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Abstract 

To better understand COVID-19 pathobiology and to prioritize treatment targets, we sought to 
identify human genes influencing genetically driven disease risk and severity, and to identify 
additional organismal-level phenotypes impacted by pleiotropic COVID-19-associated genomic 
loci. To this end, we performed ancestry-aware, trans-layer, multi-omic analyses by integrating 
recent COVID-19 Host Genetics Initiative genome-wide association (GWAS) data from six 
ancestry endpoints - African, Amerindian, South Asian, East Asian, European and meta-ancestry 
- with quantitative trait loci (QTL) and GWAS endpoints by colocalization analyses. We 
identified colocalizations for 47 COVID-19 loci with 307 GWAS trait endpoints and observed a 
highly variable (1-435 endpoint colocalizations) degree of pleiotropy per COVID-19 locus but a 
high representation of pulmonary traits. For those, directionality of effect mapped to COVID-19 
pathological alleles pinpoints to systematic protective effects for COPD, detrimental effects for 
lung adenocarcinoma, and locus-dependent effects for IPF. Among 64 QTL-COVID-19 
colocalized loci, we identified associations with most reported (47/53) and half of unreported 
(19/38) COVID-19-associated loci, including 9 loci identified in non-European cohorts. We 
generated colocalization evidence metrics and visualization tools, and integrated pulmonary-
specific QTL signal, to aid the identification of putative causal genes and pulmonary cells. For 
example, among likely causal genes not previously linked to COVID-19, we identified 
desmoplakin-driven IPF-shared genetic perturbations in alveolar cells. Altogether, we provide 
insights into COVID-19 biology by identifying molecular and phenotype links to the genetic 
architecture of COVID-19 risk and severity phenotypes; further characterizing previously 
reported loci and providing novel insights for uncharacterized loci.   
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Introduction 

Since the beginning of 2020 till mid 2023, SARS-CoV-2 infection and its disease, COVID-19, 
have caused the largest contemporary pandemic to date, severing the life of more than 7 million 
people, completely disrupting society lifestyle dynamics and causing a world-wide financial 
crisis. On May 5, 2023, the World Health Organization (WHO) declared COVID-19 to be no 
longer a public health crisis worldwide, as vaccination efforts proved successful in neutralizing 
existent variants at time 1. However, due to continuous evolution and adaptation, SARS-CoV-2 
new variants keep arising 2,3 . It is possible that forthcoming variants may escape neutralization 
of current vaccine approaches, as Omicron variant did for first generation vaccines 2. Even if up 
to date with vaccination, certain populations, like the immunocompromised, are 
disproportionally affected by the disease. Moreover, infection by SARS-CoV-2 can result in 
Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive 
dysfunction 4. Recent studies identified immunologic signatures linked to Long COVID 
symptoms 5,6, but the biological mechanisms that contribute to the development of the disease 
remain to be clarified. There is, thus, a need to keep further characterizing the host factors that 
contribute to COVID-19 etiology. 
 
During early stages of the pandemic, it was made evident that COVID-19 presentation was 
highly variable and influenced by multiple demographic, environmental, and biological factors 
such as age, sex, race, presence of comorbidities and differential immune response 7. As 
observed for other viral infections, COVID-19 is influenced by host genetics 8. Three months 
after the pandemic was declared by WHO (March 11th, 2020) pioneer studies reported 
9q34(ABO) and 3p21.31(SLC6A20) as genetic susceptibility loci for the development of 
respiratory failure in COVID-19. Global efforts devoted to unveiling COVID-19 genetics were 
put in place, notably spearheaded by the Host Genetic Initiative (HGI) 9. To date, as per GWAS 
catalog 10 entries (July 2024), more than 30 Genome-wide association studies (GWASs) have 
been conducted worldwide, mostly in European ancestry cohorts, identifying dozens of genomic 
loci linked COVID-19 phenotypes, mainly susceptibility and severity of COVID-19.  
 
Comprehensive characterization of the shared genetics among COVID-19 and other complex 
traits has provided insights into the pathobiology of the disease and can inform repurposing of 
existing drugs. Phenome-wide approaches have identified COVID-19 links with body mass 
index, smoking, diabetes and ischemic stroke, among others, and causal relationships between 
COVID-19 and some of these traits have been predicted. For instance, genetic liability to 
increased BMI and bad smoking habits is reported to be causally linked to COVID-19 severity; 
whereas genetically determined better kidney and lung function might be protective 11,12.  Such 
findings have implications for risk stratification in patients with COVID-19 and the prevention 
of its severe outcomes. 

To identify molecular implications of GWAS signal, a straightforward approach is to consider 
genes based on their proximity to the risk loci. This approach is not truly accurate 13 and is 
outperformed by integration of quantitative trait loci (QTLs), which enables higher accuracy and 
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can be informative of the causal context, e.g. cell type of origin 14. Several studies have utilized 
QTL-based approaches to prioritize putative causal COVID-19 genes 15-18. Collectively, they 
have provided supporting evidence for  genes involved with mucociliary clearance,  viral-entry 
and mucosal immunity as linked to of SARS-CoV-2 infection, and genes involved in antiviral 
immune response, leukocyte trafficking and lung injury as linked to severe disease19.  However, 
most published approaches are derived from only expression QTLs (eQTLs) and restricted to a 
relatively scarce set of biotypes, mainly bulk-tissue lung, blood and immune cells. Importantly, 
the effects of common genetic variants on molecular phenotypes can be specific to a cell-type or 
other context, or observed in a particular molecular phenotype other than gene expression 20-22. 
Thus, integration of a wide range of multi-omic, multi-context QTL sources, including lung 
QTLs at a single cell resolution, can maximize the expectation to identify COVID-19 putative 
molecular mediators. 

Here, we sought to identify human genes influencing genetically driven disease risk and severity, 
and to identify additional organismal-level phenotypes impacted by pleiotropic COVID-19-
associated genomic loci. To this end, we performed ancestry-aware, trans-layer, multi-omic 
analyses by integrating recent COVID-19 Host Genetics Initiative genome-wide association 
(GWAS) data from six ancestry endpoints - African, Amerindian, South Asian, East Asian, 
European and meta-ancestry – with expression, splicing, protein and DNA methylation QTLs, 
and with GWAS endpoints, by systematic colocalization analyses.  
 

Results 

Overview and characterization of COVID-19 linked genomic loci 
 
We analyzed ancestry-stratified and multi-ancestry GWAS data provided by the COVID-19 
Human Genetic Initiative v.7 11,23 and identified 91 loci putatively associated with COVID-19, 
defined as genomic loci with suggestive (P<5-07) association with COVID-19 disease 
susceptibility and/or severity phenotypes (Supplementary Table 1). For 38 loci, no association 
with COVID-19 phenotypes has previously been reported (Methods), but only 8% (3/38) are 
genome-wide significant (P<5-08). Out of the 91 COVID-19 loci, 28% were exclusively 
identified in an ancestry-stratified GWAS endpoint; 68% of those (17/25) in non-European 
cohorts. We observe, as arguably expected, that ancestry-specific loci tend to correspond to low-
frequency variants with relatively higher frequency in the discovery cohort, but with consistent 
direction of effect across GWAS endpoints (Fig. 1). 
 
