1 Erythrocyte Osmotic Fragility as A Diagnostic Marker in Glaucoma: A Comprehensive

2 Analysis Using LASSO Regression

- Jialiang Yang^{1,*}, Fang Yang^{1,*}, Junming Gu², Yilian Cheng³, Qian Luo³, Fang Hao¹, Bo Gong^{1,4},
- 4 Houbin Zhang^{1,4,#}
- ⁵ ¹The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of
- 6 Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science
- 7 and Technology of China, Chengdu, Sichuan, China;
- 8 ²Medical Information Center, Sichuan Provincial People's Hospital, school of medicine,
- 9 University of Electronic Science and Technology of China
- 10 ³Department of Ophthalmology, Sichuan Provincial People's Hospital, University of
- 11 Electronic Science and Technology of China, Chengdu, Sichuan, China.
- ⁴Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences
- 13 (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's
- 14 Hospital, Chengdu, Sichuan, China.
- 15 *These authors contributed to this work equally.
- [#]Correspondence should be addressed to: Houbin Zhang, Ph.D, The Sichuan Provincial Key
- 17 Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University
- 18 of Electronic Science and Technology of China,
- 19 32 The First Ring Road West 2, Chengdu, Sichuan, 610072, China.
- 20 Email: houbin_zhang@yahoo.com

- 21 Phone: 86-28-87393375; Fax: 86-28-87393596
 22

- 35 36

44

45	Objective : This study investigates the potential of blood biomarkers in the early diagnosis of

- 46 glaucoma, focusing on erythrocyte osmotic fragility (EOF) as a novel indicator. We used
- 47 Least Absolute Shrinkage and Selection Operator (LASSO) regression to evaluate EOF's
- 48 predictive utility for glaucoma diagnosis.
- 49 Methods: We included 195 confirmed glaucoma patients and an equal number of age- and
- 50 sex-matched healthy controls. Blood samples were analyzed for various parameters, including
- 51 white blood cell count, neutrophil count, red blood cell (RBC) count, and EOF. Key
- 52 differential markers were identified, and a predictive model was constructed using LASSO
- 53 regression models.
- 54 Results: LASSO regression analysis identified HCT, NEUT, LYMPH, MCV, MCHC, and
- 55 EOF as critical blood biomarkers discriminating glaucoma patients from healthy controls.
- 56 Incorporating EOF into the model significantly enhanced its predictive performance, with

57 EOF showing a positive correlation with the likelihood of glaucoma.

58 Conclusions: EOF is a promising predictive biomarker for glaucoma. Combining EOF with

- 59 other blood biomarkers significantly improves the accuracy of glaucoma diagnosis.
- 60
- 61
- 62
- 63
- 64

65 Introduction

67	Glaucoma is the leading cause of irreversible vision loss worldwide, characterized by
68	complex and multifactorial pathophysiology involving both known and potential risk factors
69	[1-4]. Although glaucoma is traditionally linked to elevated intraocular pressure (IOP),
70	clinical evidence suggests that approximately 30% of glaucoma patients exhibiting normal
71	IOP (<21 mmHg) still suffer from irreversible optic nerve damage [5]. This observation
72	implies the presence of additional critical pathogenic factors that the underlie
73	pathophysiology of glaucoma beyond IOP [6].
74	
75	Recent advances in molecular biology have highlighted the potential role of blood biomarkers
76	in the onset and progression of glaucoma [7-11]. Blood biomarkers not only provide a
77	systemic reflection of physiological and pathological status but also reveal specific
78	pathological alterations in glaucoma patients, such as oxidative stress and inflammation [8,
79	12-15]. These alterations may play a significant role in the pathophysiology of glaucoma.
80	
81	Oxidative stress and inflammation are central elements in the pathogenesis of glaucoma [10,
82	12, 15-17]. Oxidative stress elevates reactive oxygen species (ROS) levels, directly damaging
83	erythrocyte membranes by inducing lipid peroxidation and reducing membrane stability [15,
84	18-22]. Inflammation exacerbates this damage by releasing inflammatory mediators (e.g.,
85	TNF- α , IL-1 β), further compromising erythrocyte membrane integrity. As erythrocytes are
86	primarily responsible for oxygen transport, increased erythrocyte osmotic fragility (EOF)

87	affects oxygen transport mainly by causing cell membrane rupture, shape changes, and
88	reduced elasticity [23-28]. This makes red blood cells (RBCs) more prone to rupture in the
89	microcirculation, decreasing the number of functional RBCs. Additionally, membrane
90	fragility impacts membrane protein function and disrupts hemoglobin's ability to bind and
91	release oxygen, thereby reducing overall oxygen transport efficiency. [23-28]. Therefore, EOF
92	may reflect membrane stability and indicate ongoing pathological processes in glaucoma,
93	such as chronic oxidative stress and inflammation.
94	
95	Therefore, we hypothesize that elevated EOF is associated with glaucoma. Based on this
96	hypothesis, we propose that EOF, as a novel biomarker, can effectively differentiate glaucoma
97	patients from healthy controls, thereby improving the accuracy of early glaucoma diagnosis
98	
99	This study aims to systematically evaluate the diagnostic potential of EOF and other blood
100	biomarkers in glaucoma using the Least Absolute Shrinkage and Selection Operator (LASSO)
101	[29-32] regression model. By constructing an efficient diagnostic model, we seek to provide a
102	robust theoretical foundation and practical guidance for early glaucoma screening and precise
103	diagnosis.
104	
105	Materials and Methods
106	1. Study Population
107	This study included 195 confirmed glaucoma patients and 195 age- and sex-matched healthy
108	controls. All participants were provided informed consent, and the study was conducted
	5

- 110 Provincial People's Hospital.
- 111
- 112 Participants in the glaucoma group met the International Glaucoma Association's diagnostic
- 113 criteria, including IOP \ge 21 mmHg, structural optic nerve changes (e.g., optic atrophy,
- 114 increased cup-to-disc ratio), and visual field defects. Patients with other severe ocular
- 115 diseases, recent ocular trauma, or significant systemic conditions were excluded.
- 116
- 117 The control group was selected based on comprehensive ophthalmological examinations
- 118 confirming the absence of glaucoma or other major ocular diseases, with age and sex matched
- to the glaucoma group. Exclusion criteria included systemic diseases affecting ocular health,
- 120 recent ocular surgery, and medications influencing IOP.
- 121

122 2. Blood Sample Collection and Analysis

- 123 Fasting peripheral blood samples were collected in the morning using EDTA tubes (BD, USA)
- 124 by trained technicians. Samples were stored at 4°C and analyzed within two hours. Blood
- samples were analyzed using an automated hematology analyzer (Mindray, China) to
- 126 measure parameters such as white blood cell count (WBC), neutrophils (NEUT), lymphocytes
- 127 (LYMPH), monocytes (MONO), eosinophils (EOS), basophils (BASO), RBC count,
- 128 hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular
- 129 hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell
- 130 distribution width-standard deviation (RDW-SD), and platelet count (PLT).

