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Abstract 14 

Wastewater-based surveillance has been proposed as a cost-effective toolset to generate 15 

data about public health status by detecting specific biomarkers in wastewater samples, as 16 

shown during the COVID-19 pandemic. In this work, we report on the performance of an 17 

extensive, building-by-building wastewater surveillance platform deployed across 38 18 

locations of the largest private university system in Mexico, spanning 19 of the 32 states. 19 

Sampling took place weekly from January 2021 and June 2022. Data from 343 sampling 20 

sites was clustered by campus and by state and evaluated through its correlation with the 21 

seven-day average of daily new COVID-19 cases in each cluster. Statistically significant 22 

linear correlations (p-values below 0.05) were found in 25 of the 38 campuses and 13 of the 23 

19 states. Moreover, to evaluate the effectiveness of epidemiologic containment measures 24 

taken by the institution across 2021 and the potential of university campuses as 25 

representative sampling points for surveillance in future public health emergencies in the 26 

Monterrey Metropolitan Area, correlation between new COVID-19 cases and viral loads in 27 

weekly wastewater samples was found to be stronger in Dulces Nombres, the largest 28 
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wastewater treatment plant in the city (Pearson coefficient: 0.6456, p-value: 6.36710-8), than 29 

in the largest university campus in the study (Pearson coefficient: 0.4860, p-value: 8.288x10-30 

5). However, when comparing the data after urban mobility returned to pre-pandemic levels, 31 

correlation levels in both locations became comparable (0.894 for the university campus and 32 

0.865 for Dulces Nombres). 33 

Keywords: WBS, Nationwide pathogen surveillance, COVID-19, Education institute as state 34 

proxy,  35 

1. Introduction 36 

In recent years, wastewater-based surveillance (WBS) has emerged as a powerful toolset to 37 

provide data regarding public and environmental health status in communities through the 38 

detection and quantification of specific biomarkers in the sewage system (Choi et al., 2018, 39 

Lorenzo and Picó, 2019). While initial studies focused on chemical indicators of exposure to 40 

drugs, pharmaceuticals, contaminants, and personal care products, among others (Vitale et 41 

al., 2021), WBS has proven valuable for the study of the epidemiology of infectious 42 

diseases, such as Hepatitis E (Beyer et al., 2020), Norovirus (Guo et al., 2022), and other 43 

enteric viruses (Janahi et al., 2021). However, WBS rose to prominence during the COVID-44 

19 pandemic, when it proved valuable for the prevention and contention of outbreaks by 45 

detecting and quantifying viral genetic material using RT-PCR-based methods (Bivins et al., 46 

2020). It must be noted that WBS data has proven to be significantly more useful when used 47 

in tandem with clinical reports, leading to robust risk assessment models that can be used to 48 

predict surges in cases, allowing for well-informed decision-making (Islam et al., 2023).  49 

In WBS platforms, sampling usually happens at wastewater treatment plants (WWTPs), 50 

since municipal wastewater can be used as a representative sample of its served population, 51 

allowing for reduced bias in the resulting datasets (Jimenez-Rodríguez et al., 2022). 52 

Nevertheless, several studies have explored the potential of targeted systems to study the 53 

circulation of pathogens within specific, high-affluence areas, such as schools, hospitals, 54 
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college campuses (Gonçalves et al., 2022), and airports (van der Drift et al., 2024). As 55 

discussed by Wolken et al. (2023) strategic, targeted approaches are useful as a closer 56 

representation of the health status of subpopulations within a city and to prevent these 57 

buildings from becoming transmission hotspots, allowing for safer operations in the context 58 

of a pandemic. Studies where proved to be effective as an effective early warning system in 59 

the case of surges of COVID-19 cases, as sensitive and specific detection of viral genetic 60 

materials allowed for detection of both symptomatic and asymptomatic cases (Scott et al., 61 

2021; Gibas et al., 2021; Corchis-Scott et al., 2021; Wang et al., 2022; Godinez et al., 2022). 62 

Moreover, longitudinal surveillance data can be used to reduce the intensity of individual 63 

clinical testing in periods when on-campus activities were returning to normalcy (Betancourt 64 

et al., 2021; Amirali et al., 2024), and to evaluate the efficacy of mitigation measures, such 65 

as social distancing, compulsive facemask use (Rainey et al., 2023), and vaccination (Bivins 66 

and Bibby, 2021), among others. 67 

Previous efforts by our team explored the implementation of a WBS platform to survey the 68 

SARS-CoV-2 viral loads in the WWTPs of the Monterrey Metropolitan Area (MMA) in 69 

northern Mexico, correlating them with trends in clinical reports and urban mobility (Sosa-70 

