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Abstract7

Buruli Ulcer, a devastating skin disease caused by Mycobacterium Ulcerans, poses considerable8

public health challenges in endemic areas. This article focuses on the use of fractional optimal9

control theory to prevent the spread of Buruli ulcers via integrated public health interventions. We10

formulated a mathematical model using the Atangana-Baleanu-Caputo fractional order derivative11

operator. We investigated the model’s existence and uniqueness and presented numerical simu-12

lations using the predict-evaluate-correct-evaluate (PECE) method of Adam-Bashforth Moulton.13

We also study the fractional optimal control problem (FOCP) to minimize the spread of the dis-14

ease in the endemic regions. We employ the Fractional Pontryagin’s Maximum Principle (FPMP)15

and implement the forward-backward method to determine the extremals of the problem. Four16

control strategies were implemented: promoting health education on the use of protective clothing,17

enhancing vaccination rates, improving treatment protocols for infected individuals, and spraying18

insecticides to reduce water-bug populations. After examining the optimal control dynamics of the19

Buruli ulcer transmission model via multiple simulations with and without control, we discover that20

there is a substantial decrease in the population of infected humans and the water-bug population.21

Hence we conclude that the best strategy to implement is by applying all the control strategies22

suggested.23

Key words: Buruli ulcer; Atangana-Baleanu; Fractional Pontryagin Maximum Principle.24

1 Introduction25

Buruli ulcer is a mysterious necrotizing tropical skin disease which is found mainly in the tropical re-26

gions with high cases recorded in Africa, America, Asia and Western Pacific [51, 36, 27, 58]. Amongst27

the 20 countries in Africa that cases have been recorded, Ghana recorded over 11,000 cases, Cote28

d’Ivoire recorded 21,000 and Togo reported over 2,000 cases[51]. While previously considered a child-29

hood disease, statistical analysis shows that over 25% of affected individuals are over 50 years old30

[7].31

The disease-causing organism belongs to the same family of bacteria that causes leprosy and32

tuberculosis, presenting a possibility for collaboration between the two disease programs [29]. Whereas33

the disease is known to be linked to contaminated water, according to the authors of [35] the mode of34

transmission to humans is still unclear, which makes it difficult to propose control interventions[50].35

While the mode of transmission remains unresolved, once the causative bacterial, Mycobacterium36

Ulcerans enters the skin through direct injury or bites from insects like water bugs or mosquitoes as37

hypothesized in literature, it releases the Mycolactone Toxin [20, 34]. This toxin is responsible for the38

immunosuppression, cytotoxicity, modulation of host cell function and ultimately, the proliferation of39

Mycobacterium Ulcerans [14, 22]. Buruli Ulcer starts as nodule with no pains in patients but develops40

into painless ulcerating wound with weakened edges[16, 24]. Due to its painlessness [18], patients41

who mostly live in rural areas report late for treatment due to the reliance on traditional medication42
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[49] and by which at the time of reporting, the ulcerating wound might have reached a severe stage43

which may lead to amputation of body part(s) or weeks to months of hospitalization. The cost and44

long duration of treatment coupled with its associated stigma and economic hardships that comes to45

bear on patients and their immediate aids is very alarming [9]. However, although clinical treatment46

is the ultimate effective preventive measure, one of the effective control measures for Buruli Ulcer is47

promoting education on the relevance of early detection through targeted programs and campaigns48

can increase public awareness of the availability and of clinical interventions[56] thereby reducing the49

disease’s stress.50

Although several mathematical models on BU are found in literature, few of these models provide51

insight into the understanding of the dynamics of the transmission of the disease, efficient and effective52

control measures and the use of the model to predict a suitable prevention technique. The authors53

in [29] developed a non-linear mathematical model to examine the optimal control of transmission54

dynamics of Mycobacterium Ulcerans and obtained qualitative results using theories of stability of55

differential equations, optimal control and computer simulations. The authors employed two optimal56

control conditions, that is environmental and health education to people for prevention and to apply57

water and environmental purification rate. Based on the numerical results obtained, the authors58

established that, application of optimal control leads to the decrease of the number of infected water-59

bugs and also decreases the number of human infected by MU. However the authors concluded that,60

in order to reduce the spread of MU infection,the application of optimal control on environmental61

and health education in human must be used for prevention. Although [15] and [36] used somewhat62

different optimal control conditions, they yielded similar results and conclusions to those found in [29].63

In [21], the authors used fractional and integer derivatives to study the dynamics of the trans-64

mission of Buruli ulcer. They established that, in quantitative sense, the fractional model used in65

the study presented knowledge of the history as compared to the classical model. Nevertheless, the66

authors admitted that all results obtained are limited to fractional derivatives in the Caputo sense and67

expressed uncertainty in the possible results of using other fractional derivatives such as the Caputo -68

Fabrizio or Atangana–Baleanu. Again the authors did not incorporate any optimal control conditions69

but rather maintained it as a constant. However, in this study, we formulated a mathematical model70

to prevent the spread of Buruli Ulcer using the Atangana-Baleanu-Caputo fractional order derivative71

operator as well as public health interventions.72

The rest of the article is organized as follows: the preliminaries of fractional calculus are introduce73

in section 2, the fractional BU model is derived in section 3, the analysis of the BU model is discussed74

in section 4, the numerical simulation of the BU model is discussed in section 5, section 6 describe75

the fractional optimal control problem, the numerical simulation and discussion of optimal control76

problem is presented in section 7 and finally we conclude in section 8.77

2 Mathematical Preliminary on Fractional Calculus78

We present important definitions and Lemma necessary for the development and analysis of the79

fractional model.80

Definition 2.1 ( [39, 42]). The Atangana-Baleanu fractional derivative in the Caputo sense (ABC)81

with order α ∈ (0, 1] and lower limit zero for a function g ∈ H1(0, T ) is defined by82

ABC
a Dα

t g(t) =
M(α)

