monitoring technology shows equivalent 
performance between unsupervised and supervised testing 
environment 
 
With the exception of two motor tasks (Choice Reaction Time and Motor Control), there 

were no differences between performance of supervised and unsupervised testing 
environment. (Supplementary Material 5.6.). Given that the performance on the two 

motor tasks was strongly dependent on the device type used (Figure 2), additional 
Bayesian regression modelling of these two tasks were conducted with device and 
environment as predictors, which confirmed that the session associations for these tasks 

were driven not by the supervised/unsupervised environment but by the device used to 
perform the assessment. (Supplementary Material 5.6.). Thus, we conclude that there 

were no significant direct effects of conducting assessment within an unsupervised 
testing environment. 

 

The online technology is robust to learning effects across 
four timepoints  
 
We examined the potential effect of learning by analysing performance across repeated 

testing timepoints in 30 controls (sub-cohort C) who completed the IC3 four times over 
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the course of two weeks. The results showed that IC3 assessment has minimal learning 
effects within this expected testing time interval (detailed analyses shown in 

Supplementary Material 5.7.).   

IC3 technology in patients with stroke 

The online battery is sensitive to group differences across all 

tasks  
 

Data from 90 patients with stroke were analysed. The IC3 testing was performed during 
the acute post-stroke phase in 68% (3±3 days [median±IQR] post stroke) and in the sub-

acute/chronic post-stroke phase in 32% (115±210 days post stroke). See 
Supplementary Materials 5.1. and 5.2. 

 
The task level average group performance was calculated in ‘deviation from expected’ 

standard deviation units as described above. Healthy controls significantly outperformed 
patients across all tasks, showing moderate-to-large effect sizes in the majority of tasks 

after accounting for eight confounding factors (19/21 tasks, P<0.05 FDR corrected; 
d>0.43 for all tasks). See Figure 4 and Supplementary Material 5.8. for detailed statistical 

results. 
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Figure 4: Patients with stroke had significantly worse performance than controls (FDR 
corrected). Error bar= 95% CI. 0= mean control performance.   
 

 

The online battery correlates with clinical neuropsychological 
scores and functional impairment after stroke 
 

A data driven ‘IC3 global composite score’, was derived from factor analysis based on 
combined data from patients and controls (Supplementary Material 5.9.). This had a 

positive loading on individual tasks and accounted for 47% of the variance (Figure 5A). 
Six group factors, each loading on a subset of tests were also derived, intuitively 

mapping onto Executive Function (F1), Language/Numeracy (F2), Working Memory (F3), 
Attention (F4), Motor Ability (F5) and Memory Recall (F6). The factor analysis fit was 

robust (CFI=0.94, RMSEA=0.01) with good internal consistency (omega=0.79).  

 

In keeping with task-level results, IC3 global score (g) was significantly lower in patients 
compared to controls (P<.001, Supplementary Material 5.9.). Furthermore, the IC3 global 

score and total MoCA scores were significantly correlated in patients (r(78)=0.58, 
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R2=0.33, P< 0.001, Fig. 5B), indicating that the IC3 performance maps onto a clinically 

validated neuropsychological screen.  
 

 
 

Figure 5A. The solution to a bifactor exploratory factor analysis on the combined dataset 
of patients and controls. The global cognitive measure for the IC3 is defined as the ‘g’ 
factor. The remaining 6 factors intuitively map to Executive Function (F1), 
Language/Numeracy (F2), Working Memory (F3), Attention (F4), Motor Ability (F5) and 
Memory Recall (F6). Figure 5B. Correlation between IC3 global score (g) and clinically 
validated total MoCA score in patients (N=80). Vertical dotted line: MoCA cut-off for 
normality. Horizontal dotted line: mean global IC3 in controls. Shaded area represents 
95% Confidence Interval. Figure 5C. Relationship between IC3 global score (g) and 
post-stroke quality of life metrics (IADL).  Horizontal dotted line: mean global IC3 in 
controls. Error bar represents 95% Confidence Interval. 
 

 
To assess the external validity of IC3, IC3 global performance was also related to 

functional impairment after stroke as defined by the Instrumental Activities of Daily Living 
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(IADL) score.15 Worse global cognitive performance on the IC3 was associated with 
worse functional impairment after stroke (r(78)=0.51, R2=0.26, P<0.001, Fig. 5C).  

