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19 Abstract
20 ADHD is a neurodevelopmental disorder affecting 3-4% of Canadian adults and 2.6% of adults worldwide. 

21 Its symptoms include inattention, hyperactivity and impulsivity. Though ADHD is known to affect several 

22 brain functions and cognitive processes, little is known regarding its impact on perceptual oscillations. This 

23 study compared the temporal features of visual processing between ADHD and neurotypical individuals in 

24 a word recognition task. These features were sufficiently different across groups while at the same time 

25 sufficiently congruent across participants of the same group that a machine learning algorithm classified 

26 participants in their respective groups with a 91.8% accuracy using only a small portion of the available 

27 features. Secondary findings showed that individuals with ADHD could be classified with high accuracy 
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28 (91.3%) regarding their use of psychostimulant medication. These findings suggest the existence of strong 

29 behavioral markers of ADHD as well as of regular medication usage on visual performance which can be 

30 uncovered by random temporal sampling.    

31 Introduction
32 The attention deficit and hyperactivity disorder (ADHD) is a neuropsychological condition 

33 characterised by symptoms of inattention, hyperactivity, and impulsivity (1) which affects 3-4% of 

34 Canadian adults (2,3) and 2.6% of adults worldwide (4). It has been demonstrated that people with ADHD 

35 show functional deficits affecting sustained attention (5,6), processing speed (7, 8), and executive functions 

36 (9) such as working memory (10,11), and inhibition (12). Persons with ADHD also exhibit several 

37 functional cerebral abnormalities which can be related to these cognitive and executive deficits (13). 

38 Another line of investigation for ADHD pertains to cerebral oscillations, which originate from 

39 transient neural groups producing repeated synchronized action potentials at a particular frequency. Resting-

40 state EEG studies have shown stronger oscillations in the theta (4-8 Hz) and alpha (8-12 Hz) ranges in 

41 ADHD than neurotypical participants (14; see 15 for a review). Relatedly, others report a stronger ratio of 

42 theta over beta (TBR;13-30 Hz) oscillatory power in ADHD vs. neurotypical adults (16-19). However, other 

43 studies of EEG at rest have reported inconsistent findings (15), and objections have been addressed against 

44 the literature surrounding the TBR (20,21). Several investigations have shown that, while carrying out 

45 attentional tasks, adults with ADHD exhibit distinct oscillatory patterns that particularly pertain to alpha 

46 oscillations (22-25).

47  Neural oscillations have been argued to constitute the central basis for the functional output of brain 

48 activity (e.g. 26). If this is true, one crucial implication is that this output should be modulated through time. 

49 In the case of vision, this would imply temporal variability in processing capacity within a short time scale. 

50 A relatively substantial literature on this issue has more or less successfully attempted to demonstrate that 

51 visual function oscillates through time at a particular unique frequency or combination thereof, which would 
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52 be tied to the underlying brain activity (see 27-29 for reviews). Recently, our laboratory has developed a 

53 promising technique called random temporal sampling, which offers a strong demonstration of variations 

54 of visual processing effectiveness through time and can reveal differences in visual oscillatory mechanisms 

55 according to task demands (30), stimulation conditions (31) or the age of participants (32).

56 The random temporal sampling technique involves the brief (e.g. 200 ms) presentation of stimuli 

57 made of an additive combination of signal (the target to be processed) and noise (a patch of visual white 

58 noise superimposed on top of the signal), on which a signal-to-noise ratio (SNR) that varies randomly 

59 through exposure duration (Fig 1) is added. By separating the temporal samples (i.e. temporal variations of 

60 SNR) associated with errors versus correct responses and by subtracting the former from the latter, one 

61 obtains a classification image (CI) that characterizes processing efficiency according to the temporal 

62 properties of stimulation. For instance, (30) were able to represent variations of visual processing efficiency 

63 according either to the temporal dimension alone or as a function of a time-frequency representation of the 

64 temporal samples (i.e. frequency spectrum of signal-to-noise ratio oscillations). Moreover, they showed that 

65 the power spectra of these CIs (extracted by Fourier transform) could be successfully used by a machine 

66 learning algorithm to map these patterns of temporal features onto the particular class of stimuli participants 

67 had to recognize. Specifically, the four-way mapping of individual patterns of temporal features to the task 

68 of recognizing words, familiar objects, unfamiliar objects, or faces was performed by the algorithm with an 

69 accuracy of 75%, which is far above the 25% chance level. In another study, (32) were able to predict 

70 whether participants were young adults or healthy elderly individuals with an accuracy above 90% based 

71 on individual data patterns extracted from classification images obtained in tasks of visual word or object 

72 recognition. 