1− α

∫ t

a
Eα

(
−α

1− α
(t− τ)α

)
g′(τ)dτ

where M(α) = 1− α+ α
Γ(α) is the normalization function satisfying M(0) = M(1) = 1, and Eα is the83

Mittag-Leffler function expressed as84

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
(1)

Definition 2.2 ([19]). The associated ABC fractional integral is defined by85

AB
a Iαt g(t) =

1− α

M(α)
g(t) +

α

M(α)Γ(α)

∫ t

a
(t− τ)α−1g(τ)dτ. (2)
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Definition 2.3 ([39, 42]). The Laplace transformation of the equation above is expressed as86

L
{
ABC
a Dα

t g(t)
}
(s) =

M(α)

1− α
L
[∫ t

a
Eα

(
−α

1− α
(t− τ)α

)
g′(τ)dτ

]
=

M(α)
(
sαL{g(t)}(s)− sα−1g(0)

)
(1− α)sα + α

.

(3)

Lemma 2.4 ([6, 12]). If α ∈ (0, 1] and h(t) ∈ C[0, 1]. Then the solution to87 (ABCDα
0 g)(t) = h(t)

g(0) = g0,
(4)

is given by88

g(t) = g0 +
ABIα0

ABCDα
0 g(t). (5)

3 Fractional Order Model Derivation89

Using systems of nonlinear differential equations, we build up a compartmental model for the trans-
mission dynamics of Buruli Ulcer. The model includes two population, that is human and water-bug
populations.The total human population is given by NH(t) is subdivided into five classes; Susceptible
SH(t), Vaccinated, VH(t), Exposed EH(t), Infected IH(t) and Recovered RH(t). Hence the dynamics
of the total human population is

NH(t) = SH(t) + EH(t) + VH(t) + IH(t) +RH(t).

The second population which is the water-bug has a total population Nw(t) which is subdivided into
Susceptible water-bug Sw(t) and Infected water-bug class Iw(t). Hence the dynamic of the total
water-bugs population is

Nw(t) = Sw(t) + Iw(t).

We consider ΛH to be the recruitment rate into the susceptible human class. We assume that sus-
ceptible humans get infected when bitten by infected water-bugs, hence the force of infection is given
by ρβ1SHIw where ρ is the biting rate and β1 is the transmission probability rate. We also assume
that the vaccine is imperfect, hence vaccinated individuals can be infected when bitten by infected
water-bugs at a reduce rate of (1 − σ). The parameters τ and λ are the rate at which susceptible
humans are vaccinated and the vaccine wane rate respectively. µH is the natural mortality rate that
occurs in the human population. Hence the dynamics of both the susceptible and vaccinated class is

dSH

dt
= ΛH − ρβ1SHIw − (τ + µH)SH + κRH + λVH

and
dVH

dt
= τSH − (µH + λ)VH − ω(1− σ)VHIw,

respectively. The exposed class increases by ρβ1SHIw and ω(1− σ)VHIw while it decreases by (µH +
ε) where ε is the rate at which exposed class become infected. Hence the dynamics of the exposed
class is

dEH

dt
= ρβ1SHIw − (µH + ε)EH + ω(1− σ)VHIw.

The infected human class increases at the rate by which individuals leave the exposed class εEH and
decreases by (µH + δ + γ). Therefore the dynamics of the infected human class is

dIH
dt

= εEH − (µH + δ + γ)IH ,

3
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where the δ and γ are death induce by the disease and recovery rate respectively. The recovery class
increases by the rate τ and decreases by (µH + κ) where κ is the rate at which recovered individuals
become susceptible again. Hence the dynamics of the recovered class is

dRH

dt
= γIH − (κ+ µH)RH .

The susceptible water-bug becomes infected by biting an infected human and coming into contact
with the Mycobacterium Ulceran, hence the force of infection is given by ρβ2SwIH . The dynamics of
the susceptible water-bug class is

dSw

dt
= Λw − ρβ2(1− ϕ)SwIH ,

where ϕ is the rate at which susceptible water-bugs are infected by coming into contact with the
Mycobacterium Ulceran environment. Lastly the dynamics of the infected water-bugs is given by

dIw
dt

= ρβ2(1− ϕ)SwIH − µwIw.

The following assumptions were made in order to derive the Buruli Ulcer model[36]. The transmis-90

sion dynamics consist of two populations, human and water-bug population, the pathogen is trans-91

ferred from waterbugs to humans and vice versa, Distinct recruitment and death rates, Imperfect92

Vaccination: Hence vaccinated, individuals can be infected when bitten by infected water-bugs at93

reduce rate of (1 − σ),potential reinfection of recovered individuals, the population of water-bugs is94

higher than that of humans and the rate at which water-bugs come into contact with Mycobacterium95

Ulcerans in their environment is ϕ.96

In Fig (3) and system (6), the schematic diagram and equations are described respectively.97 

dSH

dt
= ΛH − ρβ1SHIw − (µH + τ)SH + λVH + κRH

dEH

dt
= ρβ1SHIw − (µH + ε)EH + ω(1− σ)VHIw

dIH
dt

= εEH − (µH + γ + δ)IH

dRH

dt
= γIH − (κ+ µH)RH

dVH

dt
= τSH − (µH + λ)VH − ω(1− σ)VHIw

dSw

dt
= Λw − ρβ2(1− ϕ)SwIH − µwSw

dIw
dt

= ρβ2(1− ϕ)SwIH − µwIw,

(6)

with positive initial conditions SH(0) > 0, VH(0) ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, Sw(0) >98