For 46 loci, corresponding lead variant had suggestive (P<5-07) association across multiple 
GWAS endpoints. For those cases, to avoid testing correlated GWAS signal per locus, only the 
GWAS with the most significant signal per locus was considered for subsequent analysis (Fig. 1, 
Methods). To identify biological signatures associated to different COVID-19 features in 
downstream analyses, we employed a two-class Bayesian model 12 and determined that most 
classified (80%, 70/87) loci are likely to influence severity of the disease (Risk vs severity 
score<0.2) and a substantial minority (20%, 17/87) are more likely to impact susceptibility to 
SARS-CoV-2 infection (Risk vs severity score>0.8) (Fig. 1). This proportion matches previous 
observations with stricter threshold (score<0.01 or >0.99) 11. 
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Previously reported COVID-19 GWAS genes and loci are highly represented in viral entry, entry 
defense in airway mucus, type I interferon response and upkeep of healthy lung tissue. Here, 
among previously unreported COVID-19 loci, we identified additional instances to such 
processes by considering putatively implicated genes by COVID-19 GWAS lead variants given 
closest gene, VEP24 and V2G25 variant-to-gene approaches (Methods, Supplementary Table 1, 
Fig. 1). For instance, we identified rs2076295 as predicted to impact DSP, which encodes a 
desmoplakin linked to pulmonary diseases and is thought to maintain airway epithelial integrity 
26. We observed rs8192330 overlap with SFTPC isoforms, which regulate alveolar surface 
tension and were found to be significantly decreased in COVID-19 patients with higher viral 
load 27. Unreported loci also pinpoint genes and mechanisms for which the COVID-19 link is 
less characterized, but that are arguably good candidates for playing a role in the disease. For 
instance, rs60568503 is located in an intronic region of the long non-coding RNA gene 
LINC01505, which is predicted to interact with SARS-CoV-2 spike mRNA 28. The variant 
rs190134128, only common (MAF>0.01) in African cohort, is located in an intronic region of 
SELENON, which encodes selenoprotein N; selenium levels have been correlated with COVID-
19 survival and selenoproteins levels are altered by SARS-CoV-2 infection 29. The variant 
rs60952428 is predicted to impact ADAT1, which encodes for a deaminase responsible for the 
deamination of adenosine 37 to inosine in eukaryotic tRNA; A-to-I RNA editing is increased in 
COVID-19 infected individuals 30. The variant rs2505973 is predicted to impact SLC2A5, which 
encodes an enzyme involved in fructose uptake, is differentially expressed in SARS-CoV-2 
infected cells and is hypothesized to play a role in upkeeping their energy needs 31. We also 
identify loci associated to proteins that are part of the same complex or that physically interact. 
For instance, variants rs9873599 and rs1430435, are predicted to impact MECOM, which can 
interact with CREBBP, associated to variant rs77148607. Both genes are involved in cell cycle 
and differentiation and cancerous processes 32,33. The variants rs7289512 and rs35032356 are 
predicted to impact NDUFA6 and NDUFAF6, which are assembly- and structure-associated 
proteins of the mitochondrial respiratory complex I, respectively. Mitochondrial dysfunction has 
been associated to COVID-19 pathobiology 34,35. Overall, characterized genomic loci potentially 
associated to COVID-19 pinpoint known and novel or less characterized COVID-19 putatively 
causal genes and mechanisms.  
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Fig. 1. Genome-wide associations for SARS-CoV-2 risk and COVID-19 severity across ancestries. Suggestive 
(P<5-07) genomic loci (x axis) associations with COVID-19 severity (Hospitalization, Critical illness) and SARS-
CoV-2 susceptibility (Risk) phenotypes across ancestry (ALL=Multi-ancestry, AFR=African, AMR=Admixed 
American, EAS=Southeast Asian, EUR=European, SAS=South Asian) endpoints (y axis). COVID-19 loci are 
labeled by lead variant, risk/severity (pathological) allele, corresponding closest protein-coding gene, and Open 
Targets V2G gene (if different). Top GWAS is indicated by a rhomb and corresponds to the GWAS with smallest 
lead variant p-value per locus. Loci are annotated by top GWAS ancestry, ‘Reported’ for literature reported-status, 
and risk versus severity score (Methods, Supplementary Table 1). Circle size represents the allele frequency of the 
pathological effect allele. Circle color and boldness represent GWAS effect size and significance (PGWAS<5-07), 
respectively.  
 
Identification and characterization of pleiotropic COVID-19 loci 
 
Comprehensive characterization of shared genetics between diseases can provide valuable 
insights into their pathobiology 36. Genome-wide cross-trait studies have found evidence for 
shared genetic architecture between COVID-19 and BMI, diabetes, smoking habits, 
cardiovascular and pulmonary traits, among others 11, but availability of GWAS summary 
statistics has historically been a limiting factor. To characterize the shared genetic basis of 
COVID-19 with a broad spectrum of trait endpoints, we performed COVID-19 GWAS 
colocalization with other GWAS traits.  We used POEMcoloc 37, an imputation-colocalization 
approach that infers shared causal genetics of two traits from as little as summary statistics from 
a single lead variant.  We integrated and colocalized COVID-19 GWAS signal with GWAS 
summary statistics from the entire GWAS Catalog (February 2023) 10, comprising 89 COVID-19 
loci overlapping with 13,750 loci from 1,053 GWAS trait endpoints (Methods).  
 
In total, we identified significant (PP4>0.75) colocalizations derived from 307 GWAS trait 
endpoints and corresponding to 47/89 (53%) of the COVID-19 loci, 19 of which were not 
previously reported as linked to COVID-19 phenotypes (Supplementary Table 2, Fig. 2a). We 
observed a highly variable degree of pleiotropy per COVID-19 locus, and a tendency for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.05.24313137doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313137
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

COVID-19 susceptibility loci to be more pleiotropic than severity loci, as we observed a 
correlation between the number of colocalized traits per locus and the corresponding risk versus 
severity score (Spearman rho=0.56, P<1e-04). Two notable examples include the susceptibility-
linked loci SLC39A8 and FUT2, which colocalize with more than 150 trait endpoints across 
multiple trait classes (Fig. 2a, left panel).  
 
Colocalizations with COVID-19 are prevalent among respiratory system related traits, 
cardiovascular and lipid related traits, anthropomorphic measurements and hematological 
measurements, which reflects, in part, their higher overall prevalence in the GWAS Catalog. To 
identify highly represented trait classes, we considered the fraction of significant COVID-19 
colocalizations within overlapping GWAS loci (Methods). We observed that overlapping 
associations for pulmonary traits were most frequently colocalized (fraction>0.3), with idiopathic 
pulmonary fibrosis (IPF), interstitial lung disease (ILD) and pulmonary function measurements 
being the top represented traits (Fig. 2a, right panel). These findings are  in line with what has 
been observed 11, and highlights that the genetic predisposition to COVID-19 risk or severity 
shares more genetic basis with pulmonary phenotypes compared to other traits and that there is a 
systemic dependence on genetic factors influencing pulmonary biology.  
 
