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ABSTRACT

Purpose: To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors in MR data.
Materials and methods: A subset of the "Children’s Brain Tumor Network" dataset was retrospectively used (n=178 sub-
jects, female=72, male=102, NA=4, age-range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n=84),
ependymoma (n=32), and medulloblastoma (n=62). T1w post-contrast (n=94 subjects), T2w (n=160 subjects), and ADC
(n=66 subjects) MR sequences were used separately. Two deep-learning models were trained on transversal slices showing
tumor. Joint fusion was implemented to combine image and age data, and two pre-training paradigms were utilized. Model
explainability was investigated using gradient-weighted class activation mapping (Grad-CAM), and the learned feature space
was visualized using principal component analysis (PCA).
Results: The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained
on ImageNet and fine-tuned on ADC images with age fusion (MCC: 0.77 ± 0.14 Accuracy: 0.87 ± 0.08), followed by models
trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ±
0.08) data. Age fusion marginally improved the model’s performance. Both model architectures performed similarly across the
experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models’ attention focused
on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive
pre-training.
Conclusion: Classification of pediatric brain tumors on MR-images could be accomplished using deep learning, with the
top-performing model being trained on ADC data, which is used by radiologists for the clinical classification of these tumors.
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Key points:

• The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data with age fusion achieved the highest
performance, which was significantly better than models trained on T2w (second-best) and T1w-Gd data.

• Fusion of age information with the image data marginally improved classification, and model architecture (ResNet50
- vs - ViT) and pre-training strategies (supervised - vs - self-supervised) did not show to significantly impact models’
performance.

• Model explainability, by means of class activation mapping and principal component analysis of the learned feature
space, show that the models use the tumor region information for classification and that the tumor type clusters are better
separated when using age information.

Summary: Deep learning-based classification of pediatric brain tumors can be achieved using single-sequence pre-operative
MR data, showing the potential of automated decision support tools that can aid radiologists in the primary diagnosis of these
tumors.
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Introduction
Tumors in the central nervous system are the second most common type of cancer in children and young adults up to the age of
19, with an estimated age-standardized rate (in 100,000 population) of 1.2 for incidence and 0.60 for mortality worldwide1,
where brain tumors account for about 57% of the total causes of cancer deaths in this population2. Pediatric brain tumors (PBT)
can be grouped concerning the location relative to the tentorium, as infratentorial or supratentorial. Tumors in the infratentorial
brain region (posterior fossa) are more common in pediatric patients; however, the frequency varies depending on age3–5. Brain
tumor treatment procedures are usually complicated where tumor detection and preliminary diagnosis are based on magnetic
resonance images (MRI), and treatment planning also uses histopathological and molecular analysis of the tissue sample6.
Diagnosis by radiologists, when comparing the first MRI diagnosis to the final histology diagnosis, varies greatly among
tumor types and locations, with an overall sensitivity of 72% for broad tumor type classification (range 0-100%), which shows
the need for computational methods to improve qualitative assessments7. Deep learning algorithms have been successfully
applied to several medical image-related tasks and can be trained to assist radiologists in diagnosing brain tumors based on MR.
Even though deep learning methods have led to reasonable advancements in adult brain tumor detection, classification, and
segmentation8–10, their implementation in pediatric cases has been limited11, 12 mainly due to the lack of large and standardized
open access datasets13, 14. Deep learning models trained on MR-images from adults will not perform well on images from
children, since PBTs have different diagnostic properties. The "Children’s Brain Tumor Network" (CBTN)15, 16 is one of the
largest PBT datasets, and could potentially be used in the future similarly to the adult brain tumor segmentation challenge
(BraTS)17–19, as a standard and reference dataset for development and comparison of deep learning methods. This study is, to
the best of our knowledge, the first report on the implementation of deep learning on the MR dataset from CBTN for brain
tumor classification, and also one of few hitherto published MR-based deep learning studies on any brain tumor pediatric
dataset.

This exploratory study aimed to investigate deep learning-based methods for the classification of pediatric brain tumors,
considering different pre-operative MRI sequences, and fusing age and image information. A convolutional neural network
(ResNet50) and a vision transformer (ViT) were implemented and evaluated, exploring three pre-training strategies, and
investigating model explainability by visualization of activation maps and the learned feature space.

Material and Methods
Dataset cohort
In this retrospective study, the dataset was obtained upon application to and approval from CBTN15 (accessed in 2021). The
downloaded dataset contained 326 subjects, with tumor type information available for 273 subjects (females=153, males=116,
not-available=4, age-range [0.01, 36.49] years). Patients older than 18 years (n=3) were included in the dataset given the
pediatric tumor type diagnosis. The tumor types available were low-grade astrocytoma (ASTR) (n=132), medulloblastoma
(MB) (n=67), ependymoma (EP) (n=45), atypical teratoid rhabdoid tumor (ATRT) (n=20), diffuse intrinsic pontine glioma
(DIPG) (n=6), ganglioglioma (n=1), germinoma (n=1), and teratoma (n=1). Due to the limited number of subjects for DIPG,
ganglioglioma, germinoma, and teratoma categories, these tumor types were excluded from the subsequent analysis. From the
remaining tumor type groups, T1w-Gd, T2w MR sequences and diffusion-weighted (DW-MR) data were collected and used in
the analysis.