73 The highly likely origin of the temporal profiles of visual processing are the oscillatory mechanisms 

74 of the brain. Knowing that ADHD is associated with brain oscillations abnormalities at rest and during 

75 visuocognitive tasks, we should thus expect concomitant alterations in the temporal features of visual 

76 processing efficiency.  The purpose of the present study is to compare the temporal features of visual word 
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77 processing efficiency in young adults with vs without ADHD using the temporal sampling technique. As 

78 shown by the results below, there are marked differences between the temporal features of processing 

79 efficiency between ADHD and matched neurotypical controls. Moreover, these temporal features appear to 

80 be largely shared among individuals of the same group.

81 Materials and methods
82 Participants

83 Fifty-eight francophone participants were initially recruited from two colleges (pre-university or 

84 professional formations) in Montreal and Laval, Canada, via e-mails sent to students through the colleges’ 

85 online platforms. The age of participants ranged from 16 to 35 years old. All had normal or corrected to 

86 normal vision and were free of neurological or psychiatric disorders. Participants were separated into two 

87 groups, one for neurotypical controls and one for participants who reported having received an ADHD 

88 diagnosis from a qualified professional. The data of 49 of the 58 recruited participants was used for analysis. 

89 Of the 9 other participants, the data of one participant was rejected since they revealed, after data collection 

90 had started with them, that they had never actually received a formal diagnosis for ADHD. Another 

91 participant (neurotypical) was rejected because they had uncorrected vision problems, but only said so after 

92 data collection had started. Another seven participants (2 neurotypical controls and 5 ADHD) were removed 

93 from data analysis because they failed to complete the experiment or had missing data. The final sample 

94 was thus made of 26 neurotypical controls and 23 ADHD participants. Among the latter, 17 took stimulant 

95 medication on a regular basis for their condition and 6 did not. All participants provided written informed 

96 consent before enrolment. The study was approved by the Education and Psychology Research Ethics 

97 Committee of Université de Montréal and the Research Ethics Committee of Montmorency College. 
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98 Materials and stimuli

99 Before experimentation, participants completed the Conners Adult ADHD Rating Scale – Long 

100 Version (CAARS; 33) as well as a general informations form collecting descriptive variables such as age, 

101 gender, diagnosis and medication use.  

102 The experiment was conducted on a HPZ230 computer with an NVIDIA GeForce GTX970 graphics 

103 card. Stimuli were presented on an Asus VG248QR HD monitor with a 120 Hz refresh rate. Stimuli were 

104 all achromatic and the luminance manipulations were linear. The experiment was programmed in Matlab 

105 and used the Psychophysics Toolbox (34). Participants were seated in front of the screen, their head 

106 positioned on a chin rest 57 cm from the center of the screen. 

107 Stimuli were 600 five-letter French words with an average frequency of 157 per 10 million (35). 

108 Words were presented on screen for 200ms in Tahoma font with an x-height of .76 degrees of visual angle. 

109 Letters were black and the background was grey, with a luminance in the middle of the available range for 

110 the screen. 

111 Stimuli were made of two components: signal and noise (Fig 1. a). The signal part consisted in the 

112 target word over which a patch of visual white noise was applied. The white noise patch was changed on 

113 every trial and its contrast was adjusted according to the procedure described below in order to maintain 

114 performance at around 50% correct. The noise component of the stimuli was made of a second visual white 

115 noise patch with maximal contrast, independent from the one that is part of the signal. This second white 

116 noise field also changed on every trial. The signal/noise ratio (SNR) varied throughout exposure duration 

117 following a random function constructed by integrating sine waves with frequencies ranging from 5Hz to 

118 55Hz in steps of 5Hz, with random amplitudes and phases (Fig 1. b). The SNR range was normalised 

119 between 0 and 0.5 and the sum of sampling functions across their constituent 24 values (1 per screen frame, 

120 which totals an exposure duration of 200 ms at a refresh rate of 120 Hz), which represents the total stimulus 
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121 availability for a trial, was constant across trials. The overall luminance and contrast of the stimuli were also 

122 matched across image frames and across trials.