Hernández et al., 2022). In the present work, we implemented a similar platform to report the 71 

diversity and abundance of SARS-CoV-2 variants of concern in wastewater samples from 72 

the Mexico City’s sewage system (Aguayo-Acosta et al., 2024). We now report on the 73 

deployment and evaluation of a comprehensive WBS platform for the surveillance of SARS-74 

CoV-2 on a building-by-building level across all the facilities of the largest private university 75 

in Mexico between January 2021 and June 2022. The institution operates 38 facilities in 19 76 

of the 32 states of the country, serving 96,040 students as of 2022 (Tecnológico de 77 

Monterrey, 2022). 78 

This study's objectives were to establish an extensive, building-by-building WBS platform 79 

across all facilities and to evaluate the correlation between the load of viral genetic materials 80 

in wastewater samples with epidemiologic reports. Finally, to evaluate the effectiveness of 81 
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the mitigation measures taken by the institution, results from the central university campus, 82 

located in the MMA (Campus Monterrey from now on) will be explored and compared to data 83 

originating from wastewater samples from Dulces Nombres, the largest WWTP operating 84 

within the MMA. 85 

2. Methods 86 

2.1. Wastewater sampling protocols 87 

Wastewater sampling took place in 343 buildings across 39 participating facilities, including 88 

high schools, university campuses, and hospitals. The geographical distribution of campuses 89 

sampled in this study is shown in Figure 1. Samples were collected once a week between 90 

January 29, 2021 (denoted as week 5 from now on) and June 20, 2022 (denoted as week 78 91 

from now on) in the wastewater discharge point of each participant building. Simple, 1 L grab 92 

samples were collected using high-density polyethylene (HDPE) bottles and stored at 4° C in 93 

ice packs for shipping to the central WBS laboratory, located within Campus Monterrey. In 94 

parallel, wastewater sampling was also conducted weekly at Dulces Nombres, the largest 95 

WWTP in the MMA, with a capacity of 7,500 liters per second and a served population of 96 

1,695,589 inhabitants, in continuation of previous efforts by our team (Sosa-Hernández et 97 

al., 2022). 98 
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99 
FIGURE 1. Geographical distribution of participating sampling sites across Mexico. 100 

2.2. Concentration and extraction of genetic materials 101 

Immediately after reception, samples were pre-processed to concentrate viral genetic 102 

materials utilizing a PEG/NaCl precipitation method based on the one reported by Sapula et 103 

al. (2021). Briefly, 70 mL from each sample was collected in two, 50 mL Falcon tubes and 104 

clarified by centrifugation at 5,000 g for 5 minutes. Supernatants were collected into new 105 

tubes with a polyethylene glycol 8000 and NaCl solution, shaken manually until the phases 106 

were homogenized, and the genetic materials were precipitated by centrifugation at 12,000 g 107 

for 100 minutes. After discarding the liquid phase, pelleted genetic materials were 108 

resuspended in 300 µL of Milli-Q water and stored at –20 °C until extraction. 109 

Extraction was conducted using a Water DNA/RNA Magnetic Bead Kit (IDEXX, Westbrook, 110 

Maine) adapted for automation using a KingFisher™ Flex instrument (Thermo Fisher, 111 

Waltham, Massachusetts) following the supplier’s guidelines. Final elution volumes were 112 

kept at 100 µL in all cases. RT-PCR detection of SARS-CoV-2 genetic materials was 113 

conducted on a QuantStudio 5 instrument (Applied Biosystems, Waltham, Massachusetts) 114 
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using the SARS-CoV-2 RTPCR Test kit for wastewater samples (IDEXX, Westbrook, 115 

Maine). In accordance with the supplier’s guidelines, reactions consisted of 5 µL of SARS-116 

CoV-2 mix, 5 µL of RNA Master Mix, and 5 µL of extracted genetic material. The RT-PCR 117 

program consisted of an initial hold for 15 min at 50 °C and then 1 min at 95 °C, followed by 118 

45 amplification cycles of 95 °C for 15 s and 60 °C for 30 s. Ct values were collected for 119 

each sample into a database for analysis. 120 

2.3. Epidemiological clinical data acquisition 121 

Total daily reported COVID-19 cases by the state were obtained from the dashboard 122 

published by the National Council of Humanities, Sciences, and Technologies (CONAHCYT) 123 

with data provided by the General Direction of Epidemiology, a part of the Mexican 124 

