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11 ABSTRACT

12 Pesticides use in vegetable production often has residual effects on the plants and environment with 

13 potential health risks. Diazinon, though associated with human health impacts, is a popular pesticide 

14 in the production of Brassica oleracea var. acephala at the Kimira-Oluch Smallholder Farmers 

15 Improvement Project (KOSFIP), Kenya. The long preharvest interval (PHI) of diazinon application 

16 may not be observed by farmers with inadequate appreciation of Good Agricultural Practices 

17 (GAP). It is not documented whether diazinon residues levels in the farm-gate Brassica oleracea 

18 var. acephala of KOSFIP could be a health risk to the consumers. The diazinon residues levels and 

19 corresponding health risks in farm-gate Brassica oleracea var, acephala at KOSFIP were 

20 determined. Cross-sectional survey based on snowball sampling identified 40 farms applying 

21 diazinon on the vegetable. Triplicate samples were collected from each farm for residue analysis, 

22 using the QuEChERS method, and LC-ESI-MS/MS analysis.  Standard normal distribution function 

23 f(z), revealed ≈ 78% of farm-gate samples had detectable residual diazinon levels and 70% were 

24 above the Codex MRL of 0.05 mg/kg. The farm-gate Brassica oleracea var. acephala are exposing 

25 consumers to health risks. Efforts must be intensified to ensure GAP are adopted. The estimated 

26 farm-gate samples with health risk indices for children and adults (HRIc and HRIA) >1.0 were 64% 
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27 and 26%, respectively. Farm-gate Brassica oleracea var. acephala diazinon levels are therefore 

28 causing high health risks to both children and adults. Farm-gate residual levels and HRI were 

29 comparatively higher than findings of most previous studies. Inappropriate label PHI and 

30 malpractices against GAP may be responsible for high residual levels. There should be regular 

31 surveillance and trainings of farmers on GAP for sustainable production of Brassica oleracea var. 

32 acephala in the Lake Victoria region. Use of diazinon on Brassica oleracea var. acephala should be 

33 discouraged and alternative approaches including integrated pest management practices should be 

34 encouraged. 

35

36 Key words: Diazinon; Brassica oleracea Var. acephala; Farm-gate; residue levels,; health risk 

37 assessment; KOSFIP.

38

39 INTRODUCTION

40 Pesticides enhance crop production for the increasing global population towards the realization of 

41 sustainable development goals (SDGs) of the United Nations (1,2). However, synthetic pesticides 

42 residues, magnified by malpractices in use, are ubiquitous contaminants in the environment (3–5). 

43 The residues pose serious to lethal health hazards to non-target organisms through inhalation, 

44 contact and ingestion of the contaminated foodstuffs (6,7). Approximately 30% (based on mass) of 

45 human food is of vegetable origin, mostly consumed raw or semi-processed. Vegetables can 

46 therefore be sources of pesticide residues to human beings more than other food groups (8) since 

47 most vegetable production uses various pesticides. Ingestion of contaminated foodstuffs is a  major 

48 exposure route to pesticide residues (9). It is necessary that vegetables treated with pesticides during 

49 production are evaluated for pesticide residue safety levels to protect the consumers against food 

50 safety hazards and risks.

51 Brassica oleracea var. acephala is grown in many parts of the world (10,11) as food and for its 

52 numerous health benefiting metabolites that minimize the risk of degenerative diseases like cancer 
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53 (6,12). However, cultivation of the vegetable involves application of pesticides for the management 

54 of pests and diseases that attack the roots and foliage (13–15). In Kenya, diazinon (O,O–diethyl–O-

55 (2-isopropyl-6-methyl-4-pyrimidinyl)phosphorothioate) is one of the broad-spectrum pesticides 

56 registered for use in Brassica oleracea var. acephala production (16). Diazinon is expected to 

57 undergo dissipation through chemical degradation processes and other forms of physical 

58 transformations including surface wash-off from the leaves. The total dissipation effect are expected 

59 to reduce diazinon residues to levels below the Codex maximum residue limit (MRL) of 0.05 mg/kg 

60 when diazinon is applied according to good agricultural practices (GAP) (17).