131 **3. EOF test (EOFT)**

132	EOF was measured using a standardized osmotic fragility test [33], which assesses
133	erythrocyte membrane stability by determining the critical osmotic pressure at which
134	erythrocytes rupture. Briefly, 50 μ L of blood was added to different concentrations of
135	hypotonic saline solutions containing 0.7%, 0.65%, 0.6%, 0.55%, 0.5%, 0.45%, 0.4%, 0.35%,
136	0.3%, or 0.25% NaCl (Sigma, USA) and gently mixed. The solutions were left at room
137	temperature (25°C) for 2 hours. Afterward, the red blood cells' resistance to the hypotonic
138	solutions was examined by assessing hemolysis. The concentration of the hypotonic saline
139	solution at which hemolysis first began indicated the minimum resistance of the red blood
140	cells in the blood, while complete hemolysis indicated the maximum resistance. Lower
141	resistance to hypotonic saline solutions signifies greater fragility of the red blood cells,
142	whereas higher resistance indicates less fragility. The range from maximum resistance to
143	minimum resistance is referred to as the fragility range.
144	
145	4. Giemsa staining
146	Giemsa staining is a classic staining method used to observe the morphology of blood cells
147	[34]. Blood was used to prepare a thin smear and allowed for air dry. The smear was fixed
148	with methanol for 5 minutes. The A Giemsa staining kit (Yeasen, China) was used to stain the
149	smear follow the manufacturer's instruction. The stained smear was imaged under a
150	microscope.

151

152 5. Statistical Analysis

153	LASSO regression (Least Absolute Shrinkage and Selection Operator) is a linear regression
154	method that introduces an L1 regularization term to handle high-dimensional data and
155	multicollinearity issues. It can shrink the coefficients of unimportant features to zero, thereby
156	achieving feature selection and model sparsity. LASSO regression not only improves the
157	predictive performance of models but also enhances their interpretability, making it an
158	effective tool for analyzing high-dimensional datasets, with widespread applications across
159	various fields.
160	
161	LASSO regression introduces an L1 regularization term in the regression model to handle
162	multicollinearity effectively and automatically select the most useful features for prediction
163	[29-32]. All features were standardized, and cross-validation was used to select the optimal
164	regularization parameter λ . After fitting the LASSO model on the training set, features with
165	non-zero coefficients were extracted to construct the final predictive model. Model
166	performance was evaluated through independent validation sets. Sensitivity analyses were
167	conducted to verify the model's applicability and robustness across different subgroups (e.g.,
168	age, sex) (Figure 1A).
169	
170	The data with a normal distribution were expressed as mean \pm SD. The independent <i>t</i> -test was
171	used to compare the means between the two groups. The statistical significance level was set
172	to $\alpha = 0.05$. All statistical analyses were two-sided tests and performed by using GraphPad

173 Prism 10.0 (GraphPad Software, USA).

176 **1. LASSO regression analysis suggests inflammation in glaucoma patients and abnormal**

177 **RBC status**

- 178 To identify the features that distinguish glaucoma patients from healthy controls, we used
- 179 LASSO regression analysis for feature selection. Table 1 presents the basic information about
- 180 the control and glaucoma groups.

181

- 182 We determined the optimal regularization parameter (λ) of the LASSO model, which was
- 183 0.0355 (Figures 1B,C). The results of the LASSO regression analysis (Figure 1D) showed
- that the coefficients for Neutrophil count (NEUT, coefficient: 0.45), Neutrophil percentage
- 185 (NEUT%, coefficient: 0.38), RBC Distribution Width (RDW-SD, coefficient: 0.27), Mean
- 186 Corpuscular Hemoglobin Concentration (MCHC, coefficient: -0.19), and Platelet count (PLT)
- 187 were non-zero, indicating that these biomarkers are significant for distinguishing glaucoma

188 patients from healthy controls(all p-values for the coefficients were less than 0.05).

189

190	Specifically	, the positive	coefficients for	or Neutroph	il count	(NEUT)	, Neutrophil	percentage
-----	--------------	----------------	------------------	-------------	----------	--------	--------------	------------

191 (NEUT%), and RBC Distribution Width (RDW-SD) suggest that increases in these indicators

- 192 are positively correlated with the occurrence of glaucoma. Neutrophil count (NEUT) and
- 193 Neutrophil percentage (NEUT%) are commonly used to reflect systemic inflammation[35-38],
- 194 and growing evidence indicates that the pathogenesis of glaucoma is closely associated with
- 195 chronic inflammation. RBC Distribution Width (RDW-SD), which is related to RBC
- 196 heterogeneity, indicates that the RBC status in glaucoma patients may differ from that of

197 healthy individuals.

198

100	W/ C /I	1 / 1	1 1. 1.1.1.	1	C	C (1	1 1	•	c ·	· ·
TYY	we further	evaluated	the reliabilit	v and	performance	of the r	nodel	using a	conflision 1	matrix
100	i e rarener	e , araatea	the remaching	jana	periormanee	01 1110 1	110 401	abing a	eomesion i	1110001171

- 200 (Figure 1E). The LASSO regression model demonstrated excellent classification ability in
- 201 distinguishing glaucoma patients from healthy controls, showing a high overall accuracy
- 202 (87.5%), sensitivity (82.4%), and specificity (91.6%). These results suggest that the LASSO
- 203 model, based on blood biomarkers, can effectively identify glaucoma patients and has
- 204 potential clinical application value.
- 205 Despite the model's strong performance, there were still some false positives and false
- 206 negatives (Figure 1E). This indicates that further optimization of the model may be necessary,
- 207 particularly through validation in larger sample sizes across different patient populations, to
- 208 ensure the model's robustness and broad applicability.
- 209