Department of Health (available at https://datos.covid-19.conacyt.mx/). As WBS data was 125 

collected weekly, a seven-day average of daily cases was calculated for each state across 126 

the period of study. Fluctuations in urban mobility in the MMA due to social distancing and 127 

other mitigation policies were accounted for using COVID-19 Community Mobility Reports 128 

published by Google in 2021 and 2022 for the Mexican state of Nuevo León (available at 129 

https://www.google.com/covid19/mobility/). Total changes in mobility were estimated by 130 

averaging the data from the six reported parameters (retail and recreation, groceries and 131 

pharmacies, parks, transit stations, workplaces, and residential). Finally, as this data was 132 

also reported daily, a seven-day average was paired to the weekly WBS data originating 133 

from Campus Monterrey for analysis. 134 

2.4. Data analysis and visualization 135 

WBS and epidemiological data was originally captured and organized in spreadsheets using 136 

Microsoft Excel, saved as CSV files, and imported into Matlab R2024a for visualization and 137 

statistical analysis. To limit the impact of inconsistencies during sampling due to restrictions 138 

at the sites or limited personnel, sites were clustered first by campus and by state for 139 

analysis. Four parameters were calculated weekly for each cluster: the average viral load of 140 
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the weekly samples from each site (calculated as the sum of all the detected viral loads, 141 

expressed as copies per liter, divided by the number of samples taken from the site each 142 

week), the maximum viral load detected on the weekly samples from each site, the 143 

proportion of weekly positive samples (calculated as the number of positive samples from a 144 

site divided the total number of samples each week), and the proportion of buildings where 145 

the viral load was detected (calculated as the number of weekly positive samples divided by 146 

the total number of buildings sampled in the site). 147 

Pearson correlation coefficients and their associated p-values were calculated for the seven-148 

day average daily new COVID-19 cases in the corresponding state and each of the four 149 

parameters discussed above to evaluate the concordance of results obtained from the 150 

detection of SARS-CoV-2 genetic materials in wastewater samples with the evolution of the 151 

pandemic in the populations around each of the campuses studied. All correlations with a p-152 

value below 0.05 were considered statistically significant.  153 

For the state of Nuevo León, a comparative analysis between the data obtained from 154 

Campus Monterrey and Dulces Nombres was performed to evaluate the efficacy of the 155 

preventive measures taken by the institution. For this, Pearson correlation coefficients 156 

between the seven-day average new daily COVID-19 cases and the maximum viral load 157 

detected at Campus Monterrey and at Dulces Nombres, respectively, using both data from 158 

the entire study period and data obtained after urban mobility returned to pre-pandemic 159 

levels. 160 

3. Results and discussion 161 

3.1. Overview of wastewater sampling at Tecnológico de Monterrey 162 

A total of 9664 wastewater samples were collected, processed, and analyzed in this study. 163 

However, as seen in Table 1, the distribution of sampling sites across facilities was not 164 

homogeneous due to differences in area, the number of buildings and the size of the student 165 

population in each one. The campuses from where most samples were collected were 166 
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Monterrey (1395 samples), Querétaro (975), Guadalajara (634), Laguna (619), and León 167 

(551), all of them located in large metropolitan areas across Mexico. Similarly, the states 168 

from which more samples originated from were Nuevo León (2006 samples), Mexico (987), 169 

Querétaro (975), Chihuahua (879), and Mexico City (855). As observed previously in similar 170 

efforts, such as the one reported by Wolken et al. (2023), weekly sampling was not perfectly 171 

consistent due to factors including inaccessible sampling points, temporary closing of 172 

buildings due to surges in cases, lack of trained personnel, and scheduled holiday periods. 173 

As a result, while the total sampling period across the study extended for 74 weeks, the 174 

actual number of weeks in which sampling took place at Tecnológico de Monterrey facilities 175 

ranged from 62 at Campus Puebla to 14 at Hospital Zambrano. Likewise, the number of 176 

weeks in which sampling took place in at least one site in each state went from 62 in Puebla 177 

to 43 in Sinaloa. It must be noted that a total of two samples from Campus Veracruz were 178 

taken at the beginning of the study, but no further sampling was possible since the facility 179 

was closed shortly after. As such, it will not be considered in further data analysis. 180 

Table 1. General summary of samples taken during the study, organized by campus and state of 181 