Data selection and exclusion
An automated selection based on the image quality followed by a visual assessment was performed. Quality selection for
T1w-Gd and T2w data was based on the voxel resolution, removing those with axial in-plane resolution larger then 1mm,
and with less than 50 axial slices. These values were chosen to avoid artifacts due to a low image resolution. For the
diffusion-weighted data, scans with at less than six diffusion-encoding directions were excluded. Visual assessment of all
individual images was performed and data were excluded if: (i) images were acquired post-operatively, (ii) images showed the
spine only, (iii) the tumor was not visible, (iv) the transversal plane had been clipped, and (v) image artifacts (motion, metal,
induced by neurosurgical clips) were present. By visual assessment, the tumor location was saved as a boundary box.

Pre-processing of image and age data
The DW-MR data was processed using MRtrix3 software20 to obtain diffusion tensors from which the ADC map was calculated.
Brain extraction was performed, followed by data harmonization, using a per-sequence voxel intensity normalization and
interpolation down to 1 mm isotropic resolution. These steps were performed since the CBTN dataset was collected on a variety
of MR scanners (manufacturer, field strength, gradient performance, etc.)16. The final volumes were reshaped to have 224×224
pixels in the transverse plane. Transversal 2D slices positioned within 20-80% of the tumor boundary box were extracted from
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Table 1. Per tumor type and MR-sequence summary of the dataset. The age information was obtained from the earliest scan
available for each subject. The number of extracted slices reflects the slices within the 20-80% of the tumor boundary box. m:
mean, std: standard deviation, M/F: male/female, NA: not available, ASTR: astrocytoma, EP: ependymoma, MED:
medulloblastoma.

T2-w T1w-Gd ADC

ASTR

EP

MB

Total

Tumor type Subjects
(infra/supra/both)

Sex
(M/F/NA)

Age in years
median [range]

(m± std)

Subjects
(infra/supra/both)
Extracted slices

84
(38/43/3) 48/34/2 7.76 [0.53,20.08]

8.13±4.84

77
(34/41/2)

1643

38
(21/16/1)

628

38
(16/19/3)

726

32
(19/10/3) 19/12/1 4.44 [0.00,22.85]

6.35±5.74

30
(17/10/3)

800

17
(9/6/2)

263

9
(5/3/1)

287

62
(62/0/0) 35/26/1 8.95 [0.24,36.49]

9.02±5.84

53
(53/0/0)

969

39
(39/0/0)

622

19
(19/0/0)

370

178
(119/53/6) 102/72/4 7.24 [0.00,36.49]

8.13±5.44

160
(104/51/5)

3412

94
(69/22/3)

1513

66
(40/22/4)

1383

the volumetric data to ensure that images showing only small portions of the tumor were not included. Transversal slices were
used instead of the volumetric data due to the limited number of subjects available for training 3D deep learning models. A
detailed description of the pre-processing steps and software used is available in the Supplementary material. The age in days
of each subject from the earliest available scan was obtained from the CBTN portal, converted in years, and normalized using
z-score normalization using the [0.5th, 99.5th] value range. The final composition of the dataset with age and sex information is
summarized in Table 1.

Network architecture and training
Two deep learning model architectures extensively used in literature were employed in this study, distinguished by their feature
extraction approach: ResNet5021 and Vision Transformer22 (ViT), in its base 16 version. ResNet5021 is a deep convolutional
neural network that uses stacked 2D convolutional layers and residual connections to extract image features. ViT22 is a
transformer-based model free from convolution operations that uses self-attention to learn local and global relations between
non-overlapping patches in an image. Both methods serve as image feature extractors, producing a 1D representation of an input
image suitable for classification, with ViT showing to perform better than ResNet-like models on natural image classification
tasks as well as being more robust to image perturbations when trained on sufficient data23. Given the limited training
data available, transfer learning was used with the image encoding models fine-tuned on the target CBTN dataset starting
from pre-trained weights. Three distinct pre-training strategies were investigated: supervised pre-training on out-of-domain
data (ImageNet1K24), self-supervised pre-training on close-to-domain data (BraTS17–19) and self-supervised pre-training on
in-domain (CBTN) data. For the self-supervised pre-training, the SimCLR25 framework was employed (see Pre-training
section in the Supplementary materials for details). We also investigated the integration of image and age through a joint fusion
approach. In this case, ResNet50 and ViT models were used to encode the image data, while a tabular network encoded the age
information. Figure 1 shows a schematic representation of the network architecture when trained on image and age information.
For the details on the implementation, model pre-training and fine-tuning, and data augmentation, see the Supplementary
materials.

Evaluation metrics and statistical methods
A ten-times repeated five-fold stratified cross-validation scheme was employed in all experiments to account for the small size
of the dataset. For each of the repetitions, subject-wise splitting was performed to obtain training, validation, and testing sets.
Models’ performance was evaluated volume-wise in terms of Matthew’s correlation coefficient [-1, 1]26 since it is a more stable
metric in case of class imbalance. Accuracy and area under the ROC curve (AUC) were also computed to allow comparison
with previous studies. Class-wise F1-score, precision, and recall were additionally computed. Volume-wise predictions were
obtained by soft voting aggregation of the models’ predicted probability for each of the slices in a volume. The Wilcoxon
signed-rank test (two-sided) was used to investigate if there were difference in classification performance between models
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Figure 1. Schematic representation of image and age encoders whose 1D representations are concatenated for the final
classification. ViT: visual transformer.

trained on image data alone or fused with age information, or when using different pre-training strategies. The Wilcoxon
rank-sums (two-sided) test was instead used to compare models when trained on different MR sequences. A p-value< 0.05 was
considered significant with Bonferroni correction applied when multiple comparisons were performed.