210 **2. EOF is increased in glaucoma patients**

- 211 The LASSO analysis result suggested that glaucoma was associated with chronic
- 212 inflammation and that their RBC membranes might be more fragile. To evaluate the fragility
- and stability of RBC membranes, the EOF test (EOFT) was performed. This test evaluates the
- fragility of red blood cell membranes by measuring the extent of cell rupture in different
- concentrations of saline solutions (Figure 2A). We analyzed blood samples from 113
- 216 glaucoma patients and their healthy controls., The results showed that the EOF (NaCl
- 217 concentration for minimum resistance) levels in glaucoma patients were significantly higher
- than those in the control group (Figures 2B, C, p < 0.001). Additionally, staining of red blood

- 219 cells revealed that the proportion of RBCs with abnormal morphologies was significantly
- 220 increased in glaucoma patients (Figures 2D, E).
- 221
- 222 Further individual analysis showed that the EOF in two patients (arbitrarily designated as
- 223 patients A and B, respectively) was higher than in the control (Figure 2F). In addition, the
- 224 RBCs of another patient A displayed complete hemolysis in 0.55% NaCl, whereas the RBCs
- 225 of patient B only partially hemolyzed in 0.55% NaCl, indicating greater resistance to osmotic
- stress for patient B (Figure 2F). Optical coherence tomography (OCT) examination showed
- 227 that patient B had better optic nerve fiber thickness and cup-to-disc ratio than patient A
- 228 (Figures 2G, H), suggesting a correlation between EOF and the pathological severity of
- 229 glaucoma.
- 230
- Based on these findings, we propose EOF as a potential novel diagnostic marker for glaucoma.

232 This discovery not only provides a new tool for the early diagnosis of glaucoma, but also

- 233 offers new insights into the pathophysiological mechanisms of the disease. However, further
- studies are needed to validate the direct correlation between EOF and optic nerve function
- and to evaluate its practical application in clinical settings.
- 236

237 **3. EOF can be used as a potential marker for glaucoma prediction**

238 Next, we test whether EOF can be used as a potential marker for the prediction of primary

- 239 open-angle glaucoma (POAG), the predominant form of glaucoma. We recruited a family
- 240 with early-onset glaucoma, and performed a longitudinal study (the pedigree information is

241	available upon request). The family consisted of seven members, designed F1-F7. Family
242	members F1, F3 and F4 were diagnosed with POAG, whereas other members were normal.
243	EOFT revealed that all family members with glaucoma had significantly elevated EOF
244	relative to normal family members (Figure 3A, B).
245	
246	Interestingly, family member F4 (aged 16-20), who is the sibling of F1, showed significantly
247	elevated EOF despite no obvious signs of glaucoma during the initial OCT examination. The
248	follow-up examination a year later showed that family member F4 exhibited signs of
249	glaucoma, such as increased cup-to-disc ratio, thinning of the retinal nerve fiber layer, and
250	visual field defects, compared to the normal family member F5, whose RBCs exhibited
251	normal EOF (Figure 3C, D, E). This finding suggests that EOF may have a significant
252	potential for predicting glaucoma or early glaucoma diagnosis before the detection by routine
253	clinical examinations, such as OCT. However, further research is needed to validate the
254	potential of EOF as a biomarker for glaucoma prediction and monitoring.
255	
256	4. EOF's role in AI-based analysis
257	To further validate EOF's role in glaucoma diagnosis, we re-analyzed an independent set of
258	glaucoma patients and healthy controls, incorporating EOF into the LASSO model. Category
259	mean analysis showed that the differences in multiple blood markers were more pronounced
260	in the glaucoma group, particularly EOF, which was significantly higher in the glaucoma
261	group than in the control group (Table 2).
262	

263	In the LASSO regression analysis, the optimal λ value was 0.01760928, and the final model
264	identified HCT, NEUT, LYMPH, MCV, MCHC, and EOFT as key blood markers. The
265	coefficient table (Table 3) showed that EOF had the most significant positive coefficient in
266	the glaucoma group ($p < 0.01$), further validating its critical role in glaucoma diagnosis.
267	
268	The confusion matrix result of the LASSO regression model showed high classification
269	accuracy in predicting glaucoma and healthy controls, with low false positive and false
270	negative rates (Figure 4A. Thus, EOF, as an emerging novel biomarker, significantly
271	enhanced the predictive performance of the LASSO regression model.
272	
273	Despite the results showing EOF's promising potential in glaucoma diagnosis, it is important
274	to note that the standardization of EOF measurement remains challenging. Additionally, the
275	relatively small sample size in this study highlights the need for further research to validate
276	these findings in larger cohorts and to explore the broader clinical application of EOFT.
277	
278	5. Prediction model construction and Validation of the model construction
279	
280	5.1 Construction of the glaucoma prediction model
201	Resed on LASSO regression analyses, we identified six key features: HCT_NEUT_LYMPH
201	MON MOLICE A DOE THE S A REAL AND
282	MUV, MUHU, and EUF. These features were integrated into the final glaucoma prediction
283	model, with the predictive formula as follows:

284 Logit(*p*)=-38.1157+(-0.1079×HCT)+(0.5502×NEUT)+(-0.0474×LYMPH)+(-0.0135×MCV

285)+(0.0762×MCHC)+(42.9581×EOF)

286 Using the logistic regression model, the probability p can be calculated by the following

287 formula:

$$p = \frac{1}{1 + \exp\left(-Logit(p)\right)}$$

- 289 By substituting the feature values HCT, NEUT, LYMPH, MCV, MCHC, and EOF into the
- 290 formula, the corresponding probability value *p* can be calculated.
- All regression coefficients were statistically significant (p < 0.05), indicating the importance
- 292 of these variables in the model.
- 293 5.2. Model performance evaluation
- 294 The model demonstrated excellent discriminatory ability on the test set, with an area under
- the ROC curve (AUC) of 0.98, indicating near-perfect discrimination between glaucoma
- 296 patients and healthy controls (Figure 4B). The heatmap in Figure 4C shows the predicted
- 297 probabilities of glaucoma compared to the actual group classifications. The predicted
- 298 probabilities for each sample are shown in Figure 4D. The purple dots representing glaucoma
- 299 patients are mostly concentrated in the high probability range, whereas the green dots
- 300 representing healthy controls are predominantly distributed in the low probability range. This
- 301 further demonstrates the model's high discriminatory ability. Table 4 summarizes the overall
- 302 performance of the model, including accuracy, sensitivity, specificity, and AUC.
- 303 5.3. Actual prediction results