 

Conversely, MoCA had a considerably weaker relationship with functional deficits post-
stroke, explaining approximately half of the variation explained by the IC3 (r(78)=0.38, 

R2=0.14, P< 0.001). A separate linear regression analysis was conducted to quantify this 

difference, with MoCA and IC3 as independent predictors, and IADL as the dependent 
variable. The results show that there was no longer a main effect of MoCA on functional 

impairment when accounting for the IC3 global score (P=.22), whilst the IC3 global score 
remained highly significant (P=.004). Moreover, the inclusion of MoCA only explained an 

additional 1% of variance, suggesting that MoCA does not bring any additional 

information beyond what is captured by the IC3.  
 

Furthermore, we demonstrate strong divergent validity for IC3 (Supplementary Material 
5.10.), as shown by an expected lack of correlation between cognitive performance in 

patients and variables known not to be related to cognition (i.e. admission cholesterol 
levels). 

 

The online monitoring technology is more sensitive to mild 

cognitive impairment than standard clinical assessment 
 

IC3 showed high sensitivity at both the domain level and the task-level (as shown in high 
true positives in dark purple, Figure 6A). Given that IC3 was specifically designed to 

detect mild impairment, the sensitivity of the MoCA screening tool was also assessed 
against the IC3 and found to be weaker (Figure 6A, in yellow). A chi-square test indicated 

that this difference is statistically significant at p<0.001. See Supplementary Material 
5.11. for details on how the ‘ground truth’ and domains were chosen.  
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In addition, as shown in Figure 6B, IC3 was able to detect a substantial proportion of 
impairment in patients, even when those patients were classed as ‘healthy’ according to 

their MoCA performance (score ≥26/30). These impairments were detected in both the 
acute (dark purple) and the sub-acute/chronic stage (light purple) after stroke, 

highlighting IC3’s ability to detect mild impairment, undetected by clinical screens, in all 
stages of recovery after stroke. 
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Figure 6A Sensitivity of IC3 against MoCA (purple) and vice versa (yellow) in detecting 
impairment at domain and task level where a clear 1:1 mapping was present. Figure 6B. 
Percentage of patients classed as impaired on the IC3, within a sub-group of stroke 
patients that were deemed cognitively healthy on the MoCA (N=27). Dark purple= scores 
from the acute stage of the stroke. Lighter purple= sub-acute/chronic stage. 
 
 

 
 

Discussion 
 

 
The current study evaluated the IC3 battery, a novel digital online cognitive testing 
technology designed to enable large-scale identification and monitoring of cognitive 

sequalae after stroke and related vascular disorders. The robustness and reliability of 
the battery was extensively demonstrated and reinforced through high test-retest 

reliability, equivalent performance between supervised and non-supervised settings, 
minimal learning effects across multiple timepoints and high psychometric validity. An 

extensive normative sample of more than 6,000 older adults from the United Kingdom, 
age-matched to the stroke population, was systematically gathered and leveraged to 

calculate patient-specific prediction and impairment scores. While accounting for a wide 
range of demographic and neuropsychiatric variables, IC3 was able to differentiate 

healthy controls and stroke survivors across all tasks on the IC3 battery, with effect sizes 
ranging from moderate to very large (d=0.43-1.59).  

 
Importantly, patient outcomes derived from IC3 demonstrated strong concordance with 

results from clinical scores available in the patients (MoCA), but with superior sensitivity 
when detecting mild cognitive impairments and stronger correlation with patient-

reported functional impairments post-stroke (IADL). Reassuringly, the convergence 
validity of the IC3-derived outcomes in patients was balanced against an expected good 
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divergent validity as shown with no discernible correlation with admission cholesterol 
levels. Collectively, these findings provide compelling evidence supporting the validity of 

remote digital testing via the IC3 platform as a clinical tool for assessing and monitoring 
cognition following stroke and related vascular disorders. 

 
Compared to other assessment tools, IC3 battery provides: 1- scalability and cost-

effectiveness in post-stroke cognitive monitoring in both healthcare and research 
settings, 2- sensitivity to mild cognitive impairments, 3- specificity to deficits found post-

stroke, meeting the national guidelines requirements for cognitive assessment in stroke, 
4- nuanced response metrics per individual tests (e.g., accuracy, reaction time and trial-

by-trial variability), and 5- the ability to output automated real-time patient predictive 
scores accounting for confounding demographic factors.5,7,8,21 

 
Currently available stand-alone cognitive screening tools that are commonly used in 

routine clinical care mostly are either not stroke-specific, or not comprehensive. 
Prominent examples include the MoCA, Mini Mental State Examination, and 