61 Kimira-Oluch Smallholder Farmers Improvement Project (KOSFIP) is an irrigation project located 

62 in Homa Bay County in the Republic of Kenya. The area is characterized by hot and humid climatic 

63 conditions with scanty rainfall of high variability in duration and amounts (18,19). High relative 

64 humidity of the location is due to close proximity to Lake Victoria and the irrigation water channels 

65 of the project. These conditions promote rapid spread of vegetable pests and diseases (20,21). The 

66 smallholder farmers manage the pests by use of synthetic pesticides. Though diazinon has been 

67 used by the smallholder farmers of Brassica oleracea var. acephala at KOSFIP, the long pre-

68 harvest interval (PHI) of 12 days (16) may not be observed by the farmers (5). Consequently, it is 

69 possible that residues of diazinon in Brassica oleracea var. acephala grown in KOSFIP may be 

70 above Codex MRL. Unfortunately, farm and market gate basket screening of diazinon residues in 

71 the produce at KOSFIP is not documented. The diazinon residues in the farm gate Brassica 

72 oleracea var. acephala vegetables might be a health risk to the consumers. Consequently, a survey 

73 of diazinon residue levels in farm gate vegetables and the health risks the residue levels may pose 

74 were investigated. The survey results of farm gate diazinon residues in Brassica oleracea var. 

75 acephala vegetables are reported herein.
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76 MATERIALS AND METHODS

77 Study area

78 This study was carried out within the Kimira-Oluch Smallholder Farmers Improvement Project 

79 (KOSFIP) site. KOSFIP is an irrigation project located in Rachuonyo (Kimira site) and Homa Bay 

80 (Oluch site) sub-counties of Homa Bay County in Kenya (Figure 1)(22). The site lies between 

81 latitudes 0o 20' S and 0o 30' S and longitudes 34o 30' E and 34o 39' E at an altitude of 1154 m above 

82 mean sea level along the shores of Lake Victoria (Figure 2)(23). Kimira site has an  area of 1,790 ha 

83 out of which 808 ha have been developed into 44 farming blocks whilst Oluch site has an area of 

84 1,308 ha with only 666 ha split into 53 farming blocks have been irrigated (19). The area is sub-

85 humid with mean annual rainfall of between 740 and 1200 mm with short and long rainy seasons 

86 during April-May and November-December, respectively, and mean annual maximum temperatures 

87 of 310C and minimum of 180C (18,19). The relative humidity is significantly high ranging between 

88 60 and 75% with potential evapotranspiration rate at 1800mm and 2000 mm per annum. Apart from 

89 the rains, the farms are irrigated, thereby producing vegetables throughout the year. The sites have 

90 fertile alluvial soils originating from the nutrient alluvial deposits washed downstream from the 

91 rivers and erosions from the Gusii highlands. 

92

93 Research design

94 A cross-sectional survey design based on purposive and snowball sampling techniques were used to 

95 identify forty-five farms of Brassica oleracea var. acephala that use diazinon in vegetable 

96 production. The survey was carried out during dry season (February to March, 2020) in both Kimira 

97 and Oluch sites of the project. During the period, Kimira site had 18 active blocks with Brassica 

98 oleracea var. acephala while Oluch had 35 sites. In addition, during sampling, Kimira site had 12 

99 farms while Oluch had 33 farms. The criteria for snowballing included same vegetable variety 

100 treated with diazinon only at first harvest. Among the forty-five farms, 40 were selected (24). 

101 Kimira had 11 farms while Oluch had 29 farms. The farms were spread equitably to represent 
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102 Kimira and Oluch sections of the project, considering all the 97 blocks making the project area. 

103 Sampling was biased to farms of Brassica oleracea var. acephala that had been treated with 

104 diazinon before the first harvest after planting. From every farm, 1 Kg of freshly harvested Brassica 

105 oleracea var. acephala, replicated three times were collected to make 120 samples.

106

107 Sample processing, preparation, extraction and partitioning

108 The processing, preparations, extraction and partitioning of the vegetable samples for diazinon 

109 residues analysis were carried out using Quick Easy Cheap Effective Rugged and Safe 

110 (QuEChERS) multi-residue method (25) as adopted and validated by the Analytical Chemistry 

111 Laboratories of Kenya Plant Health Inspectorate Services (KEPHIS) method M0326 as follows.

112  

113 Sample processing and preparation 

114 The vegetable samples were coarsely cut with a knife then chopped and homogenized with a Hobart 

115 food processor. About 100 g of the homogenized samples were placed in sample containers and 

116 were then stored frozen at -18oC ± 5oC in readiness for extraction. 