To characterize the individual contribution of each COVID-19 locus on associated pulmonary 
traits, we analyzed the impact of COVID-19 pathological alleles on the direction of effect per 
trait, imputing it from variants in linkage disequilibrium when not directly available (Methods, 
Fig. 2b). We observed that COVID-19 pathological alleles can be either protective or detrimental 
for other traits, and oftentimes per-locus opposite effects are observed within traits. We link the 
rs12660421-A in the FOXP4 locus to increased lung adenocarcinoma risk and note that this 
allele has recently been reported to be associated to long COVID-19 38. At each of three 
colocalizing loci, COVID-19 pathological alleles convey protective effects for chronic 
obstructive pulmonary disease (COPD), despite ILDs and COPD being a risk factor for COVID-
19 39. The COVID-19 pathological alleles rs35705950-G and rs12585036−T in the MUC5B and 
MCF2L|ATP11A loci, respectively, have been found here, and previously, to be protective for 
ILDs 40,41. On the other hand, observed IPF risk alleles include the COVID-19 pathological 
alleles rs2897075−T | ZSAC21|TRIM4, rs12610495−G|DPP9 and rs2076295-G|DSP. These loci 
are known to contribute to IPF genetic architecture 42, but the DSP locus has not been previously 
associated with COVID-19. Observed effects on pulmonary function metrics were locus-
dependent as well. For example, rs41264915-A|MUC1, rs34712979-G|INTS12|NPNT and 
rs60568503−A|ZNF462 were linked to increased pulmonary function (FEV/FEC ratio), but 
rs2076295-G|DSP showed the opposite effect. Altogether, our results contribute to the 
understanding of COVID-19 genetic mechanisms shared with other traits, particularly with 
pulmonary pathologies.  
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Fig. 2. Pleiotropic COVID-19 linked loci. a, Leftmost bar plot represents the fraction of colocalizations (y axis) 
corresponding to each COVID-19 pleiotropic locus (x axis) stratified by broad category of GWAS Catalog trait. 
Total number of colocalizations per locus is displayed on top of corresponding bar. COVID-19 loci are labeled as in 
figure 1 and annotated by ‘Reported’ for literature reported-status, and risk versus severity score (Methods, 
Supplementary Table 1). The rightmost bar plot represents the fraction of GWAS Catalog loci that colocalize with 
COVID-19 (x axis) per trait narrow category (y axis). For a given category, the fraction is the number of 
overlapping GWAS Catalog loci mapped to the trait category for which a significant (PP4>0.75) colocalization is 
observed. Details of the colocalization approach and trait category mapping are described in Methods. b, Leftmost 
heatmap represents POEMColoc probability of colocalization (PP4) per COVID-19 locus (y axis) and respiratory 
trait endpoint (x axis) for loci that colocalize with at least one respiratory trait. COVID-19 pathological allele effect 
on pulmonary trait is depicted with an upward (increase) or downward (decrease) triangle, for cases with available 
data. Rightmost heatmap represents consensus pathological allele effect on trait derived from aggregated evidence 
across endpoints.  
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Impact of COVID-19 GWAS loci on molecular phenotypes 
 
To infer molecular consequences of COVID-19 GWAS variants, we integrated by colocalization 
a comprehensive set of 284 cis QTL maps derived from different molecular phenotypes, 149 
bulk-tissue and 135 cell-isolated sources. This set comprises maps from gene expression or 
splice phenotypes (e/sQTLs, 94%), DNA methylation (mQTLs, 4%) and protein (pQTLs, 2%) 
abundance, including in disease-relevant biotype and contexts like lung, plasma, blood and 
immune cells (Methods, Supplementary Table 3). Across all COVID-19 associated genomic loci, 
QTL maps and molecular phenotypes, we identified 2,511 colocalizations (PP4>0.75, 
Supplementary Table 4) across 64 loci. While 83% of colocalized loci implicate at least one 
eQTL endpoint, considering loci with QTL colocalization(s) identified in other molecular 
phenotypes, 11/62 lack eQTL associations. Molecular QTL-colocalized loci involved most 
reported (47/53) and half of unreported (19/38) COVID-19-associated loci, including 9 loci 
identified in a non-European ancestry (Fig. 3a). Among these non-European loci, we observed 
the COVID-19 risk allele rs10975818-A, identified in the African-ancestry cohort, associated 
with higher KDM4C expression in T-cells, and the rs2601183-G COVID-19 severity allele, 
identified in the Amerindian cohort, associated with higher CpG-site methylation levels in 
ZNF774 3’ exon in lung (Fig. 3b). Higher expression of KDM4C has been linked to lung cancer 
43, and ZNF774 expression is enhanced in glandular epithelial cells and predicted to be 
associated with mucin production 44. By analyzing ancestry-stratified GWAS signal and multi-
omic QTLs, we revealed molecular links to previously uncharacterized COVID-19 loci. 
 
We identified between 1 and 19 COVID-19 colocalized genes per locus (median = 4) and 
observed that most (>81%) loci support colocalization for multiple genes, and that at half of 
these multi-gene loci, a single gene accounts for the majority of colocalizations. Moreover, most 
loci (86%) implicate colocalizations across multiple QTL cell/tissue endpoints (Supplementary 
Table 5, Supplementary Figure 1). These phenomena are expected, due to varying regulation 
between cell types and widespread coregulation 45,46, among other causes. However, it makes 
identification of putative causal gene(s) difficult, as most colocalizations are expected to not be 
causal 47. To prioritize candidate genes by colocalization evidence, we calculated per-gene 
metrics based on high posterior probability of colocalization logit(PP4) and on accounted 
fraction of colocalizations (Methods, Supplementary Table 5). We observed that the 
colocalization metrics agree only in part; while 67% of 64 gene-mappable colocalized loci have a 
gene candidate supported by both metrics, genes that rank high in one metric do not necessarily 
rank high in the other (Fig. 3c). For instance, TMPRSS2 and OAS1, well-known COVID-19 
linked genes, account for >60% of corresponding locus colocalizations, but have a relatively 
moderate probability of colocalization compared to other genes. Relative gene-prioritization 
score differences are employed to prioritize causal genes 25,48; here we calculated, per metric, the 
relative difference with the secondmost supported gene per locus. We observe that while the 
colocalization fraction scores are only marginally correlated (r=0.31, P=0.03), the relative 
colocalization probability scores tend to agree with the absolute ones (r=0.79 and P=2.2e-16), 
providing limited additional information for prioritization purposes.  
 
The amount of colocalization signal attributable to a gene can reflect the shared impact of the 
underlying causal QTL variant across biological contexts, and is associated to higher chances of 
organismal-level phenotypic pleiotropy 46. Multiple regulatory effects (e.g. on splicing and 
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expression) for the same gene often mediate the same complex trait associations, and QTLs 
derived from different molecular phenotypes can have an independent contribution to complex 
traits 21,46. Here we have quantified the amount of total and cross-omics colocalization support 
per gene to evaluate the agreement with the aforementioned colocalization evidence metrics, and 
to further aid putative causal gene prioritization. We observe that genes supported by both 
metrics tend to account for a higher number of colocalizations (Wilcoxon rank sum test P=1.7e-
07) and are more likely supported by more than one QTL molecular phenotype (Wilcoxon rank 
sum test P=4.45e-11), than other colocalized genes. The only three genes supported by all 
molecular phenotypes analyzed are NPNT, ABO and OAS1 (Fig. 3c), all well-known COVID-19 
linked genes. Altogether, we provide complementary colocalization evidence metrics to help 
prioritize putative causal COVID-19 genes.  
 