304	Table 5 presents the actual blood parameters and corresponding predicted probabilities for a
305	subset of glaucoma patients and healthy controls. The model successfully predicted the
306	majority of glaucoma cases, validating its potential for clinical application. Notably, the
307	predicted probabilities closely matched the actual disease status, further confirming the
308	model's accuracy and reliability.
309	5.4. External validation results
310	To validate the external applicability of the model, we conducted external validation on three
311	independent datasets. The model achieved AUC values of 0.96, 0.94, and 0.95 on these
312	datasets, respectively, indicating good generalizability across different patient populations
313	(Table 6).
314	The glaucoma prediction model developed in this study demonstrated exceptional
315	discriminatory power and good generalizability across multiple datasets. The high AUC
316	values indicate that the model is highly accurate and reliable for clinical application,
317	providing an effective tool for early screening and intervention in glaucoma.
318	
319	Discussion
320	For the first time, this study systematically introduces EOF as a biomarker in glaucoma
321	diagnosis, and comprehensively evaluates the differences in multiple blood biomarkers
322	between glaucoma patients and healthy controls using the LASSO regression model. The
323	results indicate that NEUT, NEUT%, MCHC, EOF, and other blood markers have significant

324 discriminatory power in glaucoma diagnosis, with EOF standing out as a key potential

325 parameter in glaucoma screening.

326	This study demonstrated that EOF was positively correlated with glaucoma severity in,
327	indicating that EOF could serve as a diagnostic marker for glaucoma as well as a tool for
328	monitoring disease progression. The elevation of EOF may reflect ongoing oxidative stress
329	and inflammation in glaucoma patients, consistent with previous reports and confirming the
330	critical role of oxidative stress in the pathogenesis of glaucoma [39, 40]. Compared to
331	traditional IOP monitoring, EOFT offers advantages such as simplicity, and low cost, making
332	it particularly suitable for large-scale screening in high-risk populations. These findings
333	provide a new perspective for clinical application, suggesting that EOFT could be
334	incorporated into routine health checks for early detection and intervention in glaucoma.
335	
336	Additionally, this study demonstrates that the degree of EOF elevation in glaucoma patients is
337	correlated with disease severity. This suggests that EOFT can serve as both a diagnostic
338	marker and a disease progression indicator, providing clinicians with a new tool for patient
339	management and monitoring [26, 41]. By incorporating EOF into the diagnostic model, the

340 accuracy of the LASSO regression model in predicting glaucoma is significantly enhanced.

341 The model's high sensitivity and specificity further highlight its potential in glaucoma

342 screening. As more data are accumulated and models are continuously optimized, blood

- 343 biomarker-based glaucoma prediction models are expected to become a routine tool in clinical
- 344 practice, providing essential support for the early diagnosis and intervention of glaucoma [7, 9,
- 345 19, 42].

346

347	Although significant results have been achieved, this study has certain limitations. First, the
348	relatively small sample size may affect the model's generalizability. In the future, a larger
349	sample size can be carried out to further verify the model before it can be used in the clinical
350	application. Second, while EOFT demonstrated significant diagnostic value in this study, its
351	measurement techniques need further optimization to ensure consistency and standardization
352	across different laboratories. Moreover, this study primarily utilized LASSO regression for
353	analysis. Future studies should consider incorporating more complex machine learning
354	algorithms, such as random forests and support vector machines, to improve the model's
355	predictive accuracy and robustness.
356	
357	Future research could focus on the following areas: Firstly, further exploration of the causal
358	relationship between increased EOF and glaucoma progression, particularly through long-
359	term follow-up studies, to clarify the dynamic association between EOFT changes and disease
360	progression. Secondly, the development and validation of a more simplified EOFT
361	measurement method to facilitate its use in clinical practice. Finally, as sample sizes increase,
362	future studies could consider integrating EOFT with multi-omics data, such as genomics and
363	proteomics, to build a multi-dimensional and multi-indicator glaucoma diagnostic platform,
364	enhancing the accuracy and effectiveness of early diagnosis and disease monitoring for
365	glaucoma.
366	

367 Funding support

368	This research project was supported by the National Natural Science Foundation of China
369	(82371059 (H.Z.), 82371060 (B.G.)), the Department of Science and Technology of Sichuan
370	Province, China (2023JDZH0002 (H.Z.)), and Sichuan Provincial People's Hospital
371	(30320230095 (J.Y.), 30420220062 (J.Y.)), Natural Science Foundation of Sichuan Province
372	(2024NSFC1719 (J.Y.),30420230353 (J.Y.)).
373	
374	Authors contributions
375	J.Y. and F.Y. designed, performed experiments and analyzed the data. J.G, Y.C, H.F. and Q.L.
376	recruited the participants, performed the ophthalmic examination. B.G. analyzed the data. H.Z.
377	conceived the project, designed the experiments, and supervised the project. J.Y wrote the
378	first draft of the manuscript. H.Z. edited the manuscript.
379	
380	Declaration of competing interest
381	The authors declare no competing interests.
382	
383	Data Availability Statement
384	All data produced in the present study are available upon reasonable request to the authors.
385	
386	References
387	
388	1. Jayaram, H., et al., <i>Glaucoma: now and beyond.</i> Lancet, 2023. 402 (10414): p. 1788-
389	1801.

- 390 2. Stein, J.D., A.P. Khawaja, and J.S. Weizer, *Glaucoma in Adults-Screening, Diagnosis,*
- 391 *and Management: A Review.* Jama, 2021. **325**(2): p. 164-174.
- 392 3. Voelker, R., *What Is Glaucoma?* Jama, 2023. **330**(16): p. 1594.
- 393 4. Singh, L.N., et al., *Mitochondrial DNA Variation and Disease Susceptibility in*
- 394 Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci, 2018. 59(11): p. 4598-
- 395 **4**602.
- 3965.Fox, A.R. and J.H. Fingert, Familial normal tension glaucoma genetics. Prog Retin
- 397 Eye Res, 2023. **96**: p. 101191.
- 398 6. Hamel, A.R., et al., Integrating genetic regulation and single-cell expression with
- 399 *GWAS prioritizes causal genes and cell types for glaucoma*. Nat Commun, 2024.
- 400 **15**(1): p. 396.
- 401 7. Beutgen, V.M., et al., *Autoantibody Biomarker Discovery in Primary Open Angle*
- 402 *Glaucoma Using Serological Proteome Analysis (SERPA).* Front Immunol, 2019. 10:
- 403 p. 381.
- 404 8. Harris, A., et al., *The effects of antioxidants on ocular blood flow in patients with*405 *glaucoma*. Acta Ophthalmol, 2018. 96(2): p. e237-e241.
- 406 9. Hubens, W.H.G., et al., *Blood biomarkers for assessment of mitochondrial*
- 407 *dysfunction: An expert review.* Mitochondrion, 2022. **62**: p. 187-204.
- Vergroesen, J.E., et al., *The inflammatory potential of diet is associated with the risk*of age-related eye diseases. Clin Nutr, 2023. 42(12): p. 2404-2413.
- 410 11. Petriti, B., et al., Peripheral blood mononuclear cell respiratory function is
- 411 associated with progressive glaucomatous vision loss. Nat Med, 2024. **30**(8): p. 2362-

412

2370.