0 andIw(0) ≥ 0.99

4
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SH EH
IH RH

VH

Iw Sw

Λw

ΛH

µHSH

µHEH

µHIH

γIH

κRH

ρβ1SHIw

ρβ2(1− ϕ)SwIH

εEH

ω(
1−

σ)
VH

Iw

µwIw µwSw

τSH λV
µRH

δIH

The compartmental model for Buruli Ulcer100

We now formulate the Atangana-Baleanu Caputo (ABC) fractional order derivative form of the equa-101

tion (6) as102 

ABCDα
t SH = Λα

H − ραβα
1 SHIw − (µα

H + τα)SH + λαVH + καRH

ABCDα
t EH = ραβα

1 SHIw − (µα
H + εα)EH + ωα(1− σ)VHIw

ABCDα
t IH = εαEH − (µα

H + γα + δα)IH

ABCDα
t RH = γαIH − (κα + µα

H)RH

ABCDα
t VH = ταSH − (µα

H + λα)VH − ωα(1− σ)VHIw

ABCDα
t Sw = Λα

w − ραβα
2 (1− ϕ)SwIH − µα

wSw

ABCDα
t Iw = ραβα

2 (1− ϕ)SwIH − µα
wIw

(7)

with the initial conditions SH(0) > 0, VH(0) ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, Sw(0) >103

0 and Iw(0) ≥ 0, where 0 ≤ t < T and ABCDα
t denotes the Atangana-Baleanu Caputo fractional104

derivative of order α ∈ (0, 1] . The parameters and variables of the model (7) are described in detail105

below, see Table 1.106

4 Mathematical Analysis of the Model107

In this section, we consider the qualitative aspects of the model (7). We present the proof of existence108

and uniqueness of the solution by means of fixed point iteration technique in specific norm.109

4.1 Existence And Uniqueness Of Solution110

Theorem 4.2. [41] Suppose that F (X) is a Banach space of real-valued continuous functions defined111

on the interval X = [0, T ] with the sup norm, and let G = F (X)×F (X)×F (X)×F (X)×F (X)×F (X)112

with the norm ∥(SH , EH , IH , RH , VH , Sw, Iw)∥ = ∥SH∥+∥EH∥+∥IH∥+∥RH∥+∥VH∥+∥Sw∥+∥Iw∥,113
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Parameter Description

β1 The transmission probability of infected water-bugs.
ρ The biting rate of infected water-bugs on susceptible individuals.
µH The natural mortality rate of the human population.
ε Represent the rate at which exposed class become infected.
γ The recovery rate.
ΛH Birth rate of susceptible humans.
Λw The recruitment rate of susceptible water-bugs.
β2 The transmission probability of infected humans .
κ The rate at which recovered individuals become susceptible.
δ Represent the induced death rate by the disease.
σ Efficacy of the vaccine.
ϕ The proportion of Mycobacterium Ulceran infecting water-bugs.
τ Vaccination rate.
λ Vaccine wane rate.

Table 1: Parameter and Variable Descriptions

where114 

∥SH∥ =sup{|SH(t)| : t ∈ X},
∥EH∥ =sup{|EH(t)| : t ∈ X},
∥IH∥ =sup{|IH(t)| : t ∈ X},
∥RH∥ =sup{|RH(t)| : t ∈ X},
∥VH∥ =sup{|VH(t)| : t ∈ X},
∥Sw∥ =sup{|Sw(t)| : t ∈ X},
∥Iw∥ =sup{|Iw(t)| : t ∈ X}.

(8)

Proof. Applying the fractional ABC operator on both side of the equation (7) yields115 

SH(t)− SH(0) = ABCDα
t SH = Λα

H − ραβα
1 SHIw − (µα

H + τα)SH + λαVH + καRH

EH(t)− EH(0) = ABCDα
t EH = ραβα

1 SHIw − (µα
H + εα)EH + ωα(1− σ)VHIw

IH(t)− IH(0) = ABCDα
t IH = εαEH − (µα

H + γα + δα)IH

RH(t)−RH(0) = ABCDα
t RH = γαIH − (κα + µα

H)RH

VH(t)− VH(0) = ABCDα
t VH = ταSH − (µα

H + λα)VH − ωα(1− σ)VHIw

Sw(t)− Sw(0) =
ABCDα

t Sw = Λα
w − ραβα

2 (1− ϕ)SwIH − µα
wSw

Iw(t)− Iw(0) =
ABCDα

t Iw = ραβα
2 (1− ϕ)SwIH − µα

wIw,

(9)

with the initial conditions SH(0) > 0, VH(0) ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, Sw(0) ≥ 0116

and Iw(0) ≥ 0 where 0 ≤ t < ∞ and ABCDα
t denotes the Atangana-Baleanu Caputo fractional117
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derivative of order α ∈ (0, 1] . Applying Definition (2) on the model system Eq (6) we obtain;118 

SH(t)− SH(0) =
1− α

M(α)
g1(SH(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g1(SH(r), r)dr

EH(t)− EH(0) =
1− α

M(α)
g2(EH(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g2(EH(r), r)dr

IH(t)− IH(0) =
1− α

M(α)
g3(IH(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g3(IH(r), r)dr

RH(t)−RH(0) =
1− α

M(α)
g4(RH(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g4(RH(r), r)dr

VH(t)− VH(0) =
1− α

M(α)
g5(VH(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g5(VH(r), r)dr

Sw(t)− Sw(0) =
1− α

M(α)
g6(Sw(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g6(Sw(r), r)dr

Iw(t)− Iw(0) =
1− α

M(α)
g7(Iw(t), t) +

α

M(α)Γ(α)

∫ t

0
(t− r)α−1g7(Iw(r), r)dr

(10)

where119 

g1(SH(t), t) = Λα
H − ραβα

1 SHIw − (µα
H + τα)SH + λαVH + καRH

g2(EH(t), t) = ραβα
1 SHIw − (µα

H + εα)EH + ωα(1− σ)VHIw

g3(IH(t), t) = εαEH − (µα
H + γα + δα)IH

g4(RH(t), t) = γαIH − (κα + µα
H)RH

g5(VH(t), t) = ταSH − (µα
H + λα)VH − ωα(1− σ)VHIw

g6(Sw(t), t) = Λα
w − ραβα

2 (1− ϕ)SwIH − µα
wSw

g7(Iw(t), t) = ραβα
2 (1− ϕ)SwIH − µα

wIw.