To enable further exploration of the colocalization signals identified here, we built an interactive 
R shiny application (https://covidgenes.shinyapps.io/shiny/) to easily query summary statistics 
and visualize the genomic context of all significant QTL colocalizations, stratified by QTL map, 
molecular phenotype, and gene (Supplementary Figure 2a). Using this tool to contextualize 
colocalization signal, we identified genes with suboptimal colocalization evidence scores that are 
arguably likely causal candidates. For instance, in the rs8192330-G|BMP1 locus, BMP1 and 
SFTPC account for 5/10 and 1/10 of colocalizations, respectively. The top – largest PP4 – 
colocalization instance corresponds to SFTPC differential splicing identified exclusively in lung 
(Supplementary Figure 2b-c). Other candidates in the region, which have lower colocalization 
probabilities, do not account for colocalization signal in lung and are not part of mechanisms 
known to play a role in COVID-19. Overall, the application allows locus-level contextualization 
of colocalizations that can assist the identification of putative causal genes.  
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Fig. 3. COVID-19 GWAS-QTL colocalization results. a, Number of COVID-19 GWAS loci with identified QTL 
colocalizations, stratified by QTL molecular phenotype, GWAS ancestry, and previously reported status. b, 
Genotype-phenotype association p-values of the ZNF774 and KDM4C locus. Left panels illustrate CpG cg12526855 
mQTL signal in Lung (top) and GWAS signal for COVID-19 severity (Hospitalization GWAS) in the Admixed 
American cohort (bottom). Right panels illustrate KDM4C eQTL signal in T-cells (top) and GWAS signal for 
COVID-19 risk in African cohort (bottom). Top variant by posterior probability of shared causality is illustrated 
with a diamond and labelled by dbsnp id and COVID-19 risk/severity associated allele. ‘v’ and ‘�’ indicate allele 
association with negative or positive molecular phenotype effect, respectively. ‘>’ and ‘<’ indicate gene 
transcription direction. Linkage disequilibrium between loci is quantified by squared Pearson coefficient (r2), 
derived from corresponding GWAS ancestry. P-values correspond to nominal GWAS and QTL associations, derived 
from multiple regression two-sided t-tests. c, Colocalization evidence metrics (y axis) stratified by gene (x axis). 
Bottom panel illustrates the logit(PP4) corresponding to the top per-locus gene for that metric; bars are colored by 
the relative difference (ratio) with the corresponding locus second-ranked gene for the same metric. Middle panel 
illustrates the per-locus fraction of colocalizations attributable to corresponding gene; bars are colored by the 
relative difference (ratio) with the corresponding locus second-ranked gene for the same metric. For both panels, 
genes corresponding to loci with a single gene colocalized are colored in light blue. Top panel illustrates the number 
of QTL endpoints (QTL maps) per gene and molecular phenotype. Total number of colocalizations per gene is 
displayed on top of corresponding slot. Genes are sorted by logit(PP4) metric.   
 
Pulmonary cell of origin of COVID-19 linked genes 
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SARS�CoV�2 transmission and infection occurs via the respiratory system, and COVID-19 
affects lung more than other organs 49. Thus, it is expected that a large fraction of causal 
molecular perturbations occurs in lungs. We observed that lung accounts for a relatively small 
fraction of colocalizations, and effect sizes of loci colocalizing in lung are not particularly large 
(Supplementary Figure 1). However, we identified lung as the most overrepresented biotype 
when comparing biotype-stratified colocalization signal with other GWAS trait endpoints from 
the Open Target database (Supplementary Figure 3a). To investigate the pulmonary cell of origin 
of COVID-19-gene associations, we adopted two complementary approaches, based on lung 
cell-type interaction cis eQTLs (ieQTLs) and lung single-cell RNA-Seq cis eQTLs (sc-eQTLs) 
(Methods). Cell-type ieQTLs are derived from bulk RNA-Seq profiles and capture eQTLs 
correlated with cell-type abundances 50,51; sc-eQTLs capture eQTLs in specific cell types 
identified from single-cell RNA-Seq profiles 52. Both approaches are complementary, as ieQTLs 
can misattribute signal to cell types correlated with the targeted one, and sc-eQTLs can miss 
signal corresponding to rarer cells and lowly expressed genes.   
 
First, we integrated 18 COVID-19 bulk lung eQTL colocalized variant-gene pairs with ieQTL 
maps generated herein (Methods) from pulmonary epithelial, endothelial, stroma and 
macrophage cell scores 51. We observe enrichment for ieQTL signal (Fig. 4a), which suggests 
that the genetic regulation of COVID-19 linked genes in lung tend to occur in a cell-type specific 
manner. Epithelial cells are enriched the most, in agreement with being the principal target of 
SARS�CoV�2 infection in the distal lung 53. We detect 10 significant (FDR<=0.10) ieQTLs 
corresponding to six genes (Fig. 4b), for which the COVID-19 pathological allele increases 
(rs383510:T-TMPRSS2, rs3859191:G-GSDMA, rs3848456:A-DLX3, rs60840586:A-AQP3) or 
decreases (rs35705950:G-MUC5B, rs2076295:G-DSP) transcript abundance. While multiple 
lines of evidence support a mechanistic link between TPRSS2 and MUC5B and COVID-19, links 
with the other ieQTL genes have been less, or not, characterized. Among those, we identified 
AQP3 and DLX3, with COVID-19 colocalized eQTLs specific to pulmonary epithelial cells (Fig. 
4b, Supplementary Figure 3b). In skin, DLX3 can upregulate proinflammatory cytokines and 
favor the accumulation of macrophages 54; it may play similar function in COVID-19 infected 
lung tissue. While a genetic COVID-19-lung-DLX3 link has been reported 55, specificity for 
pulmonary epithelial cells, described here, has not. In COVID-19-infected lung, aberrant 
proliferation of AQP3+ epithelial basal cells has been reported 56, and aquaporins have been 
proposed as COVID-19 drug targets 57. Here, we describe a robust, multi-omic genetic AQP3-
COVID-19 association (Fig. 3c) enhanced in pulmonary epithelial cells (Fig. 4b, Supplementary 
Figure 3b), pinpointing AQP3 as a putative COVID-19 causal gene.  
 
Next, we colocalized COVID-19 GWAS hits with sc-eQTLs maps from 38 lung cell types 
(Methods) and identified 28 suggestive (PP4>=0.50) colocalizations, 17 of which have strong 
(PP4>=0.75) colocalization support (Fig. 4c, Supplementary Table 5). Like ieQTL enrichments, 
most (17/28) colocalizations are identified in epithelial cells; eight and three colocalizations were 
identified in immune and endothelial cells, respectively. We identified genes and processes with 
strong evidence of a causal role in COVID-19, including TMPRSS2, related to viral entry, 
MUC5B, involved in muco-ciliary clearance of pathogens, JAK1, involved in cytokine release, 
and SFTP1, SFTP2 and NAPSA genes, involved in surfactant metabolism. We observe marked 
cell subtype specificity; SFTP genes and NAPSA are markers of AT2 cells, but corresponding 
COVID-19 colocalizatoin were exclusively detected in secretory and alveolar macrophage cells, 
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respectively. ANAPC4 colocalization was found exclusively in general capillary (gCap) cells. 
These highly specialized endothelial cells act as progenitor cells to the endothelium, maintain 
capillary homeostasis, and regenerate damaged aerocytes in COVID-19-injured epithelium 58. 
The role of cell cycle gene ANAPC4 in such process has not been characterized and warrants 
further investigation. Finally, we identified the uncharacterized COVID-19 severity rs2076295-G 
colocalization as linked to lower DSP expression in alveolar cells, exclusively. Importantly, the 
colocalization signal for these reported uncharacterized associations is very strong (PP4>=0.98) 
(Supplementary Figure 3c-e).  
 
Together, the results presented pinpoint uncharacterized COVID-19 gene associations in lung 
and contribute to the understanding of the cell-type specificity of COVID-19 pulmonary 
pathobiology, including the mechanism of action of implicated genes.  

 
Fig. 4. Pulmonary cell of origin of COVID-19 linked genes. a, Quantile-quantile plots for lung cell-type ieQTL p-
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values corresponding to genotype by cell-type abundance interaction term. Analysis was focused on 18 COVID-19 
bulk lung eQTL colocalized variant-gene pairs.  The shaded area indicates the 95% confidence interval expected 
under the null. b, QTL summary statistics for significant (FDR<0.10) ieQTL genes (x axis) by pulmonary cell type 
(y axis). The eQTL effect size was mapped from cell-type enriched samples and FDR was assessed at the level of 
SNP-gene pair (Methods). c, Colocalization scores and eQTL effect sizes for genes (y axis) corresponding to sc-
eQTL-COVID-19-GWAS colocalizations (PP4>0.5) in at least one pulmonary cell type (x axis). Labels of cell types 
of epithelial, endothelial, immune, and stromal origin are typed in blue, orange, green and red, respectively. Gene-
cell pairs tested for colocalization are indicated with stroked circles. Increased thickness of the stroke corresponds to 
higher PP4 values. Gene-cell pairs with strong (PP4>0.75) colocalization signal are indicated with a dot. Rows and 
columns were clustered by complete clustering based on eQTL effect size dissimilarity estimated by euclidean 
distance. In b-c, i/eQTL effect sizes correspond to COVID-19 pathological allele. 
 