413	12.	Lei, Y., et al., Oxidative stress impact on barrier function of porcine angular aqueous
414		plexus cell monolayers. Invest Ophthalmol Vis Sci, 2013. 54(7): p. 4827-35.
415	13.	Pinazo-Durán, M.D., et al., Biochemical-molecular-genetic biomarkers in the tear
416		film, aqueous humor, and blood of primary open-angle glaucoma patients. Front Med
417		(Lausanne), 2023. 10: p. 1157773.
418	14.	Stuart, K.V., et al., The Association of Urinary Sodium Excretion with Glaucoma and
419		Related Traits in a Large United Kingdom Population. Ophthalmol Glaucoma, 2024.
420	15.	Yildirim, O., et al., Role of oxidative stress enzymes in open-angle glaucoma. Eye
421		(Lond), 2005. 19 (5): p. 580-3.
422	16.	Mokbel, T.H., et al., Erythropoietin and soluble CD44 levels in patients with primary
423		open-angle glaucoma. Clin Exp Ophthalmol, 2010. 38(6): p. 560-5.
424	17.	Tabak, S., S. Schreiber-Avissar, and E. Beit-Yannai, Crosstalk between MicroRNA
425		and Oxidative Stress in Primary Open-Angle Glaucoma. Int J Mol Sci, 2021. 22(5).
426	18.	Mohandas, N. and P.G. Gallagher, Red cell membrane: past, present, and future.
427		Blood, 2008. 112(10): p. 3939-48.
428	19.	Feilchenfeld, Z., Y.H. Yücel, and N. Gupta, Oxidative injury to blood vessels and glia
429		of the pre-laminar optic nerve head in human glaucoma. Exp Eye Res, 2008. 87(5): p
430		409-14.
431	20.	Murphy, S.C., et al., Lipid rafts and malaria parasite infection of erythrocytes. Mol

- Membr Biol, 2006. 23(1): p. 81-8. 432
- Kuhn, V., et al., Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric 433 21.

p.

434		Oxide Metabolism, Anemia. Antioxidants & Redox Signaling, 2017. 26(13): p. 718-
435		742.
436	22.	Massaccesi, L., E. Galliera, and M.M.C. Romanelli, Erythrocytes as markers of
437		oxidative stress related pathologies. Mechanisms of Ageing and Development, 2020.
438		191 : p. 111333.
439	23.	Behling-Kelly, E. and R. Collins-Cronkright, Increases in beta-lipoproteins in
440		hyperlipidemic and dyslipidemic dogs are associated with increased erythrocyte
441		osmotic fragility. Vet Clin Pathol, 2014. 43(3): p. 405-15.
442	24.	Abou-Seif, M.A., A. Rabia, and M. Nasr, Antioxidant status, erythrocyte membrane
443		lipid peroxidation and osmotic fragility in malignant lymphoma patients. Clin Chem
444		Lab Med, 2000. 38 (8): p. 737-42.
445	25.	Yücel, R., et al., Erythrocyte osmotic fragility and lipid peroxidation in experimental
446		hyperthyroidism. Endocrine, 2009. 36(3): p. 498-502.
447	26.	Nemkov, T., et al., Regulation of kynurenine metabolism by blood donor genetics and
448		biology impacts red cell hemolysis in vitro and in vivo. Blood, 2024. 143(5): p. 456-
449		472.
450	27.	Tu, H., et al., Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell
451		Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and
452		Dehydroascorbic Acid. EBioMedicine, 2015. 2(11): p. 1735-50.
453	28.	Yoong, W.C., S.M. Tuck, and A.E. Michael, Binding of ovarian steroids to
454		erythrocytes in patients with sickle cell disease; effects on cell sickling and osmotic
455		fragility. J Steroid Biochem Mol Biol, 2003. 84(1): p. 71-8.

456	29.	Bai, J., et al., Prognostic factors for polyp recurrence in chronic rhinosinusitis with
457		nasal polyps. J Allergy Clin Immunol, 2022. 150(2): p. 352-361.e7.
458	30.	Tang, G., et al., Evaluation and analysis of incidence and risk factors of lower
459		extremity venous thrombosis after urologic surgeries: A prospective two-center cohort
460		study using LASSO-logistic regression. Int J Surg, 2021. 89: p. 105948.
461	31.	Wu, J., et al., Normalization weighted combination scores re-evaluate TNM staging of
462		gastric cancer: a retrospective cohort study based on a multicenter database. Int J
463		Surg, 2024. 110 (1): p. 11-22.
464	32.	Yang, Y., et al., Prediction models of surgical site infection after gastrointestinal
465		surgery: a nationwide prospective cohort study. Int J Surg, 2024. 110(1): p. 119-129.
466	33.	Dobrynina, L.A., et al., The Predictive Value of Salt Sensitivity and Osmotic Fragility
467		in the Development of Cerebral Small Vessel Disease. Int J Mol Sci, 2020. 21(6).
468	34.	Best, L.M., et al., Non-invasive diagnostic tests for Helicobacter pylori infection.
469		Cochrane Database Syst Rev, 2018. 3 (3): p. Cd012080.
470	35.	Chou, M.L., et al., Blood-brain crosstalk: the roles of neutrophils, platelets, and
471		neutrophil extracellular traps in neuropathologies. Trends Neurosci, 2023. 46(9): p.
472		764-779.
473	36.	Crossley, J.L., et al., Itaconate-producing neutrophils regulate local and systemic
474		inflammation following trauma. JCI Insight, 2023. 8(20).
475	37.	Xu, B., et al., Is systemic inflammation a missing link between cardiometabolic index

- 476 with mortality? Evidence from a large population-based study. Cardiovasc Diabetol,
- 477 2024. **23**(1): p. 212.