Model explainability and learned feature space visualization
In this work, Grad-CAM27, 28 were computed for the last convolutional layer of the ResNet50 models, and for the last attention
block in the ViT models, for the ground truth class. Grad-CAMs were employed to ensure that the models focused on relevant
regions of the input image for classification, rather than to elucidate the specific reasons or features used by models for
prediction. Additionally, principal component analysis (PCA) was performed on the image feature vectors obtained from the
trained models to visualize the effect of pre-training and image-age fusion.

Results
Classification performance
The highest classification performance was achieved by the ViT model pre-trained on ImageNet and fine-tuned on ADC data
with age fusion (MCC: 0.77 ± 0.14, Accuracy: 0.87 ± 0.08). This was significantly higher than the best-performing models
trained on either T2w (MCC: 0.58 ± 0.11) or T1w-Gd (MCC: 0.45 ± 0.16) data. Class-wise performance (see Supplementary
material Table S1), showed that the classification of EP is the most challenging across settings, with an average F1-score over
all the experiments of 0.37 ± 0.28, while ASTR and MED obtained 0.74 ± 0.18 and 0.76 ± 0.15, respectively. Looking at the
overall effect of fusing image and age information, the models’ performance did not significantly change compared to models
trained on image data only, except for the ResNet50 model pre-trained on ImageNet and fine-tuned on ADC data where the
addition of age information significantly decreased classification performance. The effect of the three pre-training strategies
was not consistent across MR sequences, model architectures, or input configuration. Moreover, there was no clear benefit
between pre-training on close-to-domain or in-domain data. Of notice, the ViT models trained on ADC data had a significantly
better performance when fine-tuned from ImageNet pre-trained weights compared to contrastive pre-training. Finally, looking
at the different model architectures, ResNet50 and ViT models performed similarly when considering pre-training strategies
and input configuration. A summary of the classification performance for all the experiments is presented in Figure 2 and in
Table 2.

Qualitative analysis of the image feature space
Scatter plots for features extracted using the ViT model from T2w and ADC images are shown in Figure 3. On the training
set, the features of the different tumor types are grouped in distinct clusters for both T2w and ADC. The different pre-training
strategies did not substantially impact the feature space, with the SimCLR pre-training on CBTN showing a marginally
improved cluster separation. The fusion of the age information with the image data resulted in a larger separation between the
tumor type clusters compared to when only image information was used. On the test set, clusters were less distinct, with EP
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Figure 2. Subject-wise classification performance on the test set for all the available MR sequences (with and without age
fusion) and investigated model architectures and pre-training strategies. Each box plot summarises the Matthew’s correlation
coefficient for the 50 models trained thought a ten-times repeated five-fold cross-validation scheme. Outliers are shown as
diamond (⧫). Statistical significance is shown for the best performing models on each MR sequence (*** two-sided p-value <

0.0001 using Wilcoxon rank-sums test adjusted with post-hoc Bonferroni correction). See Table 2 for the performance details
of the best models for each MR sequence.

features largely overlapping with ASTR and MED, reflecting the lower F1-score for this class. Scatter plots for the ResNet50
models and T1w-Gd sequence are available in the Supplementary material Figures S1 and S2.

Grad-CAMs
Representative Grad-CAMs for models trained on the available MR sequences, with and without age fusion, and for the three
pre-training strategies are presented in Figure 4. Results are shown for a transversal slice of a test subject for which all MR
sequences were available. For the ResNet50 models, the Grad-CAMs focused primarily on the brain region with those of
models trained on T2w data showing a better localization of the tumor compared to T1w-Gd or ADC. The Grad-CAMs of
the ViT models highlighted the whole brain region with no discrimination of the tumor region, which is a consequence of the
short and long relations between the image regions that these models learn. There is no overall difference in the Grad-CAMs
between pre-training strategies, and when using age and image information. This was true for both the models, except for the
ViT, where examples of activation being around the brain region can be found. Additional Grad-CAMs are available in the
Supplementary materials Figure S3.

Discussion
In this study, deep learning methods were implemented for the classification of PTBs based on pre-operative MR-images from
the CBTN dataset. The effect of network architectures, pre-training, MR sequence, and fusion of patient age were investigated.

Network architecture
The ResNet50 model was chosen given previous reports in literature for similar tasks on both pediatric11, 12 and adult brain
tumor datasets29, 30. The ViT model was selected as an alternative to convolution-based deep learning models given its success

5/11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24313109doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313109
http://creativecommons.org/licenses/by/4.0/