123

124 Fig 1. Illustrations of the stimuli and the task.

125 Section a) shows the signal and noise components which are additively combined in each stimulus. Section b) gives 

126 an example of the time course of the stimulation in a given trial. Each trial was made of 24 successive displays of the 

127 additive combination of signal and noise. The signal/noise ratio varied following a random function integrating sine 

128 waves during display.

129 Procedure

130 Each participant completed 1200 trials (8 blocks of 150 trials each) wherein each of the 600 words 

131 was presented twice. Participants were asked to identify the words on the screen, without time pressure. As 

132 they read the words out loud, the experimenter entered the response on a computer keyboard. The program 

133 determined if the answer was correct or incorrect and, if necessary, adjusted the contrast of the white noise 

134 that is part of the signal to control task difficulty (see below). 

135 Each trial started with the presentation of a square white noise field (18 degrees of visual angle per 

136 side) at the center of the screen for 1250 ms. Then, a fixation cross was displayed for 250 ms at the center 

137 of the screen. Following a delay of 150 ms after the offset of the fixation cross, a pure tone of 900 Hz-60 

138 dB was presented for 14 ms, indicating the imminent target onset. One hundred ms later, the target stimulus 

139 was presented at the center of the screen. During this 200 ms display, the SNR varied following a random 

140 function, as described above. The target display was followed by the white noise field with which the trial 

141 began, and the participant’s response was entered on the keyboard by the experimenter. 

142 The contrast of the white noise patch that was part of the signal was adjusted on each trial following 

143 a staircase function with 128 levels in order to maintain performance at about 50%. At the beginning of the 

144 experiment, the contrast was set at 64 and remained so for at least the first 10 trials. Following the 10th trial, 

145 accuracy for the last 10 trials was assessed on every trial. If this accuracy was greater than 50%, white noise 
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146 contrast was increased by one step. The reverse was done if accuracy was under 50%. The size of the initial 

147 step was 16 and it was halved on each reversal of contrast adjustment down to a minimum of 1. The state 

148 of the algorithm was maintained across consecutive experimental blocks. The total duration of the 

149 experiment was of about 2 hours, and it was completed it two test sessions occurring on different days, with 

150 breaks in-between each 15 minutes blocks. 

151 Data Analysis

152 Classification images. 

153 Classification images (CIs) were calculated to depict how processing efficiency varied according to the 

154 features of the temporal sampling functions. Here, we focus on the classification images based on a time-

155 frequency representation of the sampling functions, which revealed to be the most informative. To achieve 

156 this, a wavelet analysis was applied to the padded sampling functions on each trial using three-cycle complex 

157 Morlet wavelets. Padding was added to the beginning and end of the target SNR sampling function to be 

158 analyzed to avoid edge artifacts. This padding was made of 1.5 successive reversals of the sampling function 

159 connected end-to-end (36). This way, the function submitted to analysis was continuous and signal was 

160 present along the entire length of even the lowest frequency wavelet when positioned at either end of the 

161 target SNR function. The time-frequency data retained from the analysis exclusively pertained to the target 

162 SNR function. These wavelets varied in temporal frequency from 5 to 55 Hz in increments of 5 Hz.  The 

163 choice of the number of cycles in the Morlet kernel favored high temporal precision, albeit at the expense 

164 of precision in the frequency domain. Consequently, the wavelet exhibited sensitivity not only to its specific 

165 temporal frequency, but also to a range of frequencies around it. 

166 Classification images were calculated for each participant. The weighted sum of the time-frequency 

167 sampling functions associated with errors was subtracted from the weighted sum of those associated with 

168 correct responses. These initial raw classification images were transformed in Z scores by a bootstrapping 

169 operation where the sampling functions were randomly assigned to response accuracies while allowing for 
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170 repetition, and from which mock classification images were constructed. The mean and standard deviation 

171 of 1000 such mock classification images for an individual participant served as reference to transform the 

172 values from their raw classification image into Z scores.

173 The Z-scored individual classification images were averaged, smoothed, and then submitted to a two-

174 way Pixel test (37) with α = .05 to determine the points in classification images which differed significantly 

175 from zero. The Pixel test is derived from random field theory and has been applied for about the last 30 

176 years for the analysis of brain imaging data. Its purpose is to establish the Z value that will serve as the 

177 significance criterion for a Z-scored image. The smoothing filter was Gaussian and had a full width at half 

178 maximum (FWHM) of 19.6 ms in the time domain and of 11.8 Hz frequency domain. The criterion Z score 

179 obtained was then used in its positive value to identify points that were significantly above 0 and in its 

180 negative value (i.e., Zcrit * -1) to identify points significantly below 0.