478 38	. Zhao	. Е.,	et al	. The s	vstemic	immune-	inf	lammation	inde	x was non-l	inear	associatea
--------	--------	-------	-------	---------	---------	---------	-----	-----------	------	-------------	-------	------------

- 479 with all-cause mortality in individuals with nonalcoholic fatty liver disease. Ann Med,
- 480 2023. **55**(1): p. 2197652.
- 481 39. Młynarczyk, M., et al., Diet, Oxidative Stress, and Blood Serum Nutrients in Various

482 *Types of Glaucoma: A Systematic Review.* Nutrients, 2022. **14**(7).

483 40. Benoist d'Azy, C., et al., Oxidative and Anti-Oxidative Stress Markers in Chronic

484 Glaucoma: A Systematic Review and Meta-Analysis. PLoS One, 2016. 11(12): p.

- 485 e0166915.
- 486 41. Fatima, K., et al., Neomenthol prevents the proliferation of skin cancer cells by
- 487 *restraining tubulin polymerization and hyaluronidase activity.* J Adv Res, 2021. **34**: p.
- 488 93-107.
- 489 42. Chen, H., et al., *A Case of Glaucoma in Hereditary Spherocytosis*. J Glaucoma, 2018.
- 490 **27**(12): p. e187-e190.
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499

500

501

502	Figure	Legends
-----	--------	---------

503	Figure 1. LASSO regression analysis to identify blood biomarkers between glaucoma
504	patients and normal controls. (A) LASSO model construction flowchart. (B) Distribution of
505	regression coefficients. (C) Bar chart of key features. (D) Model performance evaluation. (E)
506	Confusion matrix showing the prediction result for the glaucoma patients and health controls.

507

508 Figure 2. Higher EOF in glaucoma patients. (A) Flowchart of EOFT. (B) Statistical result 509 showing the average concentration of NaCl at which RBCs started to show hemolysis (minimum resistance). The data are expressed as mean \pm SEM. ****, p < 0.0001; unpaired t-510 511 test. (C) Histogram of the concentrations (Conc.) of NaCl of minimum resistance for each 512 glaucoma patient and normal control. (D) Representative image showing Giemsa staining of 513 RBCs from glaucoma patients and normal controls. The data are expressed as mean \pm SEM. ****, p < 0.0001; unpaired *t*-test. (E) Quantification of the Giemsa staining result showing 514 515 the percentage of abnormal RBCs in glaucoma patients and controls. (F) EOFT result for 516 glaucoma patients A and B and normal control. (G-H) OCT results of patients A and B. RNFL; 517 retinal nerve fiber layer; TEMP; temporal; SUP, superior; NAS: nasal; INF: inferior; OD: 518 right eye; OS; left eye.

519

520 Figure 3. EOF as a potential marker for POAG prediction. (A) Schematic showing the 521 EOFT result from seven members (F1-F7) in this family. (B) Distribution of the NaCl

522	concentrations of minimum resistance for members in this family subjected to EOFT test. (C)
523	Image of the EOFT result for family members F4 and F5. (D) Statistical chart of RNFL
524	thickness at different areas in the retina for family members F4 and F5. (F) Statistical chart of
525	parameters of the optic nerve head for family members F4 and F5. RNFL; retinal nerve fiber
526	layer; TEMP; temporal; SUP, superior; NAS: nasal; INF: inferior; OD: right eye; OS; left eye;
527	vol: volume.
528	
529	Figure 4. External dataset validation. (A) Confusion matrix plot after adding the EOFT
530	result. (B) ROC Curve for the glaucoma prediction model. (C) Heatmap of the predicted
531	probability of glaucoma. (D) Scatterplot of the predicted probability
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	

575 **Table 1. Demographic information for control and glaucoma patients**

Group	Age (Mean)	Man	Woman	Total
Control	57.05	54	28	82
Glaucoma	56.36	54	28	82

595 Table 2. Means for each blood parameter for the second control and glaucoma group

Item	Control (Mean)	Control (SD)	Glaucoma (Mean)	Glaucoma (SD)
RBC	4.8	0.43	4.6	0.53
HCT	45	3.4	42	4.5
MCH	31	1.3	31	1.7
PLT	184	55	194	58
WBC	5.8	1.5	6.7	2
NEUT	3.4	1.1	4.3	1.7
LYMPH	1.8	0.56	1.7	0.6
MONO	0.4	0.15	0.48	0.17
BASO	0.03	0.04	0.04	0.02
HGB	145	12	141	17
MCV	94	3.9	92	4.2
MCHC	325	9.2	332	12
EOF	0.4	0.01	0.48	0.05

Table 3. Table of results of confusion matrix coefficients for the LASSO regression

607 **model**

Variant	Regression coefficient	Standard error	Wald Chi-	<i>p</i> -value	
				Square	I man
-	НСТ	-0.1079	0.015	51.65	< 0.001
	NEUT	0.5502	0.22	6.27	0.012
	LYMPH	-0.0474	0.012	15.52	< 0.001
	MCV	-0.0135	0.006	4.53	0.033
	MCHC	0.0762	0.033	5.38	0.02
	EOFT	42.9581	9.567	20.18	< 0.001
609					
610					
611					
612					
613					
614					
615					
616					
617					
618					
619					
620					

621 Table 4. Model performance metrics

622

Metric	Value	
Accuracy	95.20%	
Sensitivity	92.10%	
Specificity	96.30%	
AUC	0.98	

								Predicted
Patient	НСТ	NEUT	LYMPH	MCV	MCHC	EOFT	Actual	Probability
ID							Status	(%)
1	42.0	2.590	1.290	93.8	338	0.5	Glaucoma	99.08
2	45.5	5.774	1.671	84.9	347	0.4	Glaucoma	92.70
3	42.9	2.351	1.080	92.5	333	0.4	Glaucoma	44.95
4	48.7	2.784	1.408	94.6	349	0.5	Glaucoma	93.89
5	45.0	3.195	1.198	92.6	344	0.5	Glaucoma	95.32
6	47.3	4.015	1.420	94.8	334	0.5	Glaucoma	91.79
7	43.6	6.315	1.381	94.2	351	0.4	Glaucoma	96.22
8	40.3	5.740	1.361	92.0	333	0.5	Glaucoma	98.34
9	43.0	9.649	1.954	92.3	333	0.4	Glaucoma	83.41
10	50.3	3.040	1.890	95.8	348	0.4	Glaucoma	15.31
11	47.8	3.761	2.703	91.9	345	0.4	Glaucoma	22.13
12	45.7	3.211	1.279	84.8	330	0.5	Glaucoma	87.89
13	34.4	6.368	2.261	86.6	328	0.5	Glaucoma	99.11
14	35.9	5.048	1.267	93.7	345	0.4	Glaucoma	68.52
15	39.3	5.147	1.653	98.7	326	0.5	Glaucoma	96.19
16	40.8	5.184	1.539	91.3	343	0.4	Glaucoma	91.20
17	40.4	4.173	1.240	93.7	332	0.5	Glaucoma	95.76
18	42.9	4.777	3.923	91.3	319	0.5	Glaucoma	98.58
19	42.6	3.467	1.948	88.8	336	0.5	Glaucoma	94.42
20	46.0	3.216	2.359	91.3	341	0.5	Glaucoma	93.41
21	42.0	6.545	1.241	89.6	326	0.4	Glaucoma	84.55
22	42.1	3.890	3.132	93.3	335	0.4	Glaucoma	68.45
23	45.0	4.112	1.373	93.2	329	0.5	Glaucoma	98.91