Discussion 

In this work, we sought to identify human genes influencing genetically driven COVID-19 risk 
and severity, and to identify additional high-order phenotypes impacted by pleiotropic COVID-
19-associated genomic loci, with emphasis on characterizing the pulmonary pathobiology of the 
disease. 
 
While comprehensive characterization of the shared genetics among COVID-19 and other 
complex diseases and traits, using different phenome-wide approaches, has provided insights 
into the pathobiology of COVID-19 11,59, our analysis constitutes the most extensive effort to 
date of integrating COVID-19 with other trait GWAS signals, via a colocalization approach. In 
addition to improving basic understanding of COVID-19 biology and host interactions, this work 
may inform future therapeutic mechanisms for COVID-19 in two ways. First, by illuminating 
some of the detailed molecular mechanisms through which human genetics influences COVID-
19 risk and severity, we provide templates for therapeutic approaches that likely have the higher 
probability of success in clinical development (King et al. 2019, Minikel et al. 2024). Second, 
with comprehensive characterization of shared genetics between COVID-19 and other human 
traits, we might separate mechanisms expected to influence COVID-19 uniquely from those that 
might have unintended effects on other aspects of human biology.        

While overlap of COVID-19 GWAS signal with pulmonary traits has been described 11, here we 
confirm their disproportionate representation, and evaluate per-trait per-locus consistency of 
directionality of effect with COVID-19 pathological alleles. Consistent detrimental or protective 
effects are observed for lung adenocarcinoma and COPD, respectively. The observed opposite 
allelic effects suggest the presence of genetic effect trade-offs in the lung, where inherited 
pulmonary physiological and molecular features that decrease likelihood to suffer from COPD 
increase chances to suffer from severe COVID-19. These phenomena are hypothesized to depend 
on cell type, lung area and age 60. For IPF and lung function metrics, observed locus-dependent 
detrimental or protective effects how COVID-19 pathology is connected to lung function and 
respiratory diseases by complex pleiotropic relationships. 

This study comprises the most extensive effort of integrating molecular QTL sources with 
COVID-19 phenotypes to date. The usage of an extensive, multi-molecular-phenotype QTL 
catalog, including cell-type resolution maps derived from causal cell-of-origin contexts – e.g. 
pulmonary cells - maximizes the probability of detecting trait-causal genes and contexts at a cost 
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of low specificity, i.e. detecting non-causal associations. To facilitate causal gene prioritization, 
we generated a resource (R shiny app) that provides a high-level view of all colocalization signal 
per locus, enabling context-aware evaluation of colocalization evidence. Additionally, we 
generated aggregated, complementary colocalization evidence metrics that we utilize to flag 
highly supported genes that may be most likely to be causal. Reassuringly, among high-scoring 
genes, we identified well-known COVID-19-linked genes.  We also find candidate causal genes 
of uncharacterized loci, e.g. DSP. While QTLs are unequivocally useful to identify causal genes 
given GWAS signal, their predictive power is leveraged and complemented when combined with 
functional annotations 25, in part because GWAS hits may not have detectable QTLs 20,61. The 
colocalization evidence resources generated herein can be utilized for that purpose. 
 
Selection of a reasonably liberal GWAS significance threshold 62 aimed to - at a cost of 
considering spurious associations - maximize the inclusion of loci that despite weak GWAS 
signal, when integrated with additional sources can point at molecular and phenotype links that 
contribute to the understanding of COVID-19 biological mechanisms. The desmoplakin-
encoding DSP locus constitutes a notable example of such cases, given pulmonary trait links, 
high colocalization evidence and pulmonary cell associations observed. In combination with 
what is known about the shared ethiology of both diseases 63 and desmoplakin function 26, our 
results point to DSP-driven COVID-19 and IPF shared genetic perturbations, possibly acting on 
fibrogenesis and maintainance of airway epithelial integrity. 
 
Altogether, we contributed to providing molecular and phenotype links to the genetic 
architecture of COVID-19 risk and severity phenotypes, by further characterizing previously 
reported loci and by providing novel insights for uncharacterized loci. Importantly, causal 
relationships between COVID-19 and genetically correlated phenotypes and molecules are 
pinpointed but not interrogated here; dedicated statistical approaches - such as mendelian 
randomization – and functional characterization could be applied for that purpose. 
 

Methods 

Determination of GWAS significant loci of COVID-19 disease risk and severity. 
To enable the characterization of the genetic mechanisms underlying COVID-19 risk and 
severity on human host, we used GWAS summary statistics generated by the COVID-19 Host 
Genetics Initiative Consortium (HGI) 23. The COVID-19 GWASs correspond to worldwide 
meta-analyses, without 23andMe, version 7, released on April 8, 2022; data production and 
quality control are described in detail in 11. Three COVID-19 GWAS phenotypes were 
considered, as defined by HGI: Critical illness (A2), comparing confirmed COVID-19 infected 
individuals experiencing very severe respiratory symptoms vs. population, Hospitalization (B2), 
comparing hospitalized individuals due to COVID-19 infection to population, and Risk (C2), 
comparing confirmed COVID-19 affected individuals vs. population. We assume A2 and B2 
GWASs to be broadly informative about genetic determinants of COVID-19 severity, and C2 to 
better capture the genetic susceptibility to SARS-CoV-2 infection. The GWAS summary 
statistics from each COVID-19 GWAS phenotype are derived from six ancestry endpoints that 
include one multi-ancestry, and five ancestry-stratified cohorts (South Asian (SAS), East Asian 
(EAS), African (AFR), Admixed American (AMR), European (EUR)). Of note, COVID-19 HGI 
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GWAS B1, comparing hospitalized vs. non-hospitalized individuals due to COVID-19 infection, 
was not considered, as summary statistics were only available for the multi-ancestry but not for 
the ancestry-stratified GWAS approach. In total, 18 (3 COVID-19 GWAS phenotypes for 6 
ancestry endpoints) were considered; number of cases and controls are detailed below.  
 

Phenotype Multi-
ancestry 

EUR AMR AFR EAS SAS 

Critical illness (A2): 
confirmed COVID-19 
infected individuals 

experiencing very severe 
respiratory symptoms 

vs. population 

18,152 vs.  
1,145,546 

13,769 vs. 
1,072,442 

769 vs. 
6209  

 628 vs. 
12,568 

794 vs. 
4,862  

980 vs. 
47,696  

Hospitalization (B2): 
hospitalized individuals 

due to COVID-19 
infection vs. population 

44,986 vs. 
2,356,386 

32,519 vs. 
2062805  

3,077 vs. 
66,686  

2589 vs. 
123,225  

2,882 vs. 
31,200  

1,622 vs. 
47612  

Risk (C2): confirmed 
SARS-CoV-2 infected 

individuals vs. 
population 

159,840 vs. 
2,782,977 

122,616 vs. 
2,475,240  

10,377 vs. 
74556  

8,814 vs. 
129140  

4,459 vs. 
36,121  

8,945 vs. 
44,171  

 
 
We identified autosomal loci with suggestive GWAS signal, i.e. genomic windows containing 
GWAS signals, across phenotypes and ancestry endpoints. We first constructed a reference 
dataset of best-guess genotypes from UK Biobank (UKBB)64 by considering imputed dosages of 
variants with info score > 0.3 and MAF > 0.1%, selecting genotypic data corresponding to 
15,000 randomly selected or to 2,000 ancestry-matched unrelated UKB samples, to generate 
multi-ancestry or single-ancestry genotype panels, respectively. We filtered variants with 
missingness > 5% and Hardy–Weinberg equilibrium test P < 1 × 10−7. For each of the 18 
GWASs, we used the PLINK ref ‘clumping’ algorithm to select top-associated variants 
(P < 5 × 10−7) and corresponding LD-linked variants at r2 > 0.05 with the top associated variant 
within ±1 Mb, utilizing the GWAS-matching ancestry-stratified or multi-ancestry UKB 
genotype. We determined the genomic span of each LD-based clump and added 1 kb up- and 
downstream as buffer to the region. If any of these windows overlapped, we merged them 
together into a single (larger) locus.  
 