(11)

Given that SH(t), EH(t), IH(t), RH(t), VH(t), Sw(t) and Iw(t) have an upper bound, then120

g1(SH(t), t), g2(EH(t), t), g3(IH(t), t), g4(RH(t), t), g5(VH(t), t), g6(Sw(t), t), and g7(Iw(t), t) are said to121

satisfy the Lipschitz condition. Let SH(t) be two functions, such that122

∥g1(SH(t), t)− g1(S
∗
H(t), t)∥ = ∥ − ραβα

1 SHIw − (µα
H + τα)SH + ραβα

1 S
∗
HIw + (µα

H + τα)S∗
H∥

= ∥ − S1SH − (µα
H + τα)SH + S1S

∗
H + (µα

H + τα)S∗
H∥

= ∥ − (S1 + µα
H + τα)(SH − S∗

H)∥
= |(S1 + µα

H + τα)| ∥(SH − S∗
H)∥

≤ w1∥(SH − S∗
H)∥

(12)

In the same procedure we obtain;123 

∥g2(EH(t), t)− g2(E
∗
H(t), t)∥ ≤ w2∥(EH − E∗

H)∥
∥g3(IH(t), t)− g3(I

∗
H(t), t)∥ ≤ w3∥(IH − I∗H)∥

∥g4(RH(t), t)− g4(R
∗
H(t), t)∥ ≤ w4∥(RH −R∗

H)∥
∥g5(VH(t), t)− g5(V

∗
H(t), t)∥ ≤ w5∥(VH − V ∗

H)∥
∥g6(Sw(t), t)− g6(S

∗
w(t), t)∥ ≤ w6∥(Sw − S∗

w)∥
∥g7(Iw(t), t)− g7(I

∗
w(t), t)∥ ≤ w7∥(Iw − I∗w)∥.

(13)

Hence, wi, i = {1, . . . , 7} are the corresponding Lipschitz constants that satisfies the Lipschitz condi-124

tion for all the functions SH(t), EH(t), IH(t), RH(t), VH(t), Sw(t) and Iw(t). We can rewrite equation125

7

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24313151doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313151
http://creativecommons.org/licenses/by/4.0/


(10) recursively as126 

SH(t) =
1− α

M(α)
g1(SHn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g1(SHn−1(r), r) dr + SH(0)

EH(t) =
1− α

M(α)
g2(EHn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g2(EHn−1(r), r) dr + EH(0)

IH(t) =
1− α

M(α)
g3(IHn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g3(IHn−1(r), r) dr + IH(0)

RH(t) =
1− α

M(α)
g4(RHn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g4(RHn−1(r), r) dr +RH(0)

VH(t) =
1− α

M(α)
g5(VHn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g5(VHn−1(r), r) dr + VH(0)

Sw(t) =
1− α

M(α)
g6(Swn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g6(Swn−1(r), r) dr + Sw(0)

Iw(t) =
1− α

M(α)
g7(Iwn−1(t), t) +

α

M(α)

∫ t

0
(t− r)α−1g7(Iwn−1(r), r) dr + Iw(0).

(14)

Taking the difference of the successive terms together with the initial conditions in equation (7) , the127

following system of equations are derived, given by128 

λSH,n(t) = SH(t)− SHn−1(t) =
1− α

M(α)

(
g1(SHn−1(t), t)− g1(SHn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g1(SHn−1(r), r)− g1(SHn−2(r), r)

)
dr,

λEH,n(t) = EH(t)− EHn−1(t) =
1− α

M(α)

(
g2(EHn−1(t), t)− g2(EHn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g2(EHn−1(r), r)− g2(EHn−2(r), r)

)
dr,

λIH,n(t) = IH(t)− IHn−1(t) =
1− α

M(α)

(
g3(IHn−1(t), t)− g3(IHn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g3(IHn−1(r), r)− g3(IHn−2(r), r)

)
dr,

λRH,n(t) = RH(t)−RHn−1(t) =
1− α

M(α)

(
g4(RHn−1(t), t)− g4(RHn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g4(RHn−1(r), r)− g4(RHn−2(r), r)

)
dr,

λVH,n(t) = VH(t)− VHn−1(t) =
1− α

M(α)

(
g5(VHn−1(t), t)− g5(VHn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g5(VHn−1(r), r)− g5(VHn−2(r), r)

)
dr,

λSw,n(t) = Sw(t)− Swn−1(t) =
1− α

M(α)

(
g6(Swn−1(t), t)− g6(Swn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g6(Swn−1(r), r)− g6(Swn−2(r), r)

)
dr,

λIw,n(t) = Iw(t)− Iwn−1(t) =
1− α

M(α)

(
g7(Iwn−1(t), t)− g7(Iwn−2(t))

)
+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1

(
g7(Iwn−1(r), r)− g7(Iwn−2(r), r)

)
dr,

(15)
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Also, it can be observed that129

SH,n(t) =
n∑

j=0

λSH,j(t), EH,n(t) =
n∑

j=0

λEH,j(t), IH,n(t) =
n∑

j=0

λIH,j(t), RH,n(t) =
n∑

j=0

λRH,j(t),

130

VH,n(t) =
n∑

j=0

λVH,j(t), Sw,n(t) =
n∑

j=0

λSw,j(t), Iw,n(t) =
n∑

j=0

λIw,j(t),

Using equations (12) and (13) and taking into account that131 

λSH,n−1(t) = SHn−1(t)− SHn−2(t),

λEH,n−1(t) = EHn−1(t)− EHn−2(t),

λIH,n−1(t) = IHn−1(t)− IHn−2(t),

λRH,n−1(t) = RHn−1(t)−RHn−2(t),

λVH,n−1(t) = VHn−1(t)− VHn−2(t),

λSw,n−1(t) = Swn−1(t)− Swn−2(t),

λIw,n−1(t) = Iwn−1(t)− Iwn−2(t),

(16)