T2w T2w with age 
ImageNet ImageNet SimCLR

BraTS
SimCLR
CBTN

SimCLR
CBTN

SimCLR
BraTS

T
ra

in
in

g 
se

t
Te

st
 s

et

Astrocytoma Ependymoma Medulloblastoma

T
ra

in
in

g 
se

t
Te

st
 s

et

ADC ADC with age
ImageNet ImageNet SimCLR

BraTS
SimCLR
CBTN

SimCLR
CBTN

SimCLR
BraTS

Figure 3. Principal component analysis (PCA) of image features extracted by ViT models fine-tuned on T2w or ADC data,
with and without age information, using ImageNet or SimCLR pre-trained weights. The first and second principal components
are presented, for both training and testing sets. Classes are color-coded. The addition of the age information stretches the
feature space and helps, in the training set, in clustering the tumor types separately. On the test set, ependymoma samples
(orange dots) are scattered and overlapping with the other two classes, confirming the low F1-score for this class. ADC:
apparent diffusion coefficient, SimCLR: self-supervised contrastive pre-training.
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Figure 4. Grad-CAMs for the models trained on different MR-sequences, with and without age fusion, and for the three
pre-training strategies investigated. Grad-CAMs are computed with respect to the ground truth class and for the same subject
(the transversal slice was taken to be as close as possible in all MR modalities). The red square in the tumor region panel
delineates the tumor. In the Grad-CAMs images, the red color identifies the parts of the input image used mostly contributing to
the classification. ADC: apparent diffusion coefficient, SimCLR: self-supervised contrastive pre-training. ViT: visual
transformer.
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Table 2. Subject-wise classification performance for the best performing models on all the available MR sequences (with and
without age fusion). The overall best performing model is highlighted in gray. Models fine-tuned on ADC data perform
significantly better than models fine-tuned on either T2w data or T1w-Gd. The addition of the age information did not
significantly improve models’ performance. SimCLR: self-supervised contrastive pre-training strategy, std: standard deviation,
MCC: Matthew’s correlation coefficient, AUC: area under the Receiver operating characteristic curve (macro-average).

MR
sequence Model specification Use

age
MCC

[mean±std]
Accuracy

[mean±std]
AUC

[mean±std]

T1w-Gd
ViT

SimCLR pre-training on TCGA
✗ 0.454±0.156 0.659±0.099 0.770±0.103

✓ 0.438±0.125 0.579±0.082 0.693±0.088

T2w
ViT

SimCLR pre-training on TCGA
✗ 0.569±0.099 0.723±0.062 0.838±0.055

✓ 0.580±0.114 0.731±0.075 0.846±0.056

ADC
ViT

pre-training on ImageNet
✗ 0.767±0.132 0.872±0.074 0.931±0.077

✓ 0.773±0.144 0.874±0.084 0.940±0.073

on natural image tasks31 and its increasing adoption in medical imaging-related tasks32. Both model architectures are available
in most of the deep learning frameworks with and without supervised pre-trained weights on ImageNet, which is beneficial when
training data is scarce. However, supervised pre-training does not always benefit the downstream task, with the pre-training
dataset and objective having an impact on the final performance of the fine-tuned model33. For this reason, self-supervised
contrastive pre-training25 was employed to bridge the gap between the pre-training and downstream dataset and objective.
Overall, classification results did not benefit from the contrastive pre-training, with the best-performing model being fine-tuned
from ImageNet weights. One reason the anticipated benefits of contrastive learning were not observed could be that models
were trained to learn shared information from augmented views of the same transversal slice, discarding the fact that this
information should be shared by all the slices in a subject. Nonetheless, PCA of the learned feature space showed a better
distinction of the different tumor types when using contrastive pre-training, especially for ResNet50 models.

MR sequences
Among the MR sequences, ADC achieved the highest overall classification performance and class-wise F1-scores for both
ASTR and MED tumor types, whereas models trained on T2w data achieved the highest F1-score for the EP class (see Table S1
in the Supplementary material). This can be attributed to the small number of EPs having ADC data (n=9) compared to those
having T2w data (n=30). The results on ADC data were in agreement with those using deep-learning based-methods12, as well
as intensity analysis34, and consistent with the information neuro-radiologists use when assessing tumor cellularity and possible
tumor grade, during the primary diagnosis work-up.

Age information
A joint fusion approach was used to combine the image and age information, allowing the image and age encoder to be jointly
trained. Results show that the addition of age information did not improve classification performance across the different MR
sequences, model architectures, and pre-training strategies. Preliminary investigations also explored the number of encoding
layers in the age encoder, with no variation in outcome. This can be attributed to the overlapping age distribution of the different
classes as well as to the choice of data fusion approach. By contrast, in a similar experimental setting the combination of image
and age information improved model classification performance12. Thus, this leaves open the question of whether the benefits
of combining age and image information for pediatric brain tumor classification are restricted to specific subject populations or
if a more general method for image and age fusion needs to be explored which can be broadly and successfully applied.

Model explainability
To qualitatively assess the regions used for predictions class-activation mapping was implemented to highlight the regions in the
image used by the model for prediction. Given the depth and complexity of both ResNet50 and ViT models, activation maps do
not have sufficient spatial resolution to target the tumor region only and provide a visualization of tumor regions and/or image
features that are relevant for the classification. Nevertheless, the models’ activation maps showed that the information used for
classification fell within the brain region. Interestingly, the effect of the pre-training strategy and the input configuration seen in
the feature space visualizations does not reflect on the class activation maps, suggesting that the models use the same brain
regions for classification but rely on a somewhat different set of features.
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Comparison with related work
The findings align with the few previously reported studies on deep learning-based pediatric brain tumor type classification,
with Quon et al.,11 reporting a 0.92 accuracy (F1-score of 0.80 on T2w data classifying 4 tumor types and controls) and Artzi et
al.,12 of 0.87 (F1-score 0.82 on diffusion Trace data classifying 3 tumor types and controls). This study’s class-wise results
for ASTR and MB are similar to those previously reported, with EP having the lowest score in all studies. It should be noted
that the comparison of the performance metrics among the studies can only be considered in very general terms due to the
differences in tumor types included in the analysis and the evaluation protocol. Additionally, previous studies did not provide
statistical analysis to assess the impact of specific MR-sequence and/or age fusion on models’ performance.