To determine a set of non-redundant GWAS loci across ancestries and COVID-19 phenotypes, 
we first merged overlapping clumps per ancestry across phenotype endpoints (A2, B2, C2). 
Then, we selected all multi-ancestry derived clumps, and complemented this set with non-
overlapping clumps identified in a single ancestry. The resulting set of loci is composed of 
genomic regions with suggestive GWAS signal in at least one phenotype endpoint in at least one 
ancestry endpoint. For each GWAS locus, considering the ancestry endpoint where the GWAS 
hit was defined, we selected a ‘top’ GWAS across phenotype endpoints as the GWAS with the 
smallest p-value per locus lead variant, which we define as the top GWAS lead variant. Next, we 
selected GWAS hit loci with at least four variants with top GWAS P<1-04 and MAF>0.01. Of 
note, this filtering excludes the MUC16 locus, as it does only have three variants passing the 
filter. Finally, we filtered out GWAS hit loci overlapping the Major Histocompatibility region 
(MHC); the final set is composed of 91 COVID-19 GWAS loci. Unless stated otherwise, for 
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each GWAS locus, the summary statistics of top GWAS was utilized in subsequent analyses. 
Top GWAS loci lead variants were annotated with the nearest (closest transcription start site 
from canonical transcript) protein-coding gene, with VEP v.111 24 predicted impacted gene and 
corresponding most severe impact type, and with variant-to-gene (V2G) 25 predicted impacted 
gene, i.e. corresponding to top V2G score. V2G predictions and nearest protein-coding gene 
annotation were obtained from Open Targets Genetics v.8 65. 
 
Overlap with previously reported COVID-19 GWAS loci 
We sought to determine which of the 91 COVID-19 GWAS loci analyzed here overlap with 
previously reported COVID-19 GWAS loci.  First, we obtained EBI GWAS Catalog entries 
(https://www.ebi.ac.uk/gwas; 2024-04-05) at GWAS P <5e-7 that matched COVID-19 
phenotypes (MONDO:0100318 and EFO:0600019 descendants, EFO v.3.64.0). We obtained 
14,102 entries corresponding to 39 studies and 156 GWAS endpoints. Additionally, since they 
were not present in the catalog, we added entries from 11:  COVID-19 GWAS loci that the 
COVID-19 HGI Consortium identified at P<5e-08 from the version 7 data release, which 
correspond to the multi-ancestry GWAS summary statistics endpoints utilized herein. For each 
of the 91 COVID-19 GWAS loci, we intersected the region analyzed in this paper with this set of 
previously reported COVID-19 entries to determine ‘Reported’ status. 
 
Determination of the severity versus risk score 
To identify which genomic loci were more likely to be associated with SARS-CoV-2 infection 
susceptibility or with COVID-19 severity, we employed the same approach utilized by the 
COVID-19 Host Genetics Initiative: a two-class Bayesian model based on the patterns of 
association across two COVID-19 GWAS phenotypes, B2 (severity) and C2 (infection risk). 
This approach calculates a posterior probability for each proxy GWAS lead variant to more 
likely be associated with infection risk or severity. We classified variants as severity- or 
infection-associated if their score was less than 0.2 or its inverse - greater than 0.8, respectively; 
scores between 0.2 and 0.8 are considered ambiguous. This method is described in  12, 
corresponding code is hosted in https://github.com/mjpirinen/covid19-hgi_subtypes. 
 
Colocalization of COVID-19 GWAS with human trait GWAS maps 
To investigate the relationship between COVID-19 associated loci and organism-level human 
traits, we used POEMcoloc 37, a method for colocalization analysis with incomplete summary 
statistics.  We downloaded the complete GWAS catalog in February 2023.  To apply 
POEMcoloc, we first derived from information in the GWAS catalog, broad ancestry group 
category, GWAS design (case/control vs quantitative), sample sizes, and case fraction for each of 
487,213 entries. In order to be tested, a GWAS catalog entry was required to have all necessary 
elements for POEMColoc and to be genome-wide significant (P<5E-8). Most entries excluded 
from analysis were due to the significance threshold rather than missing information and in total, 
353,869 GWAS entries were candidates for colocalization, we refer to them as ‘GWAS loci’.  
 
For each of the 91 COVID-19 associated loci, we used summary statistics from the top GWAS, 
and the information extracted for each overlapping GWAS catalog locus, to determine 
colocalization probabilities with POEMColoc. Of 91 COVID-19 loci, two had no overlapping 
GWAS catalog loci, while the remaining loci had between 1 and 1316 overlapping loci. There 
were a total of 13,833 testable pairs of COVID-19 associated locus/GWAS catalog locus, of 
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which 13,750 corresponded to non-COVID-19 phenotypes and were used for subsequent 
analyses. We imputed summary statistics for each GWAS catalog locus with POEMColoc and 
LD information derived from either all unrelated individuals in the 1000 genomes reference 
panel, or the appropriate population-specific sub-panel in cases where the GWAS catalog locus 
could be confidently assigned to a specific ancestry group. We defined suggestive support for 
colocalization between the COVID-19 and other trait GWAS signal at posterior probability for a 
single shared causal variant PP4>0.75. Colocalizations corresponding to GWAS Catalog 
COVID-19 phenotypes (MONDO:0100318, EFO:0600019 from EFO v. 3.51.0, and 
corresponding descendants) were excluded.   
 
 
Annotation of GWAS trait endpoints 
Mappings from GWAS trait endpoints to EFO were obtained directly from the GWAS Catalog.  
When a trait was mapped to multiple EFO terms, we used their common ancestor. Using the 
EFO ontology (EFO v.3.51.0) and the ontologyIndex R package v. 2.10.0 [https://cran.r-
project.org/web/packages/ontologyIndex/citation.html] we mapped each association to EFO 
ancestor terms as well as the originally reported EFO trait.  Mapping to ancestral terms allows us 
to look at colocalization frequency for broader categories of traits, for example, “lung diseases.”  
To generate Figure 2a, GWAS Catalog EFO terms were assigned to the higher-level category. 
Some categories encompass multiple EFO ancestors: cardiovascular and lipid traits include 
'cardiovascular disease', 'cardiovascular measurement', 'blood pressure', 'lipid or lipoprotein 
measurement'; digestive system disease and measurement includes 'digestive system disease', 
'liver enzyme measurement', 'abnormality of the digestive system'; nervous system and cognition 
includes "brain measurement", "neuroimaging measurement", "cognition", "cognitive function 
measurement", 'educational attainment', 'nervous system disease', 'mental or behavioural disorder 
biomarker', 'pain'; and respiratory diseases and measurements includes "respiratory system 
disease", 'respiratory disease biomarker', 'pulmonary function measurement'. If multiple 
categories could have been assigned, the category corresponding to the most frequently 
colocalized ancestor was used. In Figure 2b, we consider non-redundant EFO terms with four or 
more colocalizations.  EFO terms are considered redundant if they are ancestors of reported EFO 
traits corresponding to the same set of clumps as another, more specific descendant EFO term. 
For example, macular degeneration was considered redundant with the more specific term age-
related macular degeneration because all macular degeneration associations were also found for 
age-related macular degeneration.  Association between per-loci pleiotropy, measured by number 
of colocalized GWAS endpoints, and severity versus risk score, was calculated by Spearman’s 
rank correlation implemented in cor.test R v.4.1.2 function.  
 