origin. 182 

No. Site Total samples Weekly samplings Buildings 

Per campus 

1 Monterrey 1395 60 42 

2 Querétaro 975 60 25 

3 Guadalajara 634 60 28 

4 Laguna 619 56 15 

5 León 551 61 13 

6 Chihuahua 502 60 14 

7 Irapuato 378 59 10 

8 CDJ 377 60 14 

9 Estado de México 373 55 18 

10 Zacatecas 337 51 8 
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11 Puebla 336 62 11 

12 CDMX 281 60 8 

13 Aguascalientes 258 61 9 

14 Saltillo 236 52 7 

15 Sonora Norte 228 57 10 

16 Sinaloa 199 43 9 

17 Toluca 194 52 8 

18 SLP 158 56 6 

19 Tampico 152 58 7 

20 Santa Fe 140 57 9 

21 Santa Catarina 139 47 4 

22 Hidalgo 134 59 6 

23 Cumbres 133 52 4 

24 Morelia 112 58 7 

25 Chiapas 98 59 4 

26 Eugenio Garza Lagüera 90 45 3 

27 Navojoa 88 54 5 

28 Hospital Zambrano Hellion 70 14 5 

29 Celaya 58 58 4 

30 Ciudad Obregón 58 54 4 

31 Cuernavaca 57 53 5 

32 Esmeralda 56 53 4 

33 Hospital San José 51 17 4 

34 Valle Alto 50 44 4 

35 Metepec 43 43 2 

36 Eugenio Garza Sada 42 42 3 

37 EGADE y EGOB 36 36 1 

38 Santa Anita 24 24 2 

39 Veracruz 2 2 1 
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Per state 

1 NUEVOLEON 2006 61 59 

2 MEXICO 987 61 23 

3 QUERETARO 975 60 27 

4 CHIHUAHUA 879 61 28 

5 DISTRITOFEDERAL 855 57 21 

6 HIDALGO 658 60 27 

7 JALISCO 610 55 26 

8 COAHUILA 477 61 20 

9 SONORA 374 57 15 

10 ZACATECAS 337 51 8 

11 PUEBLA 336 62 11 

12 AGUASCALIENTES 258 61 9 

13 SINALOA 199 43 9 

14 SANLUISPOTOSI 158 56 6 

15 TAMAULIPAS 152 58 10 

16 GUANAJUATO 134 59 6 

17 MICHOACAN 112 58 7 

18 CHIAPAS 98 59 5 

19 MORELOS 57 53 5 

20 VERACRUZ 2 2 1 

 183 

Similarly, a summary of the sampling results is presented in Figure 2A for campuses and 184 

Figure 2B for states. Red squares show weeks when sampling was conducted at a given site 185 

and at least one of the sampled buildings tested positive for SARS-CoV-2 genetic materials, 186 

white squares show weeks when sampling was conducted but no viral loads were detected, 187 

and grey squares show weeks when no sampling was conducted As a reference, a graph of 188 

the weekly evolution of new COVID-19 cases in Mexico is reported in Figure 2C. Complete 189 

records of all samples collected during the study, their origin, and the detected viral loads, 190 
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reported as copies per liter of the original wastewater sample, are available in the 191 

Supplementary Materials. 192 
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193 
Figure 2. Summary of samplings across participant sites. A) By campus, B) by state. C) Weekly 194 

evolution of new daily COVID-19 cases across Mexico. 195 

3.2. Correlation between WBS results and epidemiological reports 196 
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As shown in Table 2, the maximum viral load and the average viral load in the weekly 197 

samples taken in each site showed the most consistent correlation to the seven-day average 198 

of new daily COVID-19 cases in the corresponding state (available in the Supplementary 199 

Materials), both when campuses were analyzed individually (average correlation coefficients 200 

of 0.448 ± 0.302 and 0.427 ± 0.303, respectively) and when campuses were clustered by 201 

state (0.465 ± 0.276 and 0.438 ± 0.277). The correlation with the proportion of positive 202 

samples and positive buildings fell significantly (0.296 ± 0.197 and 0.309 ± 0.201 for 203 

individual campuses, 0.307 ± 0.153 and 0.317 ± 0.180 for states), likely due to the 204 

inconsistencies in samples discussed previously, which led to significant variations in the 205 

number of samples being obtained each week. The number of sites where correlation 206 

proved statistically significant (p-values below 0.05) showed similar behavior: correlation to 207 

the maximum viral load per site showed to be significant in 25 of the 38 campuses and 13 of 208 

the 19 states, followed by the average viral load per campus or state (24/38 and 13/19, 209 

respectively). 210 

Table 2. Average correlation coefficients for the average viral load, maximum viral load, proportion of 211 

positive samples, and proportion of positive buildings across sampling sites, by campus and by state. 212 

 

  

Correlation with seven-day average new daily cases 

Average viral 

load 

Maximum viral 

load 

Proportion of 

positive samples 

Proportion of 

positive 

buildings 

Per campus 

Average correlation 

coefficient (Pearson) 
0.427 ± 0.303 0.448 ± 0.302 0.296 ± 0.197 0.309 ± 0.201 

Sites with statistically 

significant correlation 
24 25 22 22 

Percentage of sites 

with statistically 

significant correlation 

63.16% 65.79% 57.89% 57.89% 
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Per state 

Average correlation 

coefficient (Pearson) 
0.438 ± 0.277 0.465 ± 0.276 0.307 ± 0.153 0.317 ± 0.180 

Sites with statistically 

significant correlation 
13 13 12 11 

Percentage of sites 

with statistically 

significant correlation 

68.42% 68.42% 63.16% 57.89% 

 213 

As suggested previously, correlation coefficients vary greatly among campuses, going from 214 