Limitations
This study has some limitations, particularly concerning two major aspects: (1) the amount and quality of data and (2) the use
of 2D models. The dataset, although one of the largest accessible, has a relatively small size and the distribution of tumor types
is unbalanced. Not all tumor types available in the dataset could be included in the analysis, limiting the applicability of the
trained models in a real-world clinical scenario. The image quality varied greatly between each scan and subject. This large
variability in data quality is advantageous for the development of a robust classification method but also adds complexity in
determining which factors to adjust to optimize model performance. Moreover, the information regarding the site where the
scans were acquired was missing. If available, it could have been used to stratify the subjects in training and testing sets based
on MR-site. Additionally, we have only explored the use of single MR sequences separately, while multiple MR sequences
(e.g., T2w and ADC data) should be considered in the future. Finally, the choice of 2D deep-learning models instead of 3D
ones resulted in the spatial relationship between the slice and the tridimensionality of the tumor structure being lost. If more
data were available, using the MR volumes as model input could address this limitation. Alternatively, while still using 2D
slides, aggregation methods that incorporate the slice position for computing volume-wise predictions could be developed.
Considering the limitations, the results for this study are preliminary and highlight the need for further research to develop
methods that can match the diagnostic performance of radiologists that, for the investigated brain tumors, is 91.7% (range [85.1,
96.7]%) when using T1-w with and without contrast, T2-w, FLAIR and ADC7.

Conclusions
In this proof-of-concept study, the classification of pediatric brain tumors based on MR-images was achieved using deep
learning methods. The vision transformer model pre-trained on ImageNet and fine-tuned on ADC data obtained the highest
classification performance, with models trained on T2w data also achieving reasonable performance. Image and age fusion did
improve classification performance, but not significantly. In future studies, the combination of multiple MR sequences along
with more detailed clinical information and further refinements of the network architectures, pre-training and data fusion are
warranted o aid radiologists in the clinical assessment of these tumors.
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Supplementary material
Material and Methods
ADC computation

The DW-MR data was processed using MRtrix3 software1 to obtain a diffusion tensor from which the ADC map was calculated.
Briefly, Gibbs-ringing artefact removal, denoising and motion correction were performed before the diffusion tensor fitting.
The ADC map was then computed.

Intensity normalization, volume re-sampling and slice selection

Data harmonization was performed since the CBTN dataset was obtained from a variety of centres and MRI scanners2. The
brain from each MRI volume was extracted using a deep learning-based brain extraction tool3, followed by a per-sequence
voxel intensity clipping confining the values in the [0.2th, 99.8th] percentile range of the brain region only. Min-max intensity
normalization was also performed bringing the voxel intensity values in the [0, 1] range. Lastly, each volume was isotropically
interpolated to 1 mm isotropic resolution and reshaped to have 224×224 pixels in the transverse plane using an order five
spline interpolation function (nibabel.processing.conform).

Data splitting
Scans were split subject-wise, into training and validation (80%) and testing (20%), ensuring that subjects with multiple scans
did not end up in the same set. When using pre-trained weights from the in-domain data (CBTN), test subjects were not used
for neither for pre-training nor during fine-tuning, resulting in each of the ten repetitions having a different set of pre-training
weights.

Pre-training

Transfer learning has been widely investigated and used to address the data scarcity problem in medical image analysis4.
Thus, in this study, the image feature extractors underwent fine-tuning using pre-trained weights obtained from three distinct
pre-training strategies: (1) supervised pre-training on out-of-domain data (ImageNet1K), (2) self-supervised pre-training
on close-to-domain data (BraTS) and (3) self-supervised pre-training on in-domain (CBTN) data. Specifically, supervised
pre-training utilized ImageNet1K dataset which is a collection of 1.2 million images divided in 1000 classes and is broadly used
in literature for model pre-training and with pre-trained model weights available for download from most of the deep learning
frameworks (ResNet50 and ViT ImageNet1K model weights from Pytorch were used in this study). For the self-supervised
pre-training, the SimCLR5 framework was employed, implementing contrastive learning which enables models to learn visual
representation from the data without the need of labels. Two distinct datasets were used for self-supervised pre-training: a
close-to-domain dataset comprising of transversal slices of adult brain tumor obtained from BraTS20206–8, and an in-domain
dataset composed of transversal slices from the CBTN dataset including all brain images showing tumor. Models were
pre-trained on T2-w (TCGA n=22811, CBTN n=5803), T1w-Gd (TCGA n=22811, CBTN n=2584) or ADC (CBTN n=1383)
images separately, to match the MR-sequences available for the CBTN dataset. Since BraTS2020 dataset does not provide
ADC data, pre-trained weights on T2-w images were used when fine-tuning on the ADC target dataset.

Image and age data fusion

Several data fusion approaches have been proposed9–11, such as early fusion, joint fusion and late fusion. In this work, joint
fusion (feature fusion) was used to combine image and age information for the prediction of tumor type. The advantage of joint
fusion is that a single model is trained on both image and age information, with the age not blended immediately with the risk of
not being properly used11. The age was encoded using a one dense layer bringing the age information into a three-valued vector.
The encoded age vector was then concatenated to the encoded image vector before being fed to the classifier part of the model.