181 A between-group-contrast CI was also calculated to compare the CIs of the ADHD vs neurotypical 

182 participants. Thus, the mean CI for the ADHD group was subtracted from that of the neurotypical group 

183 and the three preceding steps were repeated on the difference CI (bootstrap, smoothing and Pixel test). The 

184 resulting CI thus showed the points of significant difference between the ADHD and neurotypical 

185 participants. A similar procedure was followed to contrast the CIs from the ADHD participants taking or 

186 not medication for their condition.

187 Classification of individual data patterns. 

188 A further step of data processing was to submit features from CIs of individual participant to a 

189 machine learning algorithm for it to determine whether they came from a neurotypical or ADHD participant. 

190 The algorithm used for this purpose was a linear support vector machine (SVM; 38,39), along with a leave-

191 one-out cross-validation procedure. Thus, a subset of features from all but one of the available CIs were 

192 presented to the SVM for it to learn the mapping from these features to group. Then, the CI features that 
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193 had been left out of the learning phase was presented to the SVM for it to decide the group (neurotypical vs 

194 ADHD) it came from. This procedure was repeated by leaving out the data from a different participant on 

195 each iteration until it had iterated through the complete set of participants. Classification accuracy was 

196 determined from the percentage of iterations on which the SVM determined correctly the group of 

197 participants the data came from. A binomial test was used to assess whether classification accuracy deviated 

198 significantly from chance.

199 The features used for data pattern classification were those produced by the Fourier transform of 

200 the individual time-frequency CIs. Specifically, for each stimulus oscillation frequency in these CIs, a fast 

201 Fourier transform was applied to the variations of processing efficiency through time for frequencies 

202 between 5 and 60 Hz, in 5 Hz steps. This analysis produced a 3D feature space made of 1584 cells 

203 representing oscillatory power, with dimensions of frequency in the CI (12 levels), phase of the extracted 

204 components (binned in 12 levels), and the frequency spectrum of stimulus oscillation frequencies (11 

205 levels). This particular data format was chosen because previous experience has shown that it offers the 

206 greatest discriminatory power to the classifier with a substantial increase of between-subject consistency 

207 and of the discrimination index of its features compared to the CIs themselves (31,32,40). 

208                 The classification of data patterns using an SVM satisfied several important aims. The most 

209 obvious is that an accuracy that is greater than chance implies that there exist significant relevant differences 

210 in the data patterns that are contrasted. Less obvious but crucially important is that it also provides an 

211 indication that these data patterns are replicable across individuals. Indeed, even if average data patterns are 

212 markedly different across the conditions compared, if they are not replicable across individuals, the 

213 performance of the classifier will be poor. In other words, to obtain a highly accurate classifier, the relevant 

214 features in the training sets must retain their value in the test pattern. Finally, another interesting aspect of 

215 using a classifier is that we can determine the features in the data patterns from which its discriminatory 

216 power is derived. This enables the characterization of the feature values that define each group.
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217                 In order to retain only the most relevant features that discriminate among conditions, we used a 

218 stepwise procedure for the introduction of features into the model one at a time, in a way similar to a stepwise 

219 multiple regression. This gradual introduction of features was pursued either until all of them were used or 

220 until 90% classification accuracy (to avoid overfitting) was reached. The order in which the features of 

221 classification images were introduced to the SVM model was based on the capacity of each possible feature 

222 to discriminate the ADHD and neurotypical groups. This discrimination capacity was analogous to an F 

223 ratio; i.e. it was measured by the ratio of the variance of the means across conditions over the error variance. 

224 Thus, the feature with the greatest discrimination index was entered first, followed by the second greatest, 

225 and so on, until the stopping criterion was reached.

226                 For the illustration of the characteristic features of each level of a factor, the only data retained 

227 was that pertaining to the features used at the point where the stopping criterion was reached. The 

228 representation of a feature for each group was based on the squared difference between its mean and the 

229 overall mean across groups, which was divided by the error variance (see above). These values were then 

230 linearly normalized in the range -1 to 1 based upon the maximum absolute value among the features to 

231 illustrate. To facilitate focussing on the strongest levers for classification, i.e., the features with the most 

232 extreme values, the contrast of the color code used to illustrate feature values was linearly diminished 

233 according to their distance from the extremes of the scale (i.e. -1 or 1), down to a minimum of 30% (to 

234 maintain visibility of even the weakest features illustrated). However, when the value of a feature for a 

235 particular condition was exactly 0, it was omitted from the figures.