0.9004 at Hospital San José to -0.0942 in Campus Sinaloa, although most campuses show 215 

positive correlation coefficients and 24 out of 38 show coefficients above 0.4. The complete 216 

list is presented in Table 3 of number of weekly samplings and the average coverage rate 217 

(calculated as the average of the ratios between samples taken on each campus per week 218 

and the total number of sampling sites within the campus) for each campus , the Pearson 219 

correlation between the maximum viral load found weekly on each campus and the seven-220 

day average of new daily COVID-19 cases in the state where the campus is located, and its 221 

related p-value.  222 

Table 3. Correlation coefficients between the maximum viral load and the seven-day average of new 223 

daily COVID-19 cases across campuses. 224 

Campus 
Weekly 

samplings 
Coverage rate 

Correlation coefficient 

(Pearson) 
p-value 

Hospital San José 17 0.750 ± 0.000 0.900 8.383E-07 

Celaya 58 0.250 ± 0.000 0.843 1.073E-16 

Zacatecas 51 0.826 ± 0.216 0.828 6.592E-14 

Querétaro 60 0.650 ± 0.339 0.818 1.435E-15 

Metepec 43 0.500 ± 0.000 0.798 1.409E-10 
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Hospital Zambrano Hellion 14 1.000 ± 0.000 0.751 1.978E-03 

Santa Catarina 47 0.739 ± 0.072 0.707 2.776E-08 

León 61 0.695 ± 0.324 0.692 6.501E-10 

Ciudad Obregón 54 0.269 ± 0.094 0.681 1.444E-08 

Estado de México 55 0.377 ± 0.13 0.642 1.240E-07 

Puebla 62 0.493 ± 0.334 0.640 2.155E-08 

Esmeralda 53 0.264 ± 0.102 0.631 4.035E-07 

Sonora Norte 57 0.400 ± 0.206 0.616 3.371E-07 

Hidalgo 59 0.379 ± 0.247 0.603 4.244E-07 

CDMX 60 0.585 ± 0.193 0.602 3.681E-07 

Cuernavaca 53 0.215 ± 0.066 0.601 1.948E-06 

Santa Fe 57 0.273 ± 0.075 0.598 9.178E-07 

SLP 56 0.470 ± 0.232 0.595 1.334E-06 

Laguna 56 0.737 ± 0.262 0.589 1.828E-06 

Guadalajara 60 0.377 ± 0.174 0.575 1.574E-06 

Eugenio Garza Lagüera 45 0.667 ± 0.000 0.574 3.701E-05 

Irapuato 59 0.641 ± 0.243 0.574 1.989E-06 

Saltillo 52 0.648 ± 0.195 0.527 6.084E-05 

Monterrey 60 0.554 ± 0.341 0.486 8.288E-05 

Toluca 52 0.466 ± 0.277 0.328 0.018 

Aguascalientes 61 0.470 ± 0.187 0.247 0.055 

Chiapas 59 0.415 ± 0.157 0.230 0.079 

Valle Alto 44 0.284 ± 0.126 0.198 0.198 

Tampico 58 0.374 ± 0.209 0.175 0.189 

Navojoa 54 0.326 ± 0.097 0.084 0.544 

Santa Anita 24 0.500 ± 0.000 0.061 0.777 

CDJ 60 0.449 ± 0.312 0.059 0.652 

Cumbres 52 0.639 ± 0.205 0.016 0.911 
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Morelia 58 0.276 ± 0.140 -0.007 0.960 

Chihuahua 60 0.598 ± 0.149 -0.027 0.836 

EGADE y EGOB 36 1.000 ± 0.000 -0.030 0.864 

Eugenio Garza Sada 42 0.333 ± 0.000 -0.091 0.569 

Sinaloa 43 0.514 ± 0.247 -0.094 0.548 

 225 

Just as observed when clustering sampling sites by campus, correlation coefficients vary 226 

greatly among states, going from 0.8280 in Zacatecas to -0.0942 in Sinaloa, although most 227 

states show positive correlation coefficients, and 13 out of 19 show coefficients above 0.4. 228 

The complete list is presented in Table 4 with the number of weekly samplings and the 229 

average coverage rate (calculated as the average of the ratios between samples taken on 230 

each state per week and the total number of sampling sites within the campus) for each 231 

state, the Pearson correlation between the maximum viral load found weekly on each state 232 

and its seven-day average of new daily COVID-19 cases, and the related p-value. 233 