Then, the following are derived132 

∥λSH,n(t)∥ ≤ (
1− α

M(α)
w1)∥λSH,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w1∥λSH,n−1(r)∥ dr,

∥λEH,n(t)∥ ≤ (
1− α

M(α)
w2)∥λEH,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w2∥λEH,n−1(r)∥ dr,

∥λIH,n(t)∥ ≤ (
1− α

M(α)
w3)∥λIH,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w3∥λIH,n−1(r)∥ dr,

∥λRH,n(t)∥ ≤ (
1− α

M(α)
w4)∥λRH,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w4∥λRH,n−1(r)∥ dr,

∥λVH,n(t)∥ ≤ (
1− α

M(α)
w5)∥λVH,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w5∥λVH,n−1(r)∥ dr,

∥λSw,n(t)∥ ≤ (
1− α

M(α)
w6)∥λSw,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w1∥λSw,n−1(r)∥ dr,

∥λIw,n(t)∥ ≤ (
1− α

M(α)
w7)∥λIw,n−1(t)∥+

α

M(α)Γ(α)

∫ t

0
(t− r)α−1w7∥λIw,n−1(r)∥ dr,

(17)

133

Theorem 4.3. [41] The proposed fractional order Buruli Ulcer ABC operator model equation (7)134

possesses a unique solution for some t0 ∈ [0, T ] if the following condition holds true.135

1− α

M(α)
wj +

α

M(α)Γ(α)
wα
j t0 < 1, j = 1, . . . , (18)

Proof. It is evident that SH(t), EH(t), IH(t), RH(t), VH(t), Sw(t) and Iw(t) are bounded functions136

and adhere to the Lipschitz condition. Furthermore, the functions g1, g2, g3, g4, g5, g6 and g7 also137

comply with the Lipschitz condition as demonstrated in(12) and (13). Therefore, by applying the138
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recursive principle and using equation (17), the following system can be derived.139 

∥λSH,n
∥ ≤ ∥SH(0)∥

(
1− α

M(α)
w1 +

αt0
M(α)Γ(α)

w1

)n

,

∥λEH,n
∥ ≤ ∥EH(0)∥

(
1− α

M(α)
w2 +

αt0
M(α)Γ(α)

w2

)n

,

∥λIH,n
∥ ≤ ∥IH(0)∥

(
1− α

M(α)
w3 +

αt0
M(α)Γ(α)

w3

)n

,

∥λRH,n
∥ ≤ ∥RH(0)∥

(
1− α

M(α)
w4 +

αt0
M(α)Γ(α)

w4

)n

,

∥λVH,n
∥ ≤ ∥VH(0)∥

(
1− α

M(α)
w5 +

αt0
M(α)Γ(α)

w5

)n

,

∥λSw,n∥ ≤ ∥Sw(0)∥
(
1− α

M(α)
w6 +

αt0
M(α)Γ(α)

w6

)n

,

∥λIw,n∥ ≤ ∥Iw(0)∥
(
1− α

M(α)
w7 +

αt0
M(α)Γ(α)

w7

)n

.

(19)

Thus, the sequences derived above exist and satisfy140

∥λSm,n(α)∥ → 0, ∥λVe,n(α)∥ → 0, ∥λIm,n(α)∥ → 0, ∥λIe,n(α)∥ → 0, ∥λTm,n(α)∥ → 0, and
141

∥λRm,n(α)∥ → 0 as n → ∞.

Additionally, from equation (19) and utilizing the triangular inequality for any r, we obtain142 

∥SHn+r(t)− SHn(t)∥ ≤
n+r∑

j=n+1

χj
1 =

χn+1
1 − χn+r+1

1

1− χ1
,

∥EHn+r(t)− EHn(t)∥ ≤
n+r∑

j=n+1

χj
2 =

χn+1
2 − χn+r+1

2

1− χ2
,

∥IHn+r(t)− IHn(t)∥ ≤
n+r∑

j=n+1

χj
3 =

χn+1
3 − χn+r+1

3

1− χ3
,

∥RHn+r(t)−RHn(t)∥ ≤
n+r∑

j=n+1

χj
4 =

χn+1
4 − χn+r+1

4

1− χ4
,

∥VHn+r(t)− VHn(t)∥ ≤
n+r∑

j=n+1

χj
5 =

χn+1
5 − χn+r+1

5

1− χ5
,

∥Swn+r(t)− Swn(t)∥ ≤
n+r∑

j=n+1

χj
6 =

χn+1
6 − χn+r+1

6

1− χ6
,

∥Iwn+r(t)− Iwn(t)∥ ≤
n+r∑

j=n+1

χj
7 =

χn+1
7 − χn+r+1

7

1− χ7
,

(20)

Where, χi =
1−α
M(α)wi+

α
M(α)Γ(α) t0wi for i = {1, 2, . . . , 7} . As a result, SH,n, EH,n, IH,n, RH,n, VH,n, Sw,n143

and Iw,n form Cauchy sequences within F (x), converging uniformly. The limit of these sequences144

represents the unique solution to (7), demonstrated through the application of the limit theory in145

equation (14) as n approaches infinity. Thus, the existence of the unique solution for the fractional146

order ABC model system equation(7) is established.147

5 Numerical Results148

In this section, we present the numerical simulation of the fractional model (7). We consider the param-149

eter values in (2) and observe the dynamics of both class of human and the water-bug population. We150
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considered the following initial conditions SH(0) = 280,EH = 80, IH(0) = 25, RH(0) = 20, VH(0) =151

20, Sw(0) = 700, Iw(0) = 44. Varying orders of the fractional derivatives α =
{
0.8, 0.85, 0.9, 0.95

}
152

were used for the simulations.153

Parameter/ Variables Values Source

β1 0.69 [36]
ρ 0.0099 Assumed
µH 0.001066 Assumed
µw 0.021 [36]
ε 0.08 Assumed
γ 0.005 Assumed
ΛH 0.03 [36]
Λw 0.15 [36]
β2 0.099 Assumed
κ 0.05 Assumed
δ 0.0002 Assumed
σ 0.005 Assumed
ϕ 0.0005 Assumed

τ 0.002 Assumed
λ 0.02 Assumed
ω 0.00005279 Assumed
c1 4000 Assumed
c2 1090 Assumed
c3 550 Assumed
c4 990 Assumed

Table 2: Model’s parameter values

Figure 1: Sensitivity indices of the basic reproductive number.