236 A complementary data classification procedure was conducted using methods as described above 

237 to examine whether there are differences between the temporal features of visual processing in ADHD 

238 participants taking or not medication for their condition.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24313116doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313116
http://creativecommons.org/licenses/by/4.0/


11

239 Results
240 Sample description

241 Groups were matched in terms of gender (22 (85%) women in the neurotypical control group and 

242 16 (70%) women in the ADHD group, (χ2 (48) = 1.59; p = .208) and age (overall mean = 19.0, s.d. = 2.8; 

243 F(1, 48) = .001; p = .98). Participants with ADHD reported significantly more symptoms of inattention 

244 (average inattention score for the ADHD group: 63.91, s.d. = 12.11; average inattention for the neurotypical 

245 group : 55.24; s.d. = 9.7; F(1, 47) = 7.59; p = .008) and hyperactivity (average hyperactivity score for the 

246 ADHD group : 55.5, s.d. = 9.44; average hyperactivity for the neurotypical group : 49.92, s.d. = 9.11; F(1, 

247 47) = 4.32; p = .043) on the CAARS. 

248 The average correct response rate on the task was of 49.4% for the neurotypical group and 50.0% 

249 for the ADHD group (t(47) = -.92; p = .181). The mean contrast of the white noise field applied over the 

250 target images, which served to control task difficulty was of 55.2% for neurotypical participants and 55% 

251 for ADHD participants (t(47) = .09; p = .463)

252 ADHD vs neurotypical controls analyses

253 Group CIs are shown in Fig 2 for the neurotypical and ADHD groups, respectively. These CIs 

254 represent the capacity of participants to use the stimulus information available at each time point and for 

255 each SNR frequency (5 to 55 Hz) in order to reach a correct response; i.e. their processing efficiency. Cells 

256 colored in yellow and red indicate combinations of time and SNR frequencies where processing efficiency 

257 was significantly above 0, and blue cells indicate processing efficiency significantly below 0. 

258 Fig 2. ADHD and neurotypical participants’ classification images. 

259 Average classification image representing processing efficiency as a function of time and SNR oscillation 

260 frequencies for the neurotypical (a) and ADHD participants (b). Reference for the color code is on the right of the 

261 graph. Only the points that differ significantly from 0 are colored, the others are white.
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262 While the group CIs seem roughly similar, the CI for the contrast between groups (Fig 3) shows 

263 several statistically significant differences. The cells colored orange and red in Fig 3 indicate significantly 

264 greater efficiency for the neurotypical group whereas the blue cells indicate an advantage for the ADHD 

265 participants. 

266

267 Fig 3. Between groups contrast classification image. 

268 The CI was obtained by subtracting the ADHD average CI from that of the neurotypical average CI. Conventions for 

269 the main axes of the graph are as in Fig 2. The color code represents the magnitude of between-group differences 

270 when significant. Cells that do not differ significantly between groups are white.

271 When exposed to the Fourier transforms of the individual time-frequency CIs, the SVM classifier 

272 reached an accuracy of 91.8% (binomial test; p < 0.001) in classifying data patterns according to group 

273 while using only 51 (3.2%) of the 1584 features available. The features used by the classifier for this 

274 performance are shown in Fig 4. The classifier managed to reach perfect (i.e. 100% correct) classification 

275 performance while using 421 features (not illustrated here).

276

277 Fig 4. Features used for diagnosis classification. 

278 Characteristic features for the ADHD group which served for the SVM classifier to reach 91.8% accuracy in 

279 determining the group from which individual data patterns came from. The color of cells indicates the normalized 

280 feature discrimination index (see color bar legend). The horizontal axis indicates the temporal frequencies extracted 

281 from the CIs by Fourier analysis. The vertical axis indicates the phase of these extracted components. The digit 

282 within each colored cell indicates the stimulus oscillation frequency from which the feature was extracted. All cells 

283 left white did not contribute to classification. The characteristic features for the neurotypical control group can be 

284 obtained by simply multiplying the feature values shown here by -1.
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285 The features which were most useful to distinguish between neurotypical and ADHD individual 

286 were the oscillations of processing efficiency (i.e. oscillations in the CIs) at 5, 10 and 15 Hz, which 