Table 4. Correlation coefficients between the maximum viral load and the seven-day average of new 234 

daily COVID-19 cases across states. 235 

Campus 
Weekly 

sampling 
Coverage rate 

Correlation coefficient 

(Pearson) 
p-value 

ZACATECAS 51 0.826 ± 0.216 0.828 6.592E-14 

QUERETARO 60 0.650 ± 0.339 0.818 1.435E-15 

GUANAJUATO 61 0.952 ± 0.398 0.657 8.834E-09 

MEXICO 55 0.616 ± 0.255 0.643 1.208E-07 

PUEBLA 62 0.493 ± 0.334 0.640 2.155E-08 

SONORA 57 0.596 ± 0.232 0.635 1.143E-07 

COAHUILA 61 0.711 ± 0.239 0.632 4.829E-08 

HIDALGO 59 0.379 ± 0.247 0.603 4.244E-07 

MORELOS 53 0.215 ± 0.066 0.601 1.948E-06 
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SAN LUIS POTOSI 56 0.470 ± 0.232 0.595 1.334E-06 

DISTRITO FEDERAL 57 0.882 ± 0.306 0.589 1.445E-06 

JALISCO 60 0.392 ± 0.171 0.575 1.575E-06 

NUEVO LEON 61 0.747 ± 0.451 0.486 7.067E-05 

AGUASCALIENTES 61 0.47 ± 0.187 0.247 0.055 

CHIAPAS 59 0.415 ± 0.157 0.230 0.079 

TAMAULIPAS 58 0.374 ± 0.209 0.175 0.189 

MICHOACAN 58 0.276 ± 0.14 -0.007 0.960 

CHIHUAHUA 61 1.029 ± 0.432 -0.018 0.889 

SINALOA 43 0.514 ± 0.247 -0.094 0.548 

 236 

Limited correlation between the results of the WBS platform deployed across participating 237 

facilities and the epidemiological reports was expected, as measures to prevent SARS-CoV-238 

2 transmission, including mandatory face mask-wearing, vaccination, and reduced levels of 239 

in-person activities were implemented across the entire period of study, altering the 240 

population dynamics, viral transmission dynamics, transmission risk and density of exposure 241 

in campus, as studied by Tsang et al. (2023), affecting the correlation observed between 242 

viral load in campus wastewater and daily cases of COVID-19 in MMA. In fact, WBS reports 243 

obtained by our research team were used by officials to limit the activities in buildings that 244 

proved positive for SARS-CoV-2 genetic materials in a mechanism like the one reported by 245 

Wang et al. (2022). However, estimating the efficacy of outbreak prevention measures using 246 

WBS data has proven difficult, as adequately modeling the rates of viral shedding (Zhu et al., 247 

2021) and RNA degradation in sewage systems (Parra-Arroyo et al., 2023) has been 248 

identified as a challenge. Moreover, reports on the implementation of extensive, targeted 249 

surveillance platforms, such as the ones by Bowes et al. (2023) and Wolken et al. (2023), 250 

have stressed the importance of adequate standardization of sampling, pretreatment, 251 

concentration and extraction procedures, as well as the proper identification the sensitivity, 252 
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specificity and limit of detection of the technique used for SARS-CoV-2 viral load detection to 253 

minimize systematic variation and obtain complete, robust data sets.   254 

While the performance of the building-by-building WBS platform was satisfactory, it is 255 

important to highlight the challenges related to the operation of such a large network of 256 

sampling sites distributed in a vast geographical area, including incomplete sample 257 

collection due to unforeseeable circumstances during the study period and inadequate 258 

sampling handling during transportation, likely a result of insufficient cold chains, as 259 

reviewed by Bengiovanni et al. (2020). These obstacles led to the observed variation in the 260 

number of weekly samplings taken per campus and by state, in the effective coverage rates, 261 

and the representativity obtained in each campus when compared to the epidemiological 262 

data reported by the public health authorities. Extensive networks would be ideal to obtain 263 

more detailed information that could be used for better risk assessment models, especially in 264 

areas that are particularly prone to disease outbreaks (Gonçalves et al., 2022); however, 265 

limited datasets are to be expected as surveillance platforms expand, especially in Low-to-266 

Middle Income Countries like Mexico, where such systems are often operated with limited 267 

resources (Shrestha et al., 2021; Hamilton et al., 2024). Similar surveillance efforts 268 

conducted in the future would likely benefit from a more targeted approach, where sampling 269 

sites are set strategically, to allow for more sustained, consistent coverage while retaining 270 

sample representativity. In cases of public health emergencies where extensive, sustained 271 

surveillance is crucial for public health, as in the case of the COVID-19 pandemic, it is likely 272 

that WBS platforms would be more effective when operated collaboratively across 273 

institutions as long as the procedures for sample handling, pretreatment, and viral genetic 274 

material extraction and detection are properly standardized and proven reproducible. 275 