117

118 Extraction and partitioning of samples

119 A 10.0 ± 0.1 g of the homogenous wet samples and controls were weighed into 50 ml centrifuge 

120 tubes. The control samples were fortified with diazinon standard solution to achieve the 0.01µg/g 

121 for LC-MS/MS.  Using an automatic pipette, 50 µl of procedural internal standards (dimethoate D6 

122 (10 ppm) and malathion D10 (10 ppm)) were added to the contents of the centrifuge tubes. To the 

123 contents of the centrifuge tube, 10.0 ± 0.2 ml extraction solvent acetonitrile (MeCN) HPLC grade 

124 was added. The tube was immediately closed and shaken vigorously by Geno grinder for 1 minute 

125 at 1000 revolutions per minute (rpm). The resulting homogenous mixture in the centrifuge tube was 

126 then subjected to liquid-liquid partitioning step using 6.5 g of premixed extraction salts. The 

127 extraction salts comprised 4.0 ± 0.2 g magnesium sulphate anhydrous for removal of water and 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 9, 2024. ; https://doi.org/10.1101/2024.09.05.24313144doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313144
http://creativecommons.org/licenses/by/4.0/


6

128 salting out MeCN; 1.0 ± 0.05 g sodium chloride to increase selectivity of analyte by reducing 

129 amount of co-extracted matrix; 1.0 ± 0.05 g trisodium citrate dihydrate and 0.5 ± 0.03 g disodium 

130 hydrogen citrate sesquihydrate as a citrate buffer for pH adjustment. The tube was closed and 

131 immediately shaken vigorously by hand to avoid caking. The mixture was again shaken by Geno 

132 grinder for 1 minute with 1000 rpm then centrifuged for 5 minutes at 3700 rpm. An aliquot of 500 

133 µl of the mixture was transferred into a 2.0 ml vial followed with 495 µl of HPLC grade water and 

134 5 µl of injection internal standard dimethoate D6 (10 ppm). The mixture was vortexed to mix for 

135 LC-MS/MS analysis. The extracts were directly subjected to quantitative analysis by LC-MS/MS 

136 (dMRM) mode.

137

138 Preparation of calibration solutions

139 Calibration solutions were prepared using a control matrix containing no detectable residues of 

140 diazinon analytes. Using an automatic pipette, 4 ml of control blank was put into a 15 ml centrifuge 

141 tube followed with 4 ml of HPLC grade water and vortexed to mix.  Reference standard solutions of 

142 diazinon pesticide stocked by KEPHIS were prepared for analysis at concentrations of 0.005 µg/ml, 

143 0.01 µg/ml, 0.02 µg/ml, 0.05 µg/ml, 0.075 µg/ml, 0.1 µg/ml and 0.2 µg/ml for validation of method, 

144 and 0.005 µg/ml, 0.02 µg/ml, 0.05 µg/ml, and 0.2 µg/ml for routine analysis using the blank 

145 control. 

146

147 Instrumentation and instrument specifications

148 The extracted samples of Brassica oleracea var. acephala were analysed using Liquid 

149 Chromatography Quadruple Agilent 6430 LC-MS/MS (HPLC) with standard electron spray 

150 ionization (ESI). The HPLC column used was C-18 with an internal diameter of 1.8 µm and a 

151 length of 50 cm. The optimization parameters, including solvent gradient, precursor and product 

152 ions, and retention times were set as outlined in method M0326. The column temperature was set at 
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153 40.0oC. The auto-sampler injection and ejection speed was 200µL/min with an injection volume of 

154 3.00 µL

155

156 Quality control 

157 The 2018 Standard Operating Principles (SOP) number M0326 for QuEChERS Multi-Residue 

158 Method for Analysis of Pesticides Residues (25) in high water matrices validated by Analytical 

159 Chemistry Laboratory of KEPHIS was used in the determination of residue levels.  The quality 

160 parameters included repeatability, linearity, accuracy of recovery, method’s limits of detection 

161 (LOD) and quantitation (LOQ). Calibration curves were drawn according to analyte ranges of 

162 concentration and response to the LC-ESI-MS/MS. This was achieved by using five replicates of 

163 different concentrations diluted with blank extract samples. Evaluations of accuracy and precision 

164 parameters were done by recovery experiments (recovery range of 93 – 123%) in which each 

165 analyte standard were spiked with blank Brassica oleracea var. acephala slurry in six replicates. 