Imputation of direction of effect at GWAS loci 
We annotated GWAS Catalog associations with direction of association between the COVID-19 
reported allele and the GWAS Catalog trait, where possible. For diseases, the risk allele 
corresponds to increased disease risk.  For quantitative traits, we used the field “95% CI 
(TEXT)” to determine whether the risk allele was associated with increased or decreased trait 
values. In cases where the risk variant reported in the GWAS catalog was the same as the 
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COVID-19 risk variant, we checked for a match between the reported alleles.  Otherwise, we 
computed the correlation between the two risk alleles in the 1000 genomes phase 3 reference 
panel to determine if they were positively or negatively associated.  We used the 1000 genomes 
superpopulation corresponding to the reported ancestry from the GWAS Catalog, and if multiple 
broad ancestral categories, 1000 genomes unrelated individuals from all ancestry groups. 
Combining this with the reported direction in the GWAS Catalog, we annotated the direction of 
association between the COVID-19 risk allele and the GWAS trait.   
 
Determination of molecular QTL-COVID-19-GWAS colocalized loci 
To investigate possible associations between cis-genetically regulated molecular phenotypes 
(QTLs) and COVID-19, we compiled an exhaustive QTL map collection and employed different 
colocalization approaches. 
 
Compilation of molecular QTL full-summary statistics maps 

To maximize the expectation of identifying COVID-19 putatively causal molecular links, we 
compiled an exhaustive collection of cis quantitative trait loci (QTL) mappings (maps) derived 
from several molecular phenotypes (MPs): gene (eQTLs), splicing phenotypes (sQTLs), DNA 
methylation (mQTLs) and protein abundance (pQTLs).  
 
The QTLs originate from widely different contexts, i.e., tissue and cell types, stimulus and 
developmental states; we considered a total of 322 cis QTL maps with full statistics available 
and genome-wide molecular phenotype tests. The majority (94%) of QTL maps are derived from 
gene expression or splice phenotypes (e/sQTLs), 4% are derived from DNA methylation 
(mQTLs) and 2% from protein (pQTLs) abundances. Details of QTL maps are provided in 
Methods, Supplementary Table 3. A total of 158 eQTL maps were obtained from bulk-tissue or 
isolated cells, 127 of which from 31 different studies included in the eQTL Catalogue 
(https://www.ebi.ac.uk/eqtl/, version 5, April 2022. A total of 31 additional bulk-tissue and 
isolated-cell eQTL maps were obtained from four additional sources, derived from whole blood 
from individuals unaffected by COVID-19 (eQTLGen, https://eqtlgen.org/cis-eqtls.html) as well 
as from COVID-19 patients (https://humandbs.biosciencedbc.jp/en/hum0343-v2#qtl), induced 
pluripotent stem cells (iPSC) (i2QTL, https://doi.org/10.5281/zenodo.4005576) and 28 maps 
from isolated immune cells (ImmuNexUT, https://humandbs.biosciencedbc.jp/en/hum0214-
v8#E-GEAD-420). In addition, lung eQTL maps derived from single cell RNA-Seq (sc-eQTLs) 
for 38 lung cell types, generated in 66, were obtained from GEO (GSE227136, mashr files). 
Considering splicing phenotypes, we included 109 sQTL maps derived from leafcutter 
phenotypes included in the eQTL Catalogue (https://www.ebi.ac.uk/eqtl/, version 6, April 2023). 
Considering DNA methylation, a total of 11 mQTL maps were obtained. We included 9 maps 
from eGTEx sources: breast mammary tissue, colon transverse, kidney cortex, lung, muscle 
skeletal, ovary, prostate, testis and whole blood (eGTEx, 
https://gtexportal.org/home/downloads/egtex), one additional muscle skeletal (FUSION, 
https://www.ebi.ac.uk/birney-srv/FUSION/) and one brain (ROSMAP, 
(http://mostafavilab.stat.ubc.ca/xQTLServe/) cis mQTL maps. Considering protein abundance, 
we included six pQTL maps from plasma (SomaScan deCODE 2021, 
https://download.decode.is/form/folder/proteomics, SomaScan Sun et al. 2018, 
https://www.ebi.ac.uk/gwas/downloads/summary-statistics; SomaScan and O-link FinnGen 
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https://www.finngen.fi/en/access_results; ARIC EUR and AFR SomaScan  
http://nilanjanchatterjeelab.org/pwas).  
 
Colocalization of COVID-19 GWAS loci with molecular QTLs 
 

For each of the 91 COVID-19 associated loci, we identified overlapping (> 1 bp) molecular 
phenotype (MP) cis-region loci from each QTL map. For each overlapping MP-GWAS region 
pair, we applied coloc v5.1.0.1 using molecular QTL and GWAS summary statistics as input. 
Analysis was performed only if the locus contained >=1 variant with nominal QTL P < 1e-05 
and GWAS P < 5e-07. Prior probabilities of a variant yielding a) a QTL association (p1), b) a 
GWAS association (p2) and c) a QTL and a GWAS association (p12) were set to p1 = 1e-04, p2 
= 1e-04, p12 = 1e-06. Only the regions with at least 50 variants in common between the GWAS 
and MP loci were tested for colocalization. Both for QTLs and GWAS statistics, colocalization 
was performed on effect size (effect size) and associated standard error (effect size s.e.) 
values. We defined suggestive support for QTL-COVID-19-GWAS colocalization at posterior 
probability PP4 >=�0.75. For mQTLs, CpG probe identifiers were mapped to genes according 
to regulatory region annotations from EPIC.hg38.manifest.tsv.gz and 
HM450.hg38.manifest.tsv.gz from https://zwdzwd.github.io/InfiniumAnnotation.  
 
Calculation of QTL-COVID-19-GWAS colocalization evidence metrics 
We calculated per-gene metrics based on high posterior probability of colocalization and 
identified per-locus top gene for the metric. That is, we calculated the logit of PP4, and selected 
the top estimate per gene across corresponding colocalization instances. Additionally, for the top 
- largest logit(PP4) - gene per locus, we calculated the ratio between the gene metric and the 
metric corresponding to the next ranked gene. To measure the amount of colocalization signal 
attributable to a gene, we calculated the per-locus fraction of QTL maps implicated in the 
colocalizations derived from that gene. Additionally, for the top - largest fraction of 
colocalizations - gene per locus, we calculated the ratio between the gene metric and the metric 
corresponding to the next ranked gene. Entries for anti-sense genes were lumped together with 
complementary gene. 
 
Identification of biotype enrichment in eQTL-COVID-19-GWAS colocalized loci 
To investigate whether COVID-19 GWAS-eQTL associations were enriched for a particular 
biotype class, we analyzed Open Targets 25, considering significant (P<0.75) GWAS-eQTL 
colocalizations. We considered eQTL colocalizations derived from 126 eQTL maps, mapped to 
12 biotype classes, present both in our analysis and in Open Targets, as of December 2023 
(Supplementary Table 3). We calculated the fraction of Open Targets GWAS phenotypes with a 
percent of eQTL biotype-associated GWAS loci larger than corresponding COVID-19 percent of 
eQTL biotype-associated loci and identified lung as a highly represented (top percent) biotype. 
 