3.3. Comparisons between data from a college campus and a WWTP 276 

To offer insights on the effectiveness of the epidemiological contention and prevention taken 277 

by Tecnológico de Monterrey (including reduced in-person activities, compulsive mask 278 

wearing and vaccination), data obtained from wastewater surveillance in Campus Monterrey 279 
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and the Dulces Nombres WWTP (avaible in the Supplementary Materials), both located in 280 

the MMA, was compared to epidemiological data reported by public health authorities for the 281 

state of Nuevo León. After eliminating weeks when no sampling took place, correlation 282 

between the maximum viral load found on all the samples originating from Campus 283 

Monterrey each week and the corresponding seven-day average of new daily cases of 284 

COVID-19 reported in Nuevo León was 0.486 (p-value: 8.2876x10-5). For the viral load 285 

detected at Dulces Nombres, the observed correlation coefficient reached 0.6356 (p-value: 286 

6.3672-8). Plots presenting the distribution of the data from each weekly sampling is 287 

presented in Figure 3A.  288 
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289 
Figure 3. Correlation between the seven-day average of daily new cases of COVID-19 in the state of 290 

Nuevo León and the viral load detected at Campus Monterrey (blue) and Dulces Nombres (red). A) 291 

Including the entire period of study. B) Only considering data from January to June 2022. C) Evolution 292 

of urban mobility in the MMA across the period of study.  293 
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Since samples from both sites originate from the same metropolitan area and were 294 

transported a similar distance to the central laboratory following standard practices for 295 

genetic material conservation, it can be suggested that the difference in their degree of 296 

correlation to the epidemiological situation in the state is due to the different populational 297 

dynamics they represent. Campus Monterrey, like most higher education facilities in Mexico, 298 

greatly limited its in-person activities during the pandemic; maintenance personnel, 299 

researchers, postgraduate students, and security guards were still going regularly into the 300 

facilities, but most of the undergraduate students, faculty, and administrative personnel 301 

conducted their activities remotely. Inversely, Dulces Nombres is the biggest collection point 302 

for domestic and industrial wastewater in the MMA and, as a result, is representative of the 303 

entire population within its catchment area, regardless of whether they adhered to social 304 

distancing regulations, presented any symptoms of COVID-19, or received a clinical test and 305 

were reported to the epidemiological databased compiled and published by public health 306 

authorities. Therefore, it can be observed that, while extensive wastewater surveillance at 307 

Campus Monterrey was useful for a safe continuation of strategic activities at campus that 308 

could not be conducted remotely, WBS platforms centered on WWTPs were still more 309 

representative of the epidemiological situation in the MMA, where the implementation of 310 

transmission measure prevention doesn't impact in wastewater viral load, contrary to what 311 

has been observed on the campuses. 312 

In a related line, Figure 3B shows the evolution of urban activity in the state of Nuevo Leon 313 

during the period of study as reported in the COVID-19 Community Mobility Reports 314 

published by Google. Weeks are presented in the X-axis, while changes in mobility 315 

compared to the baseline (from January 3 to February 6, 2020) are presented in the Y-axis. 316 

Mobility surpassed the pre-pandemic baseline in week 43 (the last week of October 2021) 317 

and remained above the baseline throughout 2022 (week 52 onwards) with the exceptions of 318 

weeks 53-57 (in January 2022), likely due to the holiday season and increased cases in the 319 

winter. This indicates a relative return to normalcy in the populational dynamics of the state. 320 
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Taking this into account, correlations between the maximum viral load found each week at 321 

Campus Monterrey and at Dulces Nombres with the seven-day average of new daily cases 322 

in the state of Nuevo Leon between January and June of 2022. As expected, correlation 323 

increased noticeably in both cases due to less stringent epidemiological containment 324 

measures, reaching correlation coefficients of 0.8655 (p-value: 8.3176x10-7) for Dulces 325 

Nombres, and 0.8938 (p-value: 3.0621x10-6) for Campus Monterrey. Moreover, the fact that 326 

correlation coefficients for both sites were so close after week 52 indicates that the 327 

populational dynamics at Campus Monterrey became similar to MMA and more 328 

representative to the ones shown in the MMA and the state of Nuevo León, further 329 

suggesting the effectivity of epidemiological prevention taken at Campus Monterrey 330 

throughout 2021, which were implemented in conjunction with the rest of the facilities of 331 

Tecnológico de Monterrey across Mexico. 332 

4. Perspectives 333 

This work offers important insights into the operation of a large WBS platform for the 334 

surveillance of SARS-CoV-2 across 39 facilities across Tecnológico de Monterrey, 335 

encompassing high schools, college campuses, and hospitals in 20 of the 32 federal entities 336 

of Mexico. The performance of such a platform was evaluated through comparisons to 337 

epidemiological data reported by public health authorities and, in the case of Campus 338 