166 The replicates were prepared separately at three different concentrations of 10, 20 and 50 μg Kg-1.  

167 Limits of detection (LODs) of each analyte was validated by comparing the signal-to-noise (S/N) 

168 ratio magnitude to the background noise obtained from blank sample in the six replicates that 

169 presented mean coefficient of variations (CV) of less than 20%. The time window for the signal - to 

170 - noise (S/N) ratio was set at t < 2 minutes. LOD was calculated using the mathematical expression 

171 (26):

172 𝐿𝑂𝐷 = 𝑆
𝑁𝑟𝑎𝑡𝑖𝑜 × 𝐶𝑉 × 𝑀𝑒𝑎𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠……(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1)       

173 The limits of quantification (LOQs), defined as the minimum concentration of an analyte that can 

174 be identified and quantified with 99% confidence, was calculated using the mathematical 

175 expression (26):

176           𝐿𝑂𝑄 = 10 × 𝐶𝑉 × 𝑚𝑒𝑎𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠……………(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

177
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178 Analytical determination of residual diazinon 

179 For quantitative analysis of the analytes, 3 µl of the solvent, matrix control, calibration standards 

180 and spikes, and samples were injected into the LC-MS/MS instrument. Responses were recorded for 

181 both internal standards and samples. A calibration curve of responses against concentration of 

182 calibration standards was obtained. The results of concentrations of residues of diazinon for all the 

183 samples were calculated from responses obtained from the calibration curve. Respective 

184 chromatograms and graphics for quantitation and confirmation were obtained.  

185

186 Statistical analysis

187 The cross-sectional survey data of diazinon residues in farm gate samples were subjected to 

188 descriptive statistics for purposes of illustrating measures of central tendency and dispersion: mean 

189 concentrations, mode, median, quartiles, standard deviations, minimum and maximum values, range 

190 of values and the coefficient of variations (CV). The diazinon residues levels were also compared 

191 with Codex MRL values of 0.05 mg/kg and evaluated for health risk assessment. For both residue 

192 levels and health risk indices, the standard normal distribution function f(z) was used to determine 

193 the proportion of values that lie below and above the tolerable values of MRL and HRI. The values 

194 were computed using the formula:

195 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑧) =
(𝑥 ―  µ)

𝜎 ………………(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3)

196 Where z is the standard proportion value; x is the acceptable value; µ is the mean of the data set; 

197 and, σ is the standard deviation of the data set. 

198

199 Residual Pesticide Health Risk Assessment 

200 The residual pesticide health risk indices (HRI) estimations for children (HRIC) and for adults 

201 (HRIA) based on the farm gate samples were estimated using the European Union formula (27):

202 𝐻𝑅𝐼 =
𝐸𝐷𝐼
𝐴𝐷𝐼 ………….. (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4)
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203 Where; HRI is the health risk index; EDI is the estimated daily intake of the pesticide; and ADI is 

204 the acceptable daily intake of the pesticide. 

205

206 The EU formula provides that the EDI be determined by multiplying the sample residual pesticide 

207 concentration (mg/kg) by the estimated WHO food consumption rate (kg/day), and dividing by the 

208 number of the estimated WHO average body weight (28). HRI > 1.0 were considered as posing 

209 health risks hence not safe for human health. HRI ≤ 1.0 were considered not posing immediate 

210 health risks and thus safe for human health (29,30). The average daily vegetable intake for an adult 

211 of average weight 60 Kg was considered to be 0.345 Kg/person/day while children average daily 

212 intake was considered to be 0.232 kg/person/day for average body weight of 10 kg (31). The 

213 maximum acceptable daily intake (ADI) was considered to be 0.003 mg/kg body weight while the 

214 acute reference dose (ARfD) was 0.03 mg/kg body weight (32).

215  

216 RESULTS AND DISCUSSION

217 Quantification of levels of diazinon residues in the farm-gate baskets of Brassica oleracea var. 

218 acephala from the KOSFIP area of Homa Bay County for health risk assessment

219 Analysis of diazinon residues in the farm-gate Brassica oleracea var, acephala samples (Table 1) 

220 using the standard normal distribution function (f(z)) showed that 78% of all the samples had 

221 detectable levels of residual diazinon while 22% had non-detectable levels. Similarly, the 

222 percentage of farm gate samples with higher residues of diazinon than the acceptable 0.05 mg/kg 

223 was 70%. The findings were comparatively higher than levels reported by similar studies in Ghana 

224 (31), Nigeria (34) and other parts of Kenya (33,35), that reported trace levels of diazinon residues 

225 with less than 10% of the samples being above the Codex MRL.