287 comprised the highest number of useful features, which were strongest for the 30, 35 and 40Hz SNR 

288 oscillation frequencies. Across the 11 possible SNR oscillation frequencies, the 5 and 15 Hz stimulus 

289 frequencies were not or almost not used by the SVM, and the 10, 30, 35, 40 and 55 Hz frequencies were 

290 slightly more frequently used than the others.   Of all features, though, three of them are stronger in their 

291 discriminatory index: the processing efficiency oscillations at 10 for SNR oscillatory frequencies of 30 and 

292 35 Hz, and the processing efficiency oscillations at 50 Hz for SNR oscillations at 20 Hz. Altogether, a higher 

293 concentration of informative features used by the SVM are found in the lower ranges of the frequencies in 

294 CIs (5, 10 and 15 Hz), but there is no clear pattern in which SNR oscillating frequencies are more used. 

295 Medicated vs non-medicated ADHD participants analyses

296 The ADHD group was separated in two subgroups; one for participants who have prescription 

297 medication for their condition and who take it on a regular basis, and those who do not take medication. 

298 Neurotypical participants were not included in the remaining of the analyses. Of the 23 participants with 

299 ADHD, 17 were using medication and 6 were not. 

300 Subgroups were matched in terms of gender (4 (67%) women in the non-medicated group and 12 

301 (71%) women in the medicated group (χ2 (23) = .03; p = .858), and age (overall mean = 19.09, s.d. = 3.68; 

302 F(1, 22) = .004; p = .948). Participants also reported equivalent severity of inattentive symptoms on the 

303 CAARS inattention/memory symptoms subscale (overall mean = 63.91, s.d. = 12.11; F(1, 21) = .19; p = 

304 .662), and hyperactive symptoms subscale (overall mean = 55.5, s.d. = 9.44; F(1, 21) = .09; p = .769). The 

305 average correct response rate was of 50.3% for the non-medicated group and 49.9% for the medicated group 

306 (t(21) = .56; p = .289). The mean contrast of the white noise field applied over the target images (to control 

307 difficulty) was of 55.1% for non medicated participants and 54.9 for medicated participants (t(21) = .04; p 

308 = .49).
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309 Classification images for the subgroups of ADHD participants taking medication for their condition 

310 on a regular basis or not were also calculated (Fig 5). The contrast CI for the comparison between these 

311 subgroups showed no significant difference and thus, is not illustrated here.

312

313 Fig 5. Medicated and non-medicated ADHD participants’ classification images. 

314 Average classification image representing processing efficiency as a function of time and SNR oscillation 

315 frequencies for the ADHD participants who take stimulant medication (a) and who do not take stimulant medication 

316 (b). Conventions are the same as in Fig 2. 

317 As in the case of the classification of ADHD vs neurotypical participants, an SVM was used to 

318 predict whether participants with ADHD take medication or not based on features from the Fourier 

319 transforms of individual time-frequency ICs. The SVM achieved a 91.3% decoding accuracy (binomial test; 

320 p < 0.001) using only 8 (0.5%) of the 1584 available features (11 SNR oscillation frequencies x 12 phases 

321 x 12 CI dimensions = 1584). Fig 6. Illustrates the features used to reach this accuracy. Perfect decoding, 

322 with 100% correct classification, was reached based on 32 features (not illustrated here).

323

324 Fig 6. Features used for medication status classification. 

325 Characteristic features for the subgroup of ADHD participants who take medication on a regular basis for their 

326 condition. Conventions are the same as those for Fig 4. 

327 A very limited number of features were used to discriminate between participants who take medication 

328 vs those who do not, and these features all had strong discrimination indexes. Although they are distributed 

329 across the possible SNR oscillating frequencies and CI frequencies, the strongest ones were oscillations in 

330 processing efficiency at 30 Hz for 20 Hz SNR oscillations, and processing efficiency oscillations at 20 Hz 

331 for 25 and 30 Hz SNR oscillations. Contrary to the ADHD vs control participants discrimination, in this 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24313116doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313116
http://creativecommons.org/licenses/by/4.0/


15

332 case, low frequencies in processing efficiency variations were not very useful to distinguish between 

333 participants with ADHD who take medication vs those who do not. 