From Figure (2), we observe that the number of susceptible humans SH decline as they become154

exposed to the Buruli ulcer disease, while the number of infected individuals increase. A similar155

behaviour is seen in the water-bugs. The number of infected water-bugs increases whiles the susceptible156

water-bugs decrease. This trend illustrates the natural progression of the Buruli ulcer disease outbreak,157

where the susceptible population diminishes as more individuals become infected. Also, we observe158
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Simulation of the fractional model model without control.

that both the vaccinated and recovered humans decrease. In the Figures 2a to 2f, we plot the solution159

trajectory for each compartment with varying fractional orders α =
{
0.8, 0.85, 0.9, 0.95

}
.160

The graph (3a) and (3b) shows the dynamics of the susceptible and infected human class with161

varying parameter ρ. It can be observed that decrease (increase) in the biting rate of the water bugs162

on humans, ρ lead to an increase (decrease) in the susceptible humans and a decrease (increase) in163

the infected humans. An increase in the recovery rate γ from figure (4) leads to a rise in the number164

of susceptible humans and a decrease in the infected humans class. From Figure (5) we observe that165
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when the parameter τ is varied there is much effect on the susceptible and vaccinated human class.166

When the value of the parameter τ is increased the vaccination of humans rises as the susceptible167

humans decline.168

(a) (b)

Figure 3: The dynamics of Susceptible and infected humans when the parameter ρ is varied.

(a) (b)

Figure 4: The dynamics of susceptible and infected humans when the parameter γ is varied.

6 Fractional Optimal Control of Buruli Ulcer169

In this section, we present the Buruli ulcer fractional optimal control problem. From the model170

(7) we modify it by applying the the optimal control interventions for effective management of the171

Buruli ulcer infection. The control interventions arose as a result of the computation of the sensitivity172

indices. We incorporate in the new model four control interventions namely; health education u1(t),173

vaccination rate u2(t), effective treatment of infected humans u3(t), and spraying insecticides on water-174

bugs population u4(t). The goal is to minimize the number of exposed humans EH , infected humans175

IH and the population of water-bugs Nw while minimizing the cost of control interventions. Hence176

the objective function J(u) can be formulated as177

J(u1, u2, u3, u4) =

∫ tf

0

(
EH + IH +Nw +

c1
2
u21 +

c2
2
u22 +

c3
2
u23 +

c4
2
u24

)
dt, (21)
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(a) (b)

(c) (d)

Figure 5: The dynamics of the Buruli model when the parameter τ is varied.

(a) (b)

Figure 6: The dynamics of Susceptible and infected humans when the parameter µH is varied.

subject to the fractional optimal control problem with interventions,178

ABCDα
t SH = Λα

H − ραβα
1 (1− u1)SHIw − (µα

H + u2)SH + λαVH + καRH ,
ABCDα

t EH = ραβα
1 (1− uα1 )SHIw − (µα

H + ϵα)EH + ωα(1− σ)VHIw,
ABCDα

t IH = ϵαEH − (µα
H + γα + δα + uα3 )IH ,

ABCDα
t RH = γαIH − (κα + µα

H)RH ,
ABCDα

t VH = u2SH − (µα
H + λα)VH − ωα(1− σ)VHIw,

ABCDα
t Sw = Λα

w − ραβα
2 (1− u1)(1− ϕ)SwIH − (µα

w + u4)Sw,
ABCDα

t Iw = ραβα
2 (1− u1)(1− ϕ)SwIH − (µα

w + uα4 )Iw.

(22)
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with positive initial conditions :179

SH(0) > 0, VH(0) ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, Sw(0) ≥ 0 and Iw(0) ≥ 0, (23)

where c1, c2, c3, c4 are the weights associated with the cost of the control measures. The primary goal180

of the fractional optimal control problem is to identify an optimal control u∗1, u
∗
2, u

∗
3, u

∗
4 such that181

J(u∗1, u
∗
2, u

∗
3, u

∗
4) = min

(u1,u2,u3,u4)

{
J(u1(t), u2(t), u3(t), u4(t))

∣∣u1, u2, u3, u4 ∈ U

}
,

where the admissible set of controls is given by182

U =
{
(u1, u2, u3, u4) ∈

(
L∞(0, tf )

)2| 0 ≤ ui(t) ≤ 1, i = 1, . . . , 4
}
.

6.1 Characterization of Optimal Control183

The existence outcome for optimal control from the adjoint variable of the state variables satisfies the184

following set of differential equations, and the required criteria that an optimal control must meet were185

obtained from Pontryagin’s Maximum Principle according to [39, 45]. With regard to the controls186

u1, u2, u3, u4, this principle transforms system (22) into a problem of minimizing a Hamiltonian H187

point-wise. Our initial step will be finding the Lagrangian and Hamiltonian for the optimal control188

problem.189

The Lagrangian formulation is given by190

L = EH + IH +Nw +
c1
2
u21 +

c2
2
u22 +

c3
2
u23 +

c4
2
u24 (24)

The Hamiltonian associated with the control problem is191

H = L+ LSH

ABCDα
t SH + LEH

ABCDα
t EH + LIH

ABCDα
t IH + LRH

ABCDα
t RH

+ LVH

ABCDα
t VH + LSw

ABCDα
t Sw + LIw

ABCDα
t Iw

(25)