226 The measures of central tendency (mean, median and mode) displayed a positively skewed 

227 distribution with a coefficient of variation (CV) of 122% (Table 2). The distribution demonstrated 

228 that the residues levels of diazinon in farm-gate Brassica oleracea var. acephala were highly 
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229 variable with a large range. The variability could be as a result of multiple factors associated with 

230 inadequate training of farmers on good agricultural practices and poor surveillance by respective 

231 national authorities (38). Consequently, farmers in KOSFIP area require regular surveillance and 

232 training on use of diazinon. The findings also suggest that the recommended diazinon application 

233 conditions of rates and pre-harvest intervals may be too short and not suitable for the study area. In 

234 addition, the findings suggest that KOSFIP farm-gate vegetables need thorough washing before 

235 cooking to reduce the leaf surface residual levels on the vegetables. The data set (Table 1) had no 

236 outliers. Corresponding measures of central tendency and dispersion derived from the data set are 

237 shown in Table 2. 

238  
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239 Table 1: Levels of diazinon residues in farm-gate baskets of Brassica oleracea var. acephala 

240 from selected KOSFIP blocks and resultant EDI and HRI for children and adults.

Farms Mean Conc. 
(mg/Kg)

EDIC EDIA HRIC HRIA

1 0.03 ± 0.04 0.0007 0.0002 0.2397 0.0594
2 0.00 ± 0.00 0.0000 0.0000 0.0000 0.0000
3 0.82 ± 0.40 0.0190 0.0047 6.3421 1.5719
4 0.05 ± 0.23 0.0012 0.0003 0.3905 0.0968
5 1.07 ± 1.30 0.0247 0.0061 8.2337 2.0407
6 0.05 ± 0.06 0.0011 0.0003 0.3681 0.0912
7 0.05 ± 0.06 0.0012 0.0003 0.4091 0.1014
8 0.02 ± 0.02 0.0004 0.0001 0.1245 0.0309
9 0.00 ± 0.00 0.0000 0.0000 0.0000 0.0000
10 0.06 ± 0.01 0.0014 0.0004 0.4717 0.1169
11 0.83 ± 1.01 0.0192 0.0048 6.4040 1.5872
12 0.10 ± 0.07 0.0022 0.0005 0.7347 0.1821
13 0.05 ± 0.01 0.0011 0.0003 0.3681 0.0912
14 0.06 ± 0.04 0.0013 0.0003 0.4315 0.1070
15 0.15 ± 0.18 0.0034 0.0008 1.1329 0.2808
16 0.40 ± 0.36 0.0094 0.0023 3.1235 0.7741
17 0.03± 0.01 0.0007 0.0002 0.2281 0.0565
18 0.02 ± 0.03 0.0005 0.0001 0.1748 0.0433
19 0.03 ± 0.02 0.0007 0.0002 0.2297 0.0569
20 0.65± 0.79 0.0150 0.0037 5.0042 1.2403
21 0.95 ± 0.12 0.0219 0.0054 7.3157 1.8132
22 0.08 ± 0.03 0.0018 0.0004 0.5885 0.1459
23 0.02 ± 0.02 0.0004 0.0001 0.1206 0.0299
24 0.09 ± 0.01 0.0021 0.0005 0.7061 0.1750
25 0.04 ± 0.05 0.0010 0.0002 0.3349 0.0830
26 0.20 ± 0.15 0.0047 0.0012 1.5567 0.3858
27 0.54 ± 0.05 0.0125 0.0031 4.1822 1.0365
28 0.00 ± 0.00 0.0000 0.0000 0.0000 0.0000
29 0.05 ± 0.06 0.0011 0.0003 0.3828 0.0949
30 0.12 ± 0.04 0.0027 0.0007 0.9017 0.2235
31 0.04 ± 0.05 0.0010 0.0002 0.3333 0.0826
32 0.66 ± 0.20 0.0152 0.0038 5.0738 1.2575
33 0.44 ± 0.14 0.0103 0.0025 3.4290 0.8499
34 1.06 ± 0.89 0.0245 0.0061 8.1579 2.0219
35 0.06 ± 0.04 0.0014 0.0003 0.4632 0.1148
36 0.74 ± 0.90 0.0172 0.0043 5.7327 1.4208
37 1.00 ± 1.01 0.0231 0.0057 7.7094 1.9107
38 0.04 ± 0.02 0.0010 0.0002 0.3209 0.0795
39 0.41 ± 0.07 0.0096 0.0024 3.1877 0.7901
40 0.62 ± 0.74 0.0144 0.0036 4.7885 1.1868