Implementation and training

Models were implemented in Python (3.9.17) using the PyTorch12 framework (2.0.1+cu117), and were trained on a computer
with 20-core CPU and 4 NVIDIA Tesla V100 GPUs (32GB memory each). SimCLR pre-training on both the close-to-domain
and in-domain data run for 500 epochs, minimizing the contrastive loss between positive pairs of augmented images (see5 for
details) using AdamW optimizer13 with CosineAnnealingLR learning rate scheduler14 (initial learning rate=1.0e-05). During
fine-tuning on the target CBTN dataset, only the last 2 convolutional blocks of ResNet50 (22.1M parameters) and the last
6 attention layers for ViT (43.3M parameters) were trained to minimize the weighted categorical cross-entropy loss with
balanced weights computed on the training set (sklearn.utils.class_weight function). Adam optimizer15 (β1 = 0.9,
β2 = 0.999) with exponential learning rate decay (starting learning rate=1e-5, γ = 0.99) was also used. Fine-tuning run for 200
epochs with the training stopping if the validation loss did not decrease over 20 epochs.
Data augmentation was applied16–19 during both pre-training and fine-tuning, using both geometric transformations (random
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Figure S1. Principal component analysis (PCA) of image features extracted by ResNet50 models fine-tuned on T2w or ADC
data, with and without age information, using ImageNet or SimCLR pre-trained weights. The first and second principal
components are presented, for both training and testing sets. Classes are color-coded.

rotations between ±45◦, random horizontal and vertical flipping, and 10% random width and height shift) and random
color jitter ( brightness up to 50%). In addition, the TrivialWideAugment automatic data augmentation method20 was
also used, given negligible computational overhead and performance improvement see in natural image classification tasks
(num_magnitude_bins=15). Code linked to this manuscript is available at (removed for anonymity).

Results
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Table S1. Subjects-wise classification performance across all the available MR sequences (alone or with age fusion), for the
implemented deep learning models and pre-training strategy. Classe-wise metrics are also provided. std: standard deviation,
MCC: Matthew’s correlation coefficient, AUC: area under the ROC curve (marco-average). Table continues on multiple pages.

MR
sequence

Model
version

Use
age

Pre-
training
strategy

Pre-
training
dataset

MCC
[mean±std]

Accuracy
[mean±std]

AUC
[mean±std]

Tumor
type

Precision
[mean±std]

Recall
[mean±std]

F1-score
[mean±std]

T1

R
es

N
et

50

False

/ Imagenet 0.3836±
0.0961

0.5946±
0.0751

0.7632±
0.0571

ASTR 0.8494±
0.0897

0.5325±
0.1906

0.5614±
0.1544

EP 0.8582±
0.0966

0.3037±
0.1985

0.3319±
0.2153

MED 0.6842±
0.1290

0.7905±
0.1628

0.6850±
0.1106

SimCLR

TCGA 0.3733±
0.1286

0.6051±
0.0856

0.7404±
0.1089

ASTR 0.8008±
0.0939

0.5372±
0.1582

0.5496±
0.1158

EP 0.8953±
0.0748

0.3030±
0.1831

0.3523±
0.1993

MED 0.6794±
0.0999

0.8008±
0.1381

0.7032±
0.1164

CBTN 0.3875±
0.1316

0.6095±
0.0853

0.7581±
0.0884

ASTR 0.7650±
0.1027

0.5851±
0.1224

0.5657±
0.1201

EP 0.9043±
0.0629

0.3127±
0.2007

0.3533±
0.2010

MED 0.7310±
0.0986

0.7880±
0.1217

0.7137±
0.1047

True

/ Imagenet 0.3513±
0.1558

0.5735±
0.1078

0.7436±
0.0869

ASTR 0.8464±
0.0960

0.4818±
0.1945

0.5220±
0.1824

EP 0.8332±
0.1250

0.3060±
0.2073

0.3187±
0.2079

MED 0.6757±
0.1272

0.7812±
0.1983

0.6774±
0.1356

SimCLR

TCGA 0.3957±
0.1184

0.6160±
0.0828

0.7546±
0.0993

ASTR 0.8190±
0.1070

0.5458±
0.1642

0.5618±
0.1161

EP 0.9025±
0.0757

0.3027±
0.1722

0.3550±
0.1725

MED 0.6756±
0.1214

0.8232±
0.1282

0.7131±
0.1164

CBTN 0.4124±
0.1123

0.6235±
0.0799

0.7741±
0.0759

ASTR 0.8041±
0.0931

0.5813±
0.1444

0.5788±
0.1264

EP 0.8987±
0.0792

0.3003±
0.2129

0.3391±
0.2197

MED 0.7244±
0.1142

0.8159±
0.1047

0.7269±
0.1077

V
iT

_b
_1

6

False

/ Imagenet 0.3307±
0.1208

0.5838±
0.0787

0.6925±
0.1006

ASTR 0.8023±
0.0913

0.5337±
0.1782

0.5467±
0.1713

EP 0.9337±
0.0650

0.2190±
0.1877

0.2736±
0.2151

MED 0.5849±
0.1099

0.7897±
0.1675

0.6545±
0.1101

SimCLR

TCGA 0.4540±
0.1557

0.6585±
0.0993

0.7696±
0.1028

ASTR 0.8071±
0.0892

0.6511±
0.1882

0.6346±
0.1235

EP 0.9321±
0.0648

0.3063±
0.2244

0.3754±
0.2565

MED 0.7079±
0.1699

0.8313±
0.1252

0.7416±
0.0942

CBTN 0.3763±
0.0981

0.6168±
0.0673

0.7376±
0.1036

ASTR 0.7690±
0.0898

0.6033±
0.1543

0.5831±
0.1215

EP 0.9415±
0.0547

0.1953±
0.1891

0.2576±
0.2335

MED 0.6597±
0.1355

0.8099±
0.1255

0.7094±
0.1101

True

/ Imagenet 0.3276±
0.1154

0.5793±
0.0824

0.6925±
0.0879

ASTR 0.8012±
0.1078

0.5377±
0.1605

0.5512±
0.1482

EP 0.9269±
0.0775

0.2077±
0.1922

0.2670±
0.2254

MED 0.5907±
0.0906

0.7808±
0.1840

0.6491±
0.1218

SimCLR

TCGA 0.4383±
0.1250

0.6466±
0.0840

0.7645±
0.0997

ASTR 0.7970±
0.1003

0.6295±
0.1685

0.6168±
0.1019

EP 0.9260±
0.0670

0.3067±
0.2279

0.3697±
0.2604

MED 0.7052±
0.1712

0.8210±
0.1347

0.7342±
0.0971

CBTN 0.3522±
0.1077

0.6008±
0.0720

0.7247±
0.0992

ASTR 0.7528±
0.1052

0.6235±
0.1775

0.5877±
0.1319

EP 0.9424±
0.0493

0.1590±
0.1742

0.2070±
0.2209

MED 0.6497±
0.1495

0.7865±
0.1353

0.6857±
0.0915/
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MR
sequence

Model
version

Use
age

Pre-
training
strategy

Pre-
training
dataset

MCC
[mean±std]