Mapping of cell-type interaction eQTLs (ieQTLs) in lung 
We mapped cell-lineage interaction cis eQTLs (ieQTLs) from N=515 GTEx v8 subject-matched 
bulk lung RNA-Seq profiles and genotype data 46 and cell-type enrichment scores’ for epithelial, 
endothelial, macrophage and stroma cells 51. Cell-type interaction eQTLs were mapped by fitting 
a linear regression model with an interaction term accounting for interactions between genotype 
and cell type enrichment scores:  
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p ∼ g + i + g ◦i + C  
 
where p is the gene expression vector, g is the genotype vector, i is the inverse normal 
transformed xCell enrichment scores, and the interaction term g ◦ i corresponds to point-wise 
multiplication of genotypes and cell type enrichment scores. C is a matrix of covariates that were 
used for cis-eQTL mapping in lung 46

 that include 60 PEER factors derived from gene 
expression, five genotype principal components, two covariates derived from the generation of 
genotype data by whole-genome sequencing (WGS) and biological sex status. The WGS 
covariates represent the WGS sequencing platform (HiSeq 2000 or HiSeq X) and WGS library 
construction protocol (PCR based or PCR-free). The filtered and normalized gene expression 
matrix corresponds to the one used for cis-eQTL mapping in lung 46. Briefly, gene expression 
values were inverse normal transformed after applying TMM for between-sample normalization. 
Interaction QTLs were identified by testing for the significance of the interaction term g ◦ i, and 
mapping was performed using an adaptation of v.2.184 FastQTL 67, available 
at https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl. We restricted ieQTL mapping 
to 18 COVID-19 bulk lung eQTL colocalized variant-gene pairs, corresponding to 16 COVID-19 
loci and 18 genes. To estimate cell-lineage eQTL effect sizes displayed in Fig. 4b, we mapped 
eQTLs by fitting p ∼ g + C on data derived from cell-type enriched samples, i.e., corresponding 
to the top tertile of xCell scores for each of the four ieQTL cell types, and with subject-matched 
genotype data. The ieQTL and eQTL effects were estimated considering the top colocalized 
variant per gene from COVID-19 bulk lung eQTL colocalizations.  
 
Colocalization of COVID-19 GWAS loci with lung sc-eQTLs 
Bayesian colocalization analysis was performed using coloc v5.1.0.1 on COVID-19 GWAS hits 
and cross-cell meta-analyzed sc-eQTL summary statistics for each of the 38 lung sc-eQTL maps  
66. Only protein coding genes were considered. For each overlapping MP-GWAS region pair, we 
applied coloc to sc-QTL along with GWAS summary statistics, only if the locus contained >=1 
variant with nominal QTL P < 1e-04 and GWAS P < 5e-07. For GWAS statistics, colocalization 
was performed on effect size (effect size) and associated standard error (effect size s.e.) values. 
For sc-eQTL statistics, colocalization was performed on local false sign rate (LFSR) and MAF 
values. We defined suggestive and strong support for sc-QTL-COVID-19-GWAS colocalization 
at posterior probability PP4 >�0.50 and PP4 >�0.75, respectively. 
 

Availability of data and materials 

The data sets analyzed during the current study are available from the following repositories: 
summary statistics of the COVID-19 GWASs (round 7) by the COVID-19 Host Genetics 
Initiative are available at https://www.covid19hg.org/results/r7/. The QTL summary statistics 
were obtained from multiple sources (see Methods). The variant calls from 1000 Genomes 
Project on the GRCh38 reference assembly are available from the UK Biobank Research 
Analysis Platform, accessible upon application approval. The summary statistics from the 
GWAS catalog are available at https://www.ebi.ac.uk/gwas/. Analysis and figures code, and 
figures data, has been deposited to https://github.com/AbbVie-
ComputationalGenomics/COVID19_coloc_paper. R shiny is provided at 
https://covidgenes.shinyapps.io/shiny/ and https://github.com/AbbVie-
ComputationalGenomics/COVID19_coloc_shiny 
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Sup. Fig. 1. Biotype specificity of COVID-19 GWAS-QTL colocalizations. For significant (PP4>0.75) eQTL-
COVID-19 GWAS colocalizations, the QTL effect size per colocalized protein-coding gene (y axis) and QTL map 
(x axis) is displayed. QTL effect sizes are mapped to the COVID-19 pathological allele and colored in red and blue 
for positive and negative effects, respectively; genes are grouped by corresponding GWAS locus index (Details 
provided in Supplementary Table 1). QTL maps are grouped and labelled by corresponding biotype category 
(Details provided in Supplementary Table 3). 
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Sup. Fig. 2. Visualization and overview of COVID-19-GWAS-QTL colocalization signal per locus. a, Figure 
panels adapted from the provided R shiny app interface https://covidgenes.shinyapps.io/shiny/. a, Significant 
COVID-19 GWAS-QTL colocalization instances (PP4>0.75) corresponding to the index number 42 COVID-19 
GWAS locus, i.e. BMP1|SFTPC locus (Details in Supplementary Table 1), stratified by QTL map (y axis) and gene 
(x axis). b, COVID-19 GWAS-QTL features and summary statistics for SFTPC locus; SFTPC colocalization 
instance is highlighted. c, Genotype-phenotype association P values of the SFTPC locus. Panels illustrate 
SFTPC sQTL signal in lung (top) for the 8:22162739-22163080 SFTPC intron usage phenotype quantified by 
LeafCutter, and GWAS signal for COVID-19 B2 GWAS (bottom). Top GWAS-colocalized sQTL variant is typed 
in bold, linkage disequilibrium between loci is quantified by squared Pearson coefficient of correlation (r2), and 
colocalization probability (PP4) of sQTL with GWAS signal is shown. The diamond-shaped point represents the top 
(highest PP4) colocalized variant. P values correspond to nominal GWAS and sQTL associations, derived from 
multiple regression two-sided t-tests. 
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Sup. Fig. 3. Pulmonary cell of origin of COVID-19 linked genes. a) Enrichment (y axis) of COVID-19 loci in 
eQTL biotypes (x axis). ‘P’ corresponds to the fraction of Open Targets GWAS phenotypes with a percent of eQTL 
biotype-associated GWAS loci larger than corresponding COVID-19 percent of eQTL biotype-associated loci 
(Methods). Gene b) Gene expression (y axis) of AQP3 and DLX3 genes by carrier status of corresponding COVID-
19 severity allele (x axis). Expression corresponds to GTEx v8 bulk lung RNA-Seq samples enriched (N=181) or 
depleted (N=156) in pulmonary epithelial cells, residualized by QTL mapping covariates (Methods). c) Genotype-
phenotype association values of the NAPSA locus. Panels illustrate NAPSA sc-eQTL signal in pulmonary alveolar 
macrophages (top) and GWAS signal for COVID-19 critical illness GWAS (bottom). d) Genotype-phenotype 
association values of the ANAPC4 locus. Panels illustrate ANAPC4 sc-eQTL signal in pulmonary general capillary 
endothelial cells (top) and GWAS signal for COVID-19 Hospitalization GWAS (bottom). e) Genotype-phenotype 
association values of the DSP locus. Panels illustrate DSP sc-eQTL signal in pulmonary alveolar type II cells (top) 
and GWAS signal for COVID-19 critical illness GWAS (bottom). For panels c-e, linkage disequilibrium between 
loci is quantified by squared Pearson coefficient of correlation (r2), and colocalization probability (PP4) of sc-eQTL 
with GWAS signal is shown. Top variant (largest coloc.abf SNP.PP.H4) of GWAS-colocalized sc-eQTL is typed in 
bold and depicted by a diamond-shaped point. GWAS P values correspond to nominal GWAS, derived from 
multiple regression two-sided t-tests. LFSR correspond to sc-eQTL mashr local false sign rate values. 
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