241

242 Replicates per farm = 3; EDIA – Expected Daily Intake for adults; EDIC – Expected Daily 

243 Intake for children; HRIA – Health Risk Index for adults; HRIC – Health Risk Index for 

244 children; LOD - Limits of Detection (0.0100 mg/Kg); 7.5% ≤ LOD ≤ 92.5%; MRL ≥57.5%
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245 Given that food safety standards encourage infinitesimal residual levels of pesticide residues 

246 (17), a positively skewed distribution with all measures of dispersion falling below Codex 

247 MRL (0.05 mg/kg) would be most preferable. However, the findings of this study demonstrate 

248 mean residual diazinon concentrations much higher than Codex MRL. As a result, the high 

249 diazinon residues levels in the farm gate samples may pose health risks to consumers. 

250 Subsequently, most of the farm gate Brassica oleracea var. acephala vegetables treated with 

251 diazinon at KOSFIP may not therefore be safe for human consumption. The standard normal 

252 distribution function (f(z)) for the health risk indices showed that approximately 64% of the 

253 samples could pose health risks to children. Similarly, approximately 26% of the samples could 

254 pose health risks to adults. The findings indicate that children consuming Brassica oleracea 

255 var. acephala from the study area may be more at risk than adults. These findings were similar 

256 to the levels reported in some vegetables of Bangladesh  (39), Kuwait (40), Nigeria (41), 

257 Ghana (42) and Sudan (43), where over 30% of samples reported residue levels above the 

258 Codex MRLs. The estimated daily intake (EDIC) and resulting health risk indices for children 

259 (HRIC) indicate that children consuming the vegetable from the study area have higher chances 

260 of developing diazinon related health problems (44,45). Given that data on residual levels with 

261 computed EDI and HRI for children are not available, comparisons of health risk factors for 

262 children in different regions have not been done.

263

264

265

266

267

268
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269 Table 2: Measures of central tendency and dispersion for levels of diazinon residues in farm-

270 gate baskets of Brassica oleracea var. acephala from KOSFIP area and resultant EDI and 

271 HRI for children and adults.

Measure of 
Central Tendency 
& Dispersion 

Mean Conc.
(mg/Kg) EDIC EDIA HRIC HRIA

Mode 0.05 0.00 0.00 0.37 0.09
Minimum 0.00 0.00 0.00 0.00 0.00
1st Quartile 0.04 0.00 0.00 0.33 0.08
Median 0.07 0.00 0.00 0.53 0.13
3rd Quartile 0.56 0.01 0.00 4.33 1.07
Inter Quartile R 0.52 0.01 0.00 4.00 0.99
Maximum 1.06 0.02 0.01 8.23 2.04
Range 1.06 0.02 0.01 8.23 2.04
Maximum 
Outliers 1.34 0.03 0.01 10.34 2.56
Mean 0.2900 0.0067 0.0017 2.2424 0.5558
Standard 
Deviation 0.3532 0.0082 0.0020 2.7314 0.6770
CV (%) 121.8049 121.8049 121.8049 121.8049 121.8049

272 CV – Coefficient of Variation; EDIA – Expected Daily Intake for adults; EDIC – Expected 

273 Daily Intake for children; HRIA – Health Risk Index for adults; HRIC – Health Risk Index for 

274 children; Mean concentration of 0.00 represents concentrations below Limits of Detection 

275 (LOD). Since all values fall below the maximum outlier value, there were no outliers and all 

276 data were used in the interpretation. 