Accuracy
[mean±std]

AUC
[mean±std]

Tumor
type

Precision
[mean±std]

Recall
[mean±std]

F1-score
[mean±std]

T2

R
es

N
et

50

False

/ ImageNet 0.5205±
0.1242

0.6835±
0.0830

0.8534±
0.0470

ASTR 0.8716±
0.0622

0.7260±
0.1307

0.7703±
0.0905

EP 0.8668±
0.0656

0.4374±
0.2270

0.4166±
0.2088

MED 0.7994±
0.1080

0.8053±
0.1283

0.7083±
0.0636

SimCLR

TCGA 0.5475±
0.1057

0.7016±
0.0734

0.8531±
0.0492

ASTR 0.8692±
0.0669

0.7036±
0.1245

0.7574±
0.1022

EP 0.8930±
0.0658

0.5141±
0.2043

0.5088±
0.1624

MED 0.7942±
0.0888

0.8388±
0.1089

0.7237±
0.0734

CBTN 0.5453±
0.1112

0.6997±
0.0765

0.8546±
0.0491

ASTR 0.8673±
0.0765

0.7065±
0.1436

0.7564±
0.1179

EP 0.8827±
0.0570

0.5034±
0.1895

0.4910±
0.1546

MED 0.8056±
0.0972

0.8419±
0.1113

0.7334±
0.0673

True

/ ImageNet 0.5281±
0.1260

0.6862±
0.0902

0.8464±
0.0547

ASTR 0.8857±
0.0690

0.7103±
0.1583

0.7623±
0.1432

EP 0.8640±
0.0761

0.4743±
0.2344

0.4395±
0.1938

MED 0.7934±
0.1052

0.8087±
0.1258

0.7075±
0.0750

SimCLR

TCGA 0.5591±
0.0984

0.7105±
0.0673

0.8474±
0.0565

ASTR 0.8732±
0.0648

0.7188±
0.1203

0.7693±
0.0990

EP 0.9042±
0.0678

0.5084±
0.1717

0.5200±
0.1549

MED 0.7916±
0.0938

0.8390±
0.0996

0.7245±
0.0788

CBTN 0.5410±
0.1084

0.6946±
0.0801

0.8456±
0.0539

ASTR 0.8731±
0.0634

0.6799±
0.1639

0.7345±
0.1492

EP 0.8816±
0.0678

0.5246±
0.1916

0.5035±
0.1519

MED 0.7946±
0.1001

0.8466±
0.1040

0.7307±
0.0772

V
iT

_b
_1

6

False

/ ImageNet 0.5458±
0.1276

0.7097±
0.0836

0.8387±
0.0533

ASTR 0.8415±
0.0826

0.7829±
0.1245

0.7964±
0.1009

EP 0.9056±
0.0557

0.4273±
0.2024

0.4543±
0.1812

MED 0.8068±
0.0726

0.8030±
0.1223

0.7149±
0.0577

SimCLR

TCGA 0.5687±
0.0987

0.7232±
0.0623

0.8376±
0.0548

ASTR 0.8375±
0.0832

0.7972±
0.1012

0.8034±
0.0670

EP 0.9167±
0.0514

0.4733±
0.2070

0.4905±
0.1758

MED 0.8229±
0.0840

0.7917±
0.1039

0.7176±
0.0781

CBTN 0.5504±
0.1081

0.7098±
0.0732

0.8270±
0.0561

ASTR 0.8174±
0.0945

0.7737±
0.1204

0.7788±
0.0888

EP 0.9306±
0.0516

0.4546±
0.1953

0.4884±
0.1682

MED 0.8033±
0.0934

0.8051±
0.1365

0.7091±
0.0742

True

/ ImageNet 0.5612±
0.1132

0.7174±
0.0774

0.8507±
0.0482

ASTR 0.8466±
0.0776

0.7844±
0.1240

0.7979±
0.0916

EP 0.9141±
0.0507

0.4295±
0.2100

0.4546±
0.1836

MED 0.8077±
0.0871

0.8280±
0.1080

0.7300±
0.0632

SimCLR

TCGA 0.5798±
0.1141

0.7307±
0.0752

0.8459±
0.0556

ASTR 0.8283±
0.0871

0.7944±
0.0952

0.7980±
0.0756

EP 0.9231±
0.0464

0.4847±
0.2123

0.5098±
0.1833

MED 0.8327±
0.0857

0.8140±
0.1239

0.7384±
0.0803

CBTN 0.5259±
0.1747

0.6966±
0.1163

0.8096±
0.0756

ASTR 0.7934±
0.1478

0.7594±
0.1418

0.7599±
0.1126

EP 0.9294±
0.1231

0.4488±
0.2152

0.4955±
0.2069

MED 0.8020±
0.1019

0.7859±
0.1968

0.6836±
0.1586

/
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MR
sequence

Model
version

Use
age

Pre-
training
strategy

Pre-
training
dataset

MCC
[mean±std]