Addenbrooke’s Cognitive Examination-Revised, which are tailored to detect deficits in 
neurodegenerative dementias and are not tailored to patients with stroke, who often have 

domain-specific as well as domain-general deficits.9,22,23 Additionally, increasingly used 
cognitive screens designed specifically for stroke, such as the OCS, although more 
sensitive than MoCA, are not comprehensive enough to allow a deep cognitive 

phenotyping and miss the milder end of the severity spectrum.24 The digital OCS-Plus 
only assesses memory and executive function and requires a trained staff to administer, 

thus limiting its scalability and affordability compared to the IC3.18 Other digital platforms 

such as CANTAB,  usually used in the setting of research into neurodegenerative/ 

psychiatric disorders, are not stroke-specific nor able to provide patient-predictive 

scores.25 The IC3 assessment battery developed and applied in this study addresses 
these shortcomings, building the foundation for routine detailed monitoring of cognition 

in healthcare setting, and for scalable large-scale population-based studies of post-
stroke cognitive impairment.  
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The evidence presented in this paper is further corroborated by recent studies from our 

groups, showing the feasibility of online cognitive testing for identification and monitoring 
of impairments in neurological disorders, such as traumatic brain injury and autoimmune 

limbic encephalitis.17,26 Collectively, these studies have shown that online assessments 
correlate well with standard clinical evaluations while exhibiting higher sensitivity, 

essentially providing a hyper-resolution on cognitive deficits relative to common scales. 
The current results not only align with these findings, but also provide much more 

extensive reliability and validity metrics, showcasing the 1) robustness of the IC3 
assessment, 2) its superiority against standard clinical screens and 3) its ability to predict 

functional outcomes after stroke. These results provide supporting evidence for 
integration of such platforms in clinical care pathway, providing additional insight into 

clinical decisions; for instance, on when to perform, potentially costly, imaging or in-
person testing during the follow-up period of the disease, and inform rehabilitation 

decisions. 

 

Nevertheless, it is important to consider the current findings in the context of certain 
limitations. Similar to most standard pen-and-paper tests, the IC3 tasks were 

administered in a predetermined order. Consequently, missing data were more likely to 
occur for tasks towards the latter part of the battery, potentially leading to 
underrepresenting participants with higher level of impairments for these tasks. However, 

it is worth noting that this phenomenon is inherent in all cognitive assessment 
methodologies, and the inability to complete the assessment can itself be considered a 

meaningful outcome measure. In the current study, only patients who had completed at 
least 50% of the IC3 assessment were included in the analysis, and the last task of the 

IC3 normative cohort had 4782 respondents surpassing the normative sample size for 
most conventional assessment tools.  
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We showed that the IC3 has superior sensitivity to MoCA. Here MoCA was used as the 
approximate ground truth for detecting post-stroke impairments, as this was routinely 

available as a clinical screening test in our patients. However, MoCA is neither stroke-
specific nor sensitive to impairment when compared to in-depth neuropsychological 

evaluation.27,28 In the absence of such data in our patient cohort, and the likelihood that 
MoCA missed milder impairments, it was deemed inappropriate to assess the specificity 

or false positive rate of IC3 against MoCA. This problem has been previously noted in 
digital cognitive tests that evaluate their efficacy against MoCA.29 Future work, assessing 

the sensitivity of MoCA against more sensitive stroke-specific tests are in progress.  

 

To maximise engagement of more severely impaired patients, the IC3 allows for unlimited 
number of breaks to be taken at the end of each task and provides built-in task/trial 

skipping functions to minimise fatigue in these patients. Nevertheless, these patients will 
not be suitable for unsupervised testing given their well-documented issues with 

engagement.30 The unsupervised administration is most likely appropriate for patients 
with mild-to-moderate impairment, who have the highest potential for regaining 

independence and who may benefit most from personalised treatments and 
rehabilitation.  

 

Due to its cost-effectiveness and scalability, IC3 can be further developed for wide 
adoption as a clinical diagnostic and monitoring tool for patients with stroke and related 

vascular disorders. This will be tested in clinical trials within the healthcare setting.  Such 
implementation will facilitate the detection and longitudinal monitoring of cognitive 

impairment after stroke at minimal cost.  Given its sensitivity to mild impairment, IC3 can 
be used as the main cognitive outcome measure in clinical research studies in patients 

with stroke. We are currently adopting this approach in a longitudinal observational study 
of post-stroke cognition alongside blood biomarkers and brain imaging to identify 

mechanisms of recovery following stroke.10 It is anticipated that these findings will inform 
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tailored, personalised rehabilitation strategies for more effective recovery, a prospect not 
achievable with current assessment methodologies. 
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