Table 5. Actual patient data and predicted probabilities

24	40.2	3.096	2.040	88.9	326	0.5	Glaucoma	98.61
25	30.7	4.027	0.919	88.5	342	0.5	Glaucoma	99.28
26	37.6	4.191	2.047	87.6	322	0.5	Glaucoma	93.77
27	35.8	3.483	1.038	98.6	318	0.5	Glaucoma	98.61
28	42.7	2.088	0.651	90.3	333	0.6	Glaucoma	99.79
29	38.2	3.040	1.431	74.0	309	0.5	Glaucoma	96.72
30	40.7	12.634	1.067	91.7	319	0.5	Glaucoma	99.99
31	50.4	3.224	2.043	89.7	312	0.5	Glaucoma	89.63
32	45.0	5.790	3.028	91.8	331	0.6	Glaucoma	99.95
33	47.6	3.849	1.470	99.8	324	0.5	Glaucoma	97.36
34	38.3	4.037	2.248	92.7	326	0.6	Glaucoma	99.92
35	42.0	2.635	1.121	98.1	319	0.5	Glaucoma	96.09
36	44.8	2.360	1.271	95.9	335	0.5	Glaucoma	98.18
37	32.4	3.260	1.342	91.5	321	0.5	Glaucoma	99.19
38	36.2	4.257	0.710	96.5	301	0.5	Glaucoma	96.74
39	40.7	2.469	1.501	97.1	332	0.5	Glaucoma	88.98
40	39.6	8.521	1.647	93.0	321	0.5	Glaucoma	99.14
41	42.5	5.918	1.579	89.7	346	0.6	Glaucoma	99.99
42	43.6	4.997	3.273	90.3	326	0.5	Glaucoma	93.81
43	41.8	2.468	1.490	92.7	337	0.4	Glaucoma	56.53
44	38.1	4.875	1.139	91.1	325	0.5	Glaucoma	96.30
45	46.2	3.183	1.999	92.0	318	0.4	Glaucoma	21.74
46	43.7	3.011	0.980	88.3	330	0.4	Glaucoma	47.68
47	50.6	4.015	1.821	96.0	320	0.4	Glaucoma	23.31
48	47.3	2.698	2.161	91.0	334	0.5	Glaucoma	84.64
49	44.7	3.251	1.569	86.5	358	0.4	Glaucoma	88.70
50	39.1	3.530	1.161	98.2	327	0.5	Glaucoma	99.02

51	45.9	5.880	2.527	92.2	342	0.6	Glaucoma	99.98
52	39.2	4.875	1.809	95.6	324	0.5	Glaucoma	95.12
53	36.2	1.619	0.989	90.0	340	0.5	Glaucoma	99.32
54	46.7	3.516	1.358	96.1	334	0.5	Glaucoma	89.94
55	46.7	6.753	1.338	88.1	334	0.5	Glaucoma	99.80
56	42.6	3.862	1.717	87.7	345	0.4	Glaucoma	83.34
57	46.2	5.258	2.058	93.3	351	0.4	Glaucoma	91.33
58	47.8	4.144	1.870	89.5	324	0.5	Glaucoma	97.95
59	43.4	3.079	2.691	94.6	353	0.5	Glaucoma	97.61
60	35.7	4.468	1.502	92.7	319	0.5	Glaucoma	94.25
61	46.4	4.118	1.192	93.4	325	0.5	Glaucoma	87.13
62	46.9	3.646	1.639	84.4	365	0.4	Glaucoma	93.08
63	35.7	3.424	2.259	89.2	311	0.5	Glaucoma	83.55
64	36.7	3.890	0.860	97.1	332	0.5	Glaucoma	99.59
65	43.2	4.168	1.453	96.2	343	0.5	Glaucoma	99.68
66	40.8	3.742	1.739	89.3	343	0.5	Glaucoma	97.61
67	36.1	4.341	1.228	92.6	327	0.4	Glaucoma	76.14
68	38.5	5.096	0.871	94.6	319	0.4	Glaucoma	66.76
69	46.1	4.503	1.060	93.3	328	0.5	Glaucoma	98.94
70	42.9	3.021	1.202	91.3	343	0.5	Glaucoma	95.63
71	35.3	5.884	1.222	88.9	323	0.5	Glaucoma	99.78
72	53.9	5.764	2.084	86.8	332	0.5	Glaucoma	99.13
73	41.9	3.989	1.381	104.2	325	0.5	Glaucoma	98.69
74	47.4	3.161	2.148	91.9	344	0.4	Glaucoma	16.87
75	46.5	4.836	2.669	91.9	333	0.6	Glaucoma	99.92
76	43.0	5.483	1.523	94.9	316	0.4	Glaucoma	54.02
77	40.5	3.920	1.523	91.2	323	0.4	Glaucoma	11.99