277  

278 On the other hand, the estimated daily intake for adults (EDIA) and resultant health risk index 

279 for adults (HRIA) were comparatively lower than ratios for children (Table 1 and Table 2). The 

280 findings were similar to residual levels of diazinon in cauliflower of Bangladesh (46), tomatoes 

281 of Spain (47) and Iran (48), respectively. The effect of the residual levels of diazinon on EDI 

282 and HRI for adults were higher than the findings in Chinese kale (49), spring onion, parsley 

283 onion and ginger vegetables in Thailand (50). In addition, the results were also higher than 

284 those reported for yard long bean in Bangladesh (46), apple in Pakistan (51), T. occidentalis 

285 and C.argentea in Nigeria (34), Brassica oleracea var. acephala (35,37) and tomatoes (Ngolo 

286 et al., 2019) in Kenya.
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287 However, the results and the resultant EDI and HRI were lower than ratios reported on 

288 eggplant and tomatoes in Pakistan (39,52), watermelon (41), spinach and onions (53) in 

289 Nigeria, tomatoes in Ghana (33), cucumber and tomatoes in Sudan (43). Given the high 

290 variability displayed (coefficient of variation (C.V.) of 122%), the farmers and consumers of 

291 the vegetables are likely to be exposed to diazinon associated health risks (54).  These health 

292 challenges may threaten human population in the study area. On the same note, though the 

293 adults have a lower mean ratio of 0.559, continuous consumption of this popular vegetable may 

294 cumulatively raise the exposure levels and result in devastating health impacts (55). 

295 The presence of inappropriate levels of diazinon residues in the leaves of Brassica oleracea 

296 var. acephala may be a consequence of non-adherence to good agricultural practices (GAPs) 

297 such as failing to observe the application conditions of dosage and pre-harvest intervals. Such 

298 disregard are popular with smallholder farmers in developing countries for locally consumed 

299 vegetables (5,15,56) and in regions where surveillance and monitoring activities are 

300 inadequate. The unacceptable residue levels could be due to inability of the farmers to interpret 

301 the rates as prescribed on the labels or utter disregard of the rates, and inadequate surveillance 

302 of farmers on the use of pesticides. Inappropriate levels may also be attributed to inability of 

303 the farmers in the study area to consider other viable methods of pest control provided by 

304 Integrated Pest Management (IPM) guidelines (40,57) during heavy infestations.  To manage 

305 the unacceptable residue levels and related health problems, training of farmers on GAP and 

306 alternatives to chemical pest control should be initiated in the study area. National regulatory 

307 agencies should equally strengthen surveillance on farmers with emphasis on observance of 

308 pre-harvest intervals and pesticide dosages. The general public should also be sensitized on the 

309 need to reduce the risks through proper culinary processing of the vegetables before consuming 

310 them. Lastly, the inappropriate residue levels may result from label application conditions 

311 which were extrapolated from field trials done in other regions but not suitable for the study 

312 area. It is therefore well justified to constantly monitor residual levels of diazinon in the 
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313 vegetable and to develop pesticide safety level monitoring policies to mitigate resultant health 

314 problems due to unacceptable residue levels. 

315 In conclusion, the findings in this study showed that most of the farm-gate Brassica oleracea 

316 var. acephala treated with diazinon within the KOSFIP area of Homa Bay County of Kenya 

317 had higher than tolerable residue levels. The residual diazinon quantities may pose significant 

318 health risks to the consumers. The high levels suggested that most farmers of Brassica oleracea 

319 var. acephala who use diazinon within the KOSFIP area may not be observing good 

320 agricultural practices (GAPs). Consequently, there is need to restrict use of diazinon on 

321 Brassica oleracea var. acephala at KOSFIP and to consider alternative pesticides with shorter 

322 PHIs to reduce high levels of residual diazinon in farm gate vegetables. In addition, there is 

323 need for a survey study into the extent of good agricultural practices (GAPs) with respect to 

324 pesticide use in the production of Brassica oleracea var. acephala and other vegetables within 

325 the KOSFIP area of Homa Bay County. On the same note, there is need for health risk index 

326 (HRI) determination for various age groups with estimated local weights, consumption rates 

327 and pesticide safety levels (PSL) adapted to the local environment. Finally, there is need for a 

328 comparative study on the effects of processing (washing, blanching, cooking) to establish if 

329 such processing methods significantly reduces diazinon residue levels in Brassica oleracea var. 

330 acephala of KOSFIP area. 

331 This study has provided baseline information required for the establishment of Good 

332 Agricultural Practices (GAP) towards sustainable use of diazinon in production of Brassica 

333 oleracea var. acephala in the KOSFIP area. The study has provided a basis for discouraging 

334 the use of diazinon in the production of Brassica oleracea var. acephala in KOSFIP and other 

335 environments. 

336
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