Accuracy
[mean±std]

AUC
[mean±std]

Tumor
type

Precision
[mean±std]

Recall
[mean±std]

F1-score
[mean±std]

ADC

R
es

N
et

50

False

/ ImageNet 0.6708±
0.1440

0.8127±
0.0830

0.9096±
0.0800

ASTR 0.7873±
0.1416

0.8757±
0.1121

0.8591±
0.0671

EP 0.9090±
0.0778

0.4222±
0.4211

0.3326±
0.3175

MED 0.9668±
0.0590

0.8533±
0.1542

0.8674±
0.1055

SimCLR

TCGA 0.7045±
0.1180

0.8428±
0.0579

0.9434±
0.0631

ASTR 0.7723±
0.1363

0.9375±
0.0631

0.8986±
0.0469

EP 0.9421±
0.0608

0.2556±
0.3890

0.2296±
0.3339

MED 0.9744±
0.0505

0.8817±
0.1313

0.8870±
0.0889

CBTN 0.7238±
0.1261

0.8556±
0.0557

0.9308±
0.0860

ASTR 0.7341±
0.1644

0.9606±
0.0578

0.9044±
0.0490

EP 0.9522±
0.0558

0.3333±
0.4082

0.2926±
0.3336

MED 0.9937±
0.0249

0.8400±
0.1615

0.8941±
0.1043

True

/ ImageNet 0.5831±
0.2263

0.7427±
0.1627

0.8904±
0.1450

ASTR 0.8000±
0.1588

0.7599±
0.2305

0.7766±
0.1963

EP 0.8657±
0.1370

0.4000±
0.4295

0.2755±
0.3200

MED 0.9208±
0.1397

0.8450±
0.2088

0.8272±
0.1990

SimCLR

TCGA 0.7100±
0.1357

0.8405±
0.0767

0.9409±
0.0623

ASTR 0.7931±
0.1374

0.9233±
0.0934

0.8936±
0.0604

EP 0.9342±
0.0725

0.3444±
0.4193

0.3037±
0.3483

MED 0.9705±
0.0543

0.8783±
0.1387

0.8860±
0.0985

CBTN 0.6935±
0.1305

0.8341±
0.0734

0.9304±
0.0772

ASTR 0.7412±
0.1510

0.9454±
0.0863

0.8933±
0.0588

EP 0.9360±
0.0780

0.2222±
0.3583

0.1978±
0.2975

MED 0.9815±
0.0433

0.8433±
0.1560

0.8844±
0.0969

V
iT

_b
_1

6

False

/ ImageNet 0.7673±
0.1321

0.8721±
0.0737

0.9310±
0.0770

ASTR 0.7863±
0.1540

0.9608±
0.0642

0.9089±
0.0569

EP 0.9637±
0.0486

0.4444±
0.4246

0.4222±
0.3843

MED 0.9867±
0.0419

0.8617±
0.1487

0.8950±
0.0999

SimCLR

TCGA 0.6827±
0.1185

0.8268±
0.0670

0.9442±
0.0655

ASTR 0.7717±
0.1411

0.9246±
0.0973

0.8840±
0.0563

EP 0.9211±
0.0760

0.2000±
0.3399

0.1622±
0.2628

MED 0.9781±
0.0492

0.8683±
0.1435

0.8892±
0.0948

CBTN 0.6647±
0.1629

0.8242±
0.0732

0.9062±
0.0918

ASTR 0.7038±
0.1986

0.9404±
0.0964

0.8748±
0.0633

EP 0.9502±
0.0689

0.0889±
0.2183

0.0956±
0.2353

MED 0.9795±
0.0457

0.8250±
0.1635

0.8617±
0.1141

True

/ ImageNet 0.7730±
0.1439

0.8738±
0.0839

0.9399±
0.0732

ASTR 0.7977±
0.1527

0.9659±
0.0630

0.9165±
0.0600

EP 0.9562±
0.0673

0.4444±
0.4246

0.4481±
0.4080

MED 0.9941±
0.0233

0.8517±
0.1557

0.9016±
0.0955

SimCLR

TCGA 0.6807±
0.1356

0.8287±
0.0758

0.9280±
0.0732

ASTR 0.7258±
0.1337

0.9255±
0.0997

0.8694±
0.0656

EP 0.9397±
0.0628

0.1889±
0.3213

0.1793±
0.2916

MED 0.9885±
0.0360

0.8600±
0.1541

0.8941±
0.1021

CBTN 0.6906±
0.1394

0.8368±
0.0696

0.9225±
0.0894

ASTR 0.7272±
0.2114

0.9495±
0.0811

0.8908±
0.0613

EP 0.9438±
0.0568

0.1889±
0.3542

0.1519±
0.2763

MED 0.9873±
0.0344

0.8267±
0.1597

0.8761±
0.1063

/
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Figure S2. Principal component analysis (PCA) of image features extracted by ResNet50 and ViT models fine-tuned on
T1W-Gd data, with and without age information, using ImageNet or SimCLR pre-trained weights. The first and second
principal components are presented, for both training and testing sets. Classes are color-coded.
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Figure S3. Grad-CAMs for the models trained on different MR-sequences, with and without age fusion, and for the three
pre-training strategies investigated. Grad-CAMs are computed with respect to the ground truth. The red square in the tumor
region panel delineates the tumor. In the Grad-CAMs images, red color identify the parts of the input image used mostly
contributing to the classification.
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