78	38.4	7.204	2.091	93.2	318	0.4	Glaucoma	40.25
79	41.4	5.152	1.533	92.0	326	0.5	Glaucoma	95.69
80	47.3	3.460	1.396	92.2	345	0.5	Glaucoma	95.18
81	41.2	3.800	1.509	91.0	333	0.4	Glaucoma	68.52
82	45.7	4.270	1.796	103.2	335	0.4	Glaucoma	62.82
83	49.3	3.9	2.1	95.9	331.0	0.4	Control	8.05
84	48.7	3.665	2.37	92.6	324	0.4	Control	4.73
85	47.9	3.4	2.0	91.2	324.0	0.4	Control	4.54
86	43.8	2.955	1.70	90.5	347	0.4	Control	25.90
87	45.3	3.5	2.6	97.6	320.0	0.4	Control	4.27
88	45.9	3.0	2.8	96.6	320.0	0.3	Control	0.38
89	45.8	1.9	1.7	91.4	323.0	0.4	Control	17.51
90	45.3	1.5	1.01	90.8	340	0.4	Control	7.28
91	52.0	4.0	1.6	93.9	319.0	0.4	Control	2.84
92	50.5	4.4	1.9	94.9	325.0	0.4	Control	6.06
93	53.8	4.2	2.1	94.7	323.0	0.4	Control	3.36
94	43.4	2.782	1.67	88.6	325	0.4	Control	35.34
95	47.4	5.566	2.22	88.4	331	0.4	Control	71.70
96	43.8	3.394	1.99	87.6	365.0	0.4	Control	64.27
97	43.5	4.9	1.6	93.3	331.0	0.4	Control	22.72
98	44.9	3.4	2.3	99.6	330.0	0.5	Control	87.49
99	47.5	4.3	2.1	99.4	320.0	0.4	Control	32.21
100	45.8	2.138	1.52	93.9	338	0.4	Control	8.02
101	50.0	3.9	1.4	85.2	312.0	0.4	Control	2.28
102	47.2	3.4	1.8	94.6	324.0	0.4	Control	4.71
103	47.6	5.790	3.01	90.3	330	0.4	Control	22.17
104	45.4	4.287	2.11	99.6	315.0	0.4	Control	4.43

105	47.6	5.8	3.2	100.0	317.0	0.4	Control	8.59
106	46.9	3.052	1.95	94.6	341	0.4	Control	13.51
107	46.5	4.4	2.7	91.7	331.0	0.4	Control	13.88
108	44.5	5.057	1.77	87.9	339	0.4	Control	36.63
109	48.6	3.5	2.2	97.4	319.0	0.4	Control	2.92
110	48.0	3.5	1.9	94.1	327.0	0.4	Control	5.78
111	51.8	3.0	2.0	97.6	324.0	0.4	Control	2.28
112	45.9	4.5	3.6	94.4	331.0	0.4	Control	14.25
113	51.4	4.711	2.24	93.8	339	0.4	Control	17.01
114	46.7	4.6	1.6	88.3	315.0	0.4	Control	5.36
115	49.1	4.4	2.5	93.3	310.0	0.4	Control	2.39
116	50.1	4.581	2.46	97.5	345	0.4	Control	24.61
117	43.4	3.7	1.4	95.4	311.0	0.4	Control	22.38
118	43.1	2.4	1.1	97.3	313.0	0.4	Control	14.31
119	37.4	2.6	0.8	102.5	316.0	0.4	Control	29.15
120	40.3	2.7	1.5	95.3	323.0	0.4	Control	6.35
121	42.7	1.7	1.4	93.6	319.0	0.4	Control	2.19
122	45.2	2.6	1.7	95.0	325.0	0.4	Control	4.25
123	41.1	2.5	1.4	90.7	319.0	0.4	Control	4.13
124	44.7	1.7	1.2	95.3	313.0	0.4	Control	1.14
125	42.0	2.2	1.3	94.4	321.0	0.4	Control	3.67
126	44.7	2.1	1.2	95.1	318.0	0.4	Control	2.10
127	42.0	5.6	2.1	94.6	329.0	0.4	Control	29.48
128	44.7	3.7	2.4	91.4	322.0	0.4	Control	6.27
129	44.4	1.6	1.5	103.7	309.0	0.4	Control	5.88
130	42.4	2.6	1.4	94.4	321.0	0.4	Control	4.33
131	43.8	6.2	0.7	94.0	322.0	0.4	Control	23.56

132	42.9	3.3	1.6	100.0	326.0	0.4	Control	7.68
133	45.0	3.7	1.5	99.6	331.0	0.4	Control	10.64
134	45.0	3.1	1.8	93.4	318.0	0.4	Control	3.35
135	37.8	1.5	2.1	103.0	328.0	0.4	Control	5.40
136	43.1	2.8	1.2	95.8	323.0	0.4	Control	5.18
137	41.3	2.9	1.1	91.0	320.0	0.4	Control	5.46
138	43.4	2.5	2.2	99.3	320.0	0.4	Control	3.11
139	45.1	4.0	2.3	90.0	322.0	0.4	Control	7.43
140	43.5	2.5	1.7	95.2	324.0	0.4	Control	4.29
141	43.1	4.8	1.2	94.9	316.0	0.4	Control	8.54
142	42.2	2.5	1.7	94.4	332.0	0.4	Control	9.13
143	43.4	3.6	1.7	90.8	318.0	0.4	Control	5.27
144	42.9	4.1	1.4	88.1	329.0	0.4	Control	15.92
145	45.4	2.9	1.6	92.7	328.0	0.4	Control	6.04
146	39.9	4.1	1.7	92.6	336.0	0.4	Control	29.26
147	42.0	2.8	1.3	95.5	329.0	0.4	Control	45.12
148	46.4	3.6	1.2	91.2	321.0	0.4	Control	5.00
149	34.5	3.7	1.9	98.6	333.0	0.4	Control	30.34
150	38.9	3.2	0.7	96.3	314.0	0.4	Control	5.08
151	42.7	3.2	2.4	95.7	319.0	0.4	Control	4.58
152	46.0	3.4	2.2	87.3	333.0	0.4	Control	11.08
153	45.2	2.5	2.0	91.3	327.0	0.4	Control	4.72
154	44.1	4.0	1.4	94.6	327.0	0.4	Control	11.27
155	38.4	1.8	1.9	97.5	315.0	0.4	Control	2.49
156	41.4	3.2	1.8	87.3	321.0	0.4	Control	6.76
157	39.2	2.5	1.2	95.1	321.0	0.4	Control	5.58
158	43.5	3.0	1.3	91.2	317.0	0.4	Control	3.57

159	41.4	3.5	2.6	100.2	326.0	0.4	Control	9.47
160	43.3	2.7	1.4	89.6	328.0	0.4	Control	7.05
161	43.4	2.6	2.8	90.8	329.0	0.4	Control	6.69
162	44.2	3.9	2.1	94.2	314.0	0.4	Control	4.03
163	44.3	2.3	1.4	94.1	318.0	0.4	Control	2.39
164	42.5	2.1	1.2	88.7	329.0	0.4	Control	6.13

6	2	4
6	2	4

624			
625			
626			
627			
628			
629			
630			
631			
632			
633			
634			
635			
636			
637			
638			
639			

Table 6. External validation performance

Dataset	AUC
Dataset 1	0.96
Dataset 2	0.94
Dataset 3	0.95