334 Discussion
335 The present study investigated the temporal fluctuations of visual processing efficiency in young 

336 adults with vs without ADHD using random temporal sampling. The average time-frequency CIs for both 

337 groups appeared rather similar and showed significant variations in processing efficiency both as a function 

338 of the time elapsed since target onset and as a function of the frequency spectrum of SNR oscillations in the 

339 stimulus. Rapid changes of processing capacity in the course of a 200 ms stimulus exposure such as those 

340 illustrated in Figs. 2 are most likely attributable to the neural oscillatory mechanisms underlying task 

341 performance. Specifically, such fluctuations imply that the system mediating the relation between stimuli 

342 and responses presents a form of temporal inhomogeneity in the timescale of 200 ms. Given current 

343 knowledge, we believe the best candidate to account for this is that of neural oscillations.

344 Significant differences were found between the average CIs of ADHD and neurotypical groups (Fig 

345 3). These were confirmed through the use of an SVM classifier which had the task of categorizing features 

346 from the Fourier transforms of the CIs of individual participants according to their group of origin. Thus, 

347 the classifier surpassed the performance criterion of over 90% correct while using only 51 (3.2%) features 

348 out of the 3-D feature space of frequency within the classification image (12 levels; 5-60 Hz in 5 Hz steps) 

349 x phase (binned according to 12 levels) x stimulus oscillation frequency (11 levels; 5-55 Hz in 5 Hs steps). 

350 Furthermore, the classifier obtained a perfect performance of 100% classification accuracy while using 421 

351 (26.6%) features to do so. The most salient features that served to discriminate between groups (Fig 4) 

352 largely pertain to low (5, 10 and 15 Hz) frequencies within the classification images, with a particular 

353 emphasis on 10 Hz, which comprised two of the three most discriminant features.  

354 Considering that the temporal features of processing efficiency revealed by the classification images 

355 are a reflection of the neural oscillatory mechanisms underlying task performance, the group differences 
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356 demonstrated here must be interpreted in terms of a significant alteration of these brain oscillations in the 

357 ADHD group. This conclusion is congruent with that of several EEG studies which compared the brain 

358 oscillatory activity of individuals with ADHD to that of neurotypical participants. The fact that 5, 10 and 

359 15 (to some extent) Hz processing efficiency oscillations were the best indicators of the presence or absence 

360 of ADHD among the possible frequencies is also consistent with the specific patterns of EEG oscillations 

361 alterations in ADHD reported across literature (15,41). One significant constraint in interpreting the present 

362 observations, however, is that the way in which the temporal features of processing efficiency maps to 

363 specific neural mechanisms is presently unknown. Determining the way in which these domains map to 

364 each other should be an important goal of future studies. While the issue must remain on standby at present, 

365 we underline that this limitation is well compensated by the remarkable capacity of the random temporal 

366 sampling technique of discriminating between cases of ADHD and neurotypical participants on the basis of 

367 a small number of features extracted from the data.

368 This high discrimination power is also showcased in the classification of ADHD participants who 

369 take stimulant medication for their condition on a regular basis versus those that do not. Thus, this 

370 classification task was achieved with a very high degree of accuracy (91.3%) while using very few (n = 8; 

371 0.5%) of the potential 1584 features available in the Fourier transforms of that time-frequency classification 

372 images. A number of different factors may be involved in this difference between the medicated and non-

373 medicated groups. One is that the classification images picked up the functional impact of the structural 

374 effects on the brain caused by the long-term daily psychostimulant medication intake (42-44). Another 

375 possibility is that medicated vs non-medicated ADHD participants actually suffer different degrees of 

376 symptom severity (45) and that this is the cause of the differences between their classification images. 

377 Specifically, it seems possible that severe ADHD is more likely to lead to the prescription/usage of 

378 medication than milder cases. A weak link in the latter hypothesis, however, is that self-reported symptoms 

379 were equivalent between medicated and non-medicated ADHD participants. This observation suggests that 

380 symptoms intensity may not constitute the main difference between these groups. Regardless of the cause 
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381 however, the present results clearly show that brain function differs in some way between medicated and 

382 unmedicated individuals with ADHD. The existence of this difference means that future research focussing 

383 on cognitive and neural processes in ADHD should take the medication factor into account.

384 Another issue that needs to be addressed is that while an obvious difference in the brain’s oscillatory 

385 activity was demonstrated between medicated and non-medicated participants through the classification of 

386 the Fourier transforms of time-frequency CIs, these CIs themselves failed to differ significantly when 

387 contrasted with one another. This very large difference between the outcomes of the two techniques to 

388 contrast the data patterns from groups of participants is consistent with our past experience in the processing 

389 of data from random temporal sampling experiments. Specifically, we have found previously that both the 

390 discriminatory power of features as well as the between-subject consistency in those feature values are 

391 increased by using the features produced by the Fourier transform of time-frequency CIs rather than the CIs 

392 themselves (40,46). 