Monterrey (the largest of all participant facilities), to data obtained from samples taken at 339 

Dulces Nombres, the largest WWTP in the MMA. While it was observed that viral loads 340 

detected in wastewater samples were correlated with the amount of daily new COVID-19 341 

cases in 25 campuses across 13 states, and that WBS could be used as an effective 342 

strategy to support epidemiological contention measures, as shown for the case of Campus 343 

Monterrey, opportunities for improvement of WBS platforms persist. 344 

Sampling across a large network of sites across participating facilities was relevant for the 345 

institution, as it offered data to guide effective preventive efforts for a safe continuation of 346 

priority in-person activities. However, encompassing such a large set of sampling points into 347 
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a single platform operated from a single laboratory made consistent coverage across 348 

campuses (defined here as the rate of total weekly samples from a facility over the total 349 

amount of participant buildings in the facility) difficult. While taking only the weekly maximum 350 

viral load for each campus for correlation studies helped with consistency when handling 351 

such an incomplete database, as shown by the performance metrics reported in the previous 352 

section, significant variance in coverage rates may have contributed to limited correlation 353 

between WBS data and epidemiological reports. Future efforts towards sustained, extensive 354 

surveillance platforms, either for detection of endemic pathogens such as Influenza or 355 

Norovirus, or future epidemiological outbreaks akin to SARS-CoV-2, may benefit from a 356 

more strategic selection of sampling points that can be studied consistently and yield results 357 

that can be representative of general populational dynamics, as previously suggested by 358 

Safford et al. (2022). 359 

Moreover, standardized, reproducible sample processing methods will be crucial for any 360 

WBS platform, as inconsistent viral load detection and quantification may hinder data 361 

comparability and analysis, as discussed previously by Bowes et al. (2023). Moreover, levels 362 

of biomarkers in wastewater have been observed to vary significantly because of changes in 363 

the flow at the designated sampling site, fluctuations in human activity, and possible 364 

degradation of the molecule of interest (Ali et al., 2021). While the surveillance effort 365 

reported here relied on simple grab samples, a limitation that could be mitigated by 366 

clustering different sites by campus and by state during data analysis, smaller, more 367 

targeted platforms could benefit from the use of composite sampling or implementation of 368 

passive sampling technologies, although their applicability for wastewater surveillance of 369 

pathogens still requires further studies (Aguayo-Acosta et al., 2023).  370 

Finally, integration of viral load quantification in wastewater samples into complete 371 

epidemiological models that could be used for risk assessment and prevention during a 372 

public health emergency, such as the one posed by SARS-CoV-2, remains as an area of 373 

opportunity for WBS. While certain directions for the interpretation of WBS data as an 374 
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indicator of public health status have been discussed elsewhere (Islam et al., 2023), data 375 

normalization remains a challenge as no universal wastewater biomarker for population size 376 

and levels of human activity have been agreed upon, although several options have been 377 

suggested (Hsu et al., 2022). In any case, WBS should not be thought of as a substitute for 378 

individual clinical tests, but as a complement for more robust epidemiological data. This work 379 

focuses only on the main outcomes of the WBS platform deployed at Tecnológico de 380 

Monterrey, while their integration into epidemiological models will be explored in future 381 

studies. 382 

5. Conclusions 383 

Overall, the extensive, building-by-building WBS platform deployed across Tecnológico de 384 

Monterrey successfully reflected the evolution of the COVID-19 epidemic in 25 of the 38 385 

facilities in the study and provided valuable insights for effective epidemiological containment 386 

during 2021, allowing for the continuation of priority in-person activities. Moreover, 387 

implementing a WBS platform targeting educative institutions like university campuses 388 

proved a suitable proxy to study the epidemiological dynamics in tandem with clinical reports 389 

published by public health authorities in larger communities, like states.  390 

Additionally, this study evaluates the optimal strategy to obtain correlations between viral 391 

loads in wastewater samples from individual buildings and published clinical reports, proving 392 

that clustering sampling points by campus or state and using the maximum viral load found 393 

in each cluster is a feasible strategy to generate robust, insightful datasets for informed 394 

decision-making. In fact, data from Campus Monterrey became more representative of the 395 

public health condition in the state of Nuevo León after urban mobility went back to pre-396 

pandemic levels at the start of 2022, indicating that the altered populational dynamics within 397 

the campus during 2021 due to limited in-person activities were effective to prevent COVID-398 

19 outbreaks within the facility. 399 
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However, further studies regarding the optimization of such a vast platform and the 400 

integration of WBS data into broader epidemiological models are still needed for the 401 

development of robust, efficient surveillance platforms for future public health emergencies. 402 
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