Hence by Pontryagin’s Maximum Principle, the Hamiltonian H is as follows:192

H = EH + IH +Nw +
c1
2
u21 +

c2
2
u22 +

c3
2
u23 +

c4
2
u24

+ LSH
(Λα

H − ραβα
1 (1− u1)SHIw − (µα

H + u2)SH + λαVH + καRH)

+ LEH
(ραβα

1 (1− u1)SHIw − (µα
H + εα)EH + ωα(1− σ)VHIw)

+ LIH (ϵαEH − (µα
H + γα + δα + u3)IH)

+ LRH
(γαIH − (κα + µα

H)RH)

+ LVH
(ταSH − (µα

H + λα)VH − ωα(1− σ)VHIw)

+ LSw (Λα
w − ραβα

2 (1− u1)(1− ϕ)SwIH − (µα
w + u4)Sw)

+ LIw (ραβα
2 (1− u1)(1− ϕ)SwIH − (µα

w + u4)Iw) (26)

where LSH
, LEH

, LIH , LRH
, LVH

, LSw , LIw are the adjoint variables or the Lagrangian multipliers.193

The maximal principle of Pontryagin states that if (X,U) gives an optimal solution to an optimal194

control problem, then there exists a nontrivial vector function
(
LSH

, LEH
, LIH , LRH

, LVH
, LSw , LIw

)
195

with the following properties.196

− ABCDα
t Li =

∂H(t,X, u,Li)

∂i
where i = SH , EH , IH , RH , VH , Sw, Iw

∂H(t,X, u,Li)

∂u
= 0

L(tf ) = 0

(27)
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whereX and U are the optimal solution and controls respectively. The existence of the optimal control197

u∗i can be establish in the following theorem.198

Theorem 6.2. Let S∗
H , E∗

H , I∗H , R∗
H , V ∗

H , S∗
w, I

∗
w be the associated solution to the following optimal199

control problem and u∗1, u
∗
2, u

∗
3 and u∗4 be the optimal control that minimizes J(u1, u2, u3u4) over U.200

Then there exist adjoint functions Li satisfying the following three results201

1. Equations of adjoint state variables202

ABCDα
t LSH

= LSH
ραβα

1 (1− u1)Iw + LSH
(µα

H + u2)− LEH
ραβα

1 (1− u1)Iw − LVH
u2

ABCDα
t LEH

= −1 + LEH
(µα

H + εα)− LIHε
α

ABCDα
t LIH = −1 + LIH (µ

α
Hγα + δα + u3)− LRH

γα + ραβα
2 (1− u1)(1− ϕ)Sw

(
LSw − LIw

)
ABCDα

t LRH
= −LSH

κα + LRH
(κα + µα

H)

ABCDα
t LVH

= −LSH
λα − LEH

ωα(1− σ)Iw + LVH
ωα(1− σ)Iw + LVH

(
µH + λ

)
ABCDα

t LSw = −1 + LSwρ
αβα

2 (1− u1)(1− ϕ)IH + LSw(µ
α
w + u4)

ABCDα
t LIw = −1 + LSH

ραβα
1 (1− u1)SH − LEH

ραβα
1 (1− u1)SH − LEH

ωα(1− σ)VH

+ LVH
ωα(1− σ)VH + LIw(µ

α
w + u4)

(28)

2. With transversality conditions

Li(tf ) = 0, for i = SH , EH , IH , RH , VH , Sw, Iw

3. Furthermore, the optimality condition for FOCP as follows:203

u∗1 = max

{
0, min

{
1,

−ραβα
1 SHIw(LSH

− LEH
)− ραβα

2 (1− ϕ)SwIH(LSw − LIw)

c1

}}

u∗2 = max

{
0, min

{
1,

LSH
SH − LVH

SH

c2

}}

u∗3 = max

{
0, min

{
1,

LIH IH
c3

}}

u∗4 = max

{
0, min

{
1,

LSwSw + LIwIw
c4

}}
(29)

Proof. In trying to show the proof to the above theorem we use the Hamiltonian function (25) to204

get the adjoint and transversality criteria. We compute the adjoint system by employing Pontyagin’s205

maximal principle as follows;206

ABCDα
t LSH

= − ∂H

∂SH
= LSH

ραβα
1 (1− u1)Iw + LSH

(µα
H + u2)− LEH

ραβα
1 (1− u1)Iw − LVH

u2

ABCDα
t LEH

= − ∂H

∂EH
= −1 + LEH

(µα
H + εα)− LIHε

α

ABCDα
t LIH = − ∂H

∂IH
= −1 + LIH (µ

α
Hγα + δα + u3)− LRH

γα + ραβα
2 (1− u1)(1− ϕ)Sw

(
LSw − LIw

)
ABCDα

t LRH
= − ∂H

∂RH
= −LSH

κα + LRH
(κα + µα

H) (30)

ABCDα
t LVH

= − ∂H

∂VH
= −LSH

λα − LEH
ωα(1− σ)Iw + LVH

ω(1− σ)Iw + LVH

(
µH + λ

)
16
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ABCDα
t LSw = − ∂H

∂Sw
= −1 + LSwρ

αβα
2 (1− u1)(1− ϕ)IH + LSw(µ

α
w + u4)

ABCDα
t LIw = − ∂H

∂Iw
= −1 + LSH

ραβα
1 (1− u1)SH − LEH

ραβα
1 (1− u1)SH − LEH

ωα(1− σ)VH

+ LVH
ωα(1− σ)VH + LIw(µ

α
w + u4) (31)

, with transversality condition207

LSH
(tf ) = LEH

(tf ) = LIH (tf ) = LRH
(tf ) = LVH

(tf ) = LSw(tf ) = LIw(tf ) = 0. (32)

Also the optimal functions u∗1, u
∗
2, u

∗
3, u

∗
4 satisfies208

∂H

∂ui
= 0, i = 1, 2, 3, 4 (33)