393 This is partially verified here based on the discrimination index which determined the entry order 

394 of features in the SVM classifier and the intra-group correlation coefficient (ICC; 47) to measure the 

395 consistency of data patterns across participants of the same group. As regards the ICC, it was lower with 

396 the Fourier transforms of CIs when compared to the CIs themselves in all cases except for the ADHD group 

397 in the contrast of their classification images with that of the control group (Table 1). However, large gains 

398 in the discrimination value of the features used by the SVM were evident with the Fourier transformed CIs 

399 (Table 1). Thus, this index was 1.9 times greater than after the Fourier transform of ICs for the ADHD vs 

400 neurotypicals classification problem, whereas the ratio was of 3.1 for the medication vs none problem. We 

401 attribute this difference to an improved alignment (or correlation) of the data with the brain activity it reflects 

402 when the time dimension of the time-frequency CIs is recoded into a frequency spectrum. This position is 

403 consistent with the notion that the functional output of the brain is based on oscillatory neural activity. 

404 Specifically, a phase x amplitude frequency spectrum offers greater validity to characterize an oscillator 

405 than the time dimension. 
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406 Table 1. Discrimination values of Classification Images features and Intra-class Correlations.

Neurotypical control group ADHD group
Controls vs 
ADHD

Feature 
discrimination 

index ICC F(df) p ICC F(df) p

Time-
Frequency 
CIs

.186 .085 5.74
(9, 107) < 0.001 .041 2.78

(9, 145) < 0.001

Fourier 
transforms 
of T-F CIs

.357 .043 2.17
(50, 1272) < 0.001 .067 2.65

(50, 1121) < 0.001

Medicated ADHD subgroup Non-medicated ADHD subgroupMedicated 
vs non-

medicated

Feature 
discrimination 

index ICC F(df) p ICC F(df) p

Time-
Frequency 
CIs

.476 .169 5.4
(12, 159) < 0.001 .364 6.09

(12, 36) < 0.001

Fourier 
transforms 
of T-F CIs

1.476 -.039 .4
(7, 81) .900 -.197 .1

(7, 10) 1.00

407 Discrimination indexes of CI features and intra-group correlation coefficients for the time-frequency classification 

408 images and for the Fourier transforms thereof for the control vs ADHD group, and for the medicated vs non-

409 medicated ADHD participants.

410 ADHD is known to be a very heterogeneous disorder (48,49). However, the high accuracy of the 

411 SVM’s classification points to high intra-group coherence in the data patterns. Indeed, the SVM 

412 classifications performed here used a leave-one-out cross validation method. This method implies that on 

413 every cycle, the data from one participant did not contribute to the learning of the mappings between data 

414 patterns and group while it is precisely the data that was left out from the learning phase that served for the 

415 test phase. To have an SVM classifier that offers a high accuracy, as in the present study, it is necessary that 

416 the mappings learned from the data of all participants but one retain their validity when the data of the left-

417 out participant is presented to the classifier in the test phase. From this, we may thus conclude that there is 

418 an essence in the individual data patterns that is largely shared among other members of the same group 

419 These findings point to temporal sampling as a promising method which, combined with machine learning, 
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420 could help identify more homogeneous characteristics of ADHD and potentially be used as a powerful tool 

421 to assist in the diagnosis of ADHD. 

422 Conclusion
423 The study compared the temporal features of visual processing between ADHD and neurotypical 

424 individuals in a word recognition task. These features were sufficiently different across groups while at the 

425 same time sufficiently congruent across participants of the same group that a machine learning algorithm 

426 classified participants in their respective groups with a 91.8% accuracy using only a small portion of the 

427 available features. This clearly shows that while ADHD is a very heterogeneous disorder (49,50), it remains 

428 possible to capture a highly powerful set of temporal features of visual processing that uniquely 

429 characterizes ADHD. Secondary findings showed that individuals with ADHD could be classified with high 

430 accuracy (91.3%) regarding their use of psychostimulant medication. This thus suggests the existence of 

431 strong behavioral markers of regular medication usage on visual performance which can be uncovered by 

432 random temporal sampling.    

433
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