Hence by making use of (33) the optimal control variables are obtained as209

u1 =
−ραβα

1 SHIw(LSH
− LEH

)− ραβα
2 (1− ϕ)SwIH(LSw − LIw)

c1
,

u2 =
LSH

SH − LVH
SH

c2
, u3 =

LIH IH
c3

and u4 =
LSwSw + LIwIw

c4

(34)

Hence the proof is complete.210

The uniqueness of the optimality system (28) was obtained as a result of the priori boundedness211

of the state system (22), the adjoint system, and so on. To ensure the uniqueness of the optimality212

system, we limit the duration of the time interval [1, tf ]. The optimal state can be found by substituting213

u∗i into (22).214

7 Numerical Simulations215

In this section, we look at how the interventions affect the Buruli ulcer transmission in a population.216

We used the modified PECE method of Adam-Bashforth Moulton to solve the adjoint variable (28)217

and the fractional optimal control problem numerically, see, e.g. [39]. In order to reduce the incidence218

of Buruli ulcer infections in humans and water bugs, respectively, we use the weight c1, c2, c3, c4, and219

parameter values in table (2). We vary the fractional order for four α values and set the time limit220

at six months. There are many combinations of intervention strategies we could consider however we221

limit ourselves to the following intervention strategies implemented in the simulations shown in the222

graphs below.223

7.1 Strategy A: All strategies224

The intervention method here present the solution of the optimal control system (22) when we focus225

on all the control variables that is u1 = u2 = u3 = u4 ̸= 0. From the figures in (7a)-(7f) we observe226

that there is a rise in the susceptible humans and a decrease in the number of infected humans due227

to the decline in the number of people exposed to the disease. This then leads to high recovery rate.228

Concurrently there is a slow increase in susceptible water-bugs as the infected water-bugs decreases.229
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Applying all control strategies

7.2 Strategy B: (u1), (u2), and (u3) only230

In this strategy, we consider the case where education on the use of protective clothing, the rate of231

vaccination and treatment of infected humans are implemented, when u1 = u2 = u3 ̸= 0, u4 = 0. From232

the figures in (8a)-(8f), we observe that the populations of the susceptible and recovered humans233

increases as the infected humans decline relative to the uncontrolled situation in figure (2). This is234

as a result of a rapid decline in the number of humans exposed to the disease in the endemic region.235
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In the same vane we observe a decreasing effect on the infected water-bugs and a linear rise in the236

susceptible water-bugs.237

(a) (b)

(c) (d)

(e) (f)

Figure 8: The intervention by education on wearing protective clothing, rate of vaccination and
treatment of infected humans.
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7.3 Strategy C: (u1), (u2), and (u4) only238

The intervention method present here looks similar to strategy A where there is a rise in the susceptible239

and recovered humans as a result of decline in exposed humans which leads to a rapid decrease in the240

infected human. Simultaneously there is a rapid decline in the infected water-bugs and slowly increase241

in the susceptible water-bugs.

(a) (b)

(c) (d)

(e) (f)

Figure 9: The intervention by education on wearing protective clothing, rate of vaccination and
applying insecticides on water-bug.

242
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7.4 Strategy D: (u1) and (u2) only243

The strategy shown over here is a combination of education on wearing protective clothing and rate244

of of vaccination where u1 = u2 ̸= 0, u3 = u4 = 0. It is clearly observed that this strategy is also very245

effective as the rate at which people are exposed to the disease falls which leads to increase in the246

number of susceptible and recovered humans and a decrease in the infected humans. There is also rise247

in the susceptible water-bugs and a fall in infected water-bugs respectively.248

(a) (b)

(c) (d)

(e) (f)

Figure 10: The intervention by education on wearing protective clothing and rate of vaccination only.
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7.5 Strategy E: (u3) and (u4) Only249

The intervention method here presents the solution of the optimal control system (22) when we250

focus on treating infected humans and applying insecticides on the water-bug population only, that251

is u1 = u2 = 0, u3 = u4 ̸= 0. From the figures (11a)-(11), combining these two control interventions252

leads to a rapid increase in the susceptible humans and decline in the number of infected humans as253

there is a decrease in the number of people exposed to outbreak of the disease. We also observe that254

recovered humans increases whiles there is rapid decline in the infected water-bugs and slowly increase255

in the susceptible water-bugs.256

8 Conclusion257

In this study, we developed a fractional optimal control model for Buruli ulcer transmission that258

includes health education on the use of protective clothes, vaccination rates, treatment of infected259

persons, and insecticide spraying on the water bug population. We used ABC fractional order deriva-260

tives to test the effect of fractional order derivatives. The basic features of the model without control261

variables were examined, revealing that the model is both biologically and mathematically well-posed.262

We subsequently formulated the fractional optimal control problem by using Pontryagin’s Maximum263

Principle, the optimal control problem was solved. We then presented a numerical simulation of the264

fractional model without control and with control. Several control strategies were implemented and we265

observed from the graphs that when the control measures are applied relative to the one without con-266

trol there is an increase in the susceptible, recovered, and vaccinated humans while there is a decline267

in infected humans and infected water-bugs. We then conclude and recommend that governments in268

the endemic regions should invest more in finding perfect vaccines, implement comprehensive health269

education on wearing protective cloths, ensure early and effective treatment of infected humans, and270

applying insecticides on the vectors that carry the Mycobacteria Ulcerans.271
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Intervention by treating infected humans and Spraying insecticides on Water-bugs only.
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and J.-F. Guégan. Identifying the achilles heel of multi-host pathogens: the concept of key-409

stone ‘host’species illustrated by mycobacterium ulcerans transmission. Environmental Research410

Letters, 8(4):045009, 2013.411

[51] E. N. Tabah, C. R. Johnson, H. Degnonvi, G. Pluschke, and K. Röltgen. Buruli ulcer in africa.412
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