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2 

Abstract 27 

This study examined the relationship between lifestyles (diet, sleep, and physical activity) and 28 

glucose responses at a personal level. 36 healthy adults in the Bay Area were monitored for 29 

their lifestyles and glucose levels using wearables and continuous glucose monitoring 30 

(NCT03919877). Gold-standard metabolic tests were conducted to phenotype metabolic 31 

characteristics. Through the lifestyle data (2,307 meals, 1,809 nights, and 2,447 days) and 32 

231,206 CGM readings from metabolically-phenotyped individuals with normoglycemia or 33 

prediabetes, we found: 1) eating timing was associated with hyperglycemia, muscle insulin 34 

resistance (IR), and incretin dysfunction, whereas nutrient intakes were not; 2) timing of 35 

increased activity in muscle IS and IR participants was associated with differential benefits of 36 

glucose control; 3) Integrated ML models using lifestyle factors predicted distinct metabolic 37 

characteristics (muscle, adipose IR or incretin dysfunction). Our data indicate the differential 38 

impact of lifestyles on glucose regulation among individuals with different metabolic phenotypes, 39 

highlighting the value of personalized lifestyle modifications. 40 
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Introduction 53 

Type 2 diabetes continues to rise, affecting 34.1 million people in the U.S. and 537 54 

million adults worldwide1.  Moreover, 88 million U.S. adults are estimated to have prediabetes, 55 

and up to 70% of these are expected to develop type 2 diabetes within four years2. Therefore, it 56 

is critical to prevent this at-risk population from converting to type 2 diabetes and reduce a 57 

significant public health burden. Many studies have shown that lifestyle modification is a 58 

powerful and cost-effective means to prevent and manage type 2 diabetes3. 59 

Diet, sleep, and physical activity are core lifestyle behaviors that are highly individualized 60 

and can be modified. Although many studies have investigated the effect of lifestyle factors on 61 

glucose control, it is still not fully understood, partly due to the challenge of capturing habitual 62 

lifestyle patterns among free-living individuals, especially as they relate to blood glucose control. 63 

For example, while written food questionnaires and 24-hour dietary recalls are widely used 64 

methods to collect food and beverage consumption data of study participants, these methods 65 

record eating events for short durations retrospectively, which may lead to inaccuracy. Similarly, 66 

many studies assess participants' sleep, but usually in a laboratory and only for a few days. 67 

Consequently, it has been challenging to accurately measure the lifestyle habits of free-living 68 

individuals in their natural environments with enough granularity to understand relationships 69 

among the various lifestyle parameters. 70 

Modern technologies such as wearable sensors and smartphone applications have 71 

enabled 24-hour monitoring and the capture of lifestyle behaviors in real-time for many 72 

continuous days4,5. A growing body of epidemiological and physiological evidence points to 73 

close interactions of lifestyle behaviors with the circadian clock system. The circadian clock is a 74 

timekeeping system that optimizes organ functions by regulating thousands of genomic 75 

activities and metabolic processes at different times of the day6–8. Light, food, and exercise can 76 

serve as external signals to synchronize the clock9, which by itself regulates glucose control and 77 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24312545doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24312545
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

sleep. Moreover, sleep deprivation/curtailment has also been shown to adversely impact 78 

glucose levels10,11. Therefore, circadian desynchronization induced by inappropriate timing of 79 

lifestyle behaviors has been suggested to disrupt physiological responses and may have 80 

adverse effects, including type 2 diabetes12,13. To date, most studies have explored the effect of 81 

only one or two lifestyle behaviors on glucose control. The simultaneous interrelationship of all 82 

three behaviors has not been explored. 83 

         By leveraging the power of digital health monitoring technologies, we expect lifestyle 84 

factors (i.e., diet, sleep, and physical activity) would have closely intertwined and concurrent 85 

dynamic interactions. We also expect that these factors would be associated not only with 86 

glucose control in individuals with prediabetes using standard clinical labs and CGM measures 87 

but also would further reveal novel relationships with metabolic characteristics such as insulin 88 

resistance or incretin dysfunction. Therefore, the goals of this study were 1) to deeply profile 89 

temporal patterns of the lifestyles; 2) to examine the inter-relations of diet, sleep, and physical 90 

activity features; 3) to quantify associations of lifestyle habits with glucose control using 91 

continuous glucose monitoring; and 4) to predict glucose metabolic characteristics (i.e., insulin 92 

resistance, beta-cell dysfunction, incretin dysfunction, all of which are known to lead to type 2 93 

diabetes) based on lifestyle habits. For metabolic characteristics, we conducted standardized 94 

glucose metabolic tests such as OGTT, an insulin suppression test, and an isoglycemic 95 

intravenous glucose infusion test.  96 

 97 

Results 98 

Cohort characteristics and data collection 99 

By leveraging the power of real-time digital health monitoring technologies, we collected 100 

the habitual lifestyle data of 2,307 meals (a median 20.5 days of food logs per participant), 101 

1,809 days of sleep (a median 47.5 nights per participant), 2,447 days of physical activity (a 102 

median of 64 days per participant), and 231,206 CGM readings (a median 36.5 days per 103 
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participant) from 36 healthy adults (> 18 y of age; median 57.6y; 17 males and 19 females; 104 

Figure 1). Baseline characteristics and clinical lab results of study participants are described in 105 

Table 1. The participants were grouped into those with prediabetes/type 2 diabetes (n=20; 19 106 

prediabetes and one with type 2 diabetes) or normoglycemia (n=16) following American 107 

Diabetes Association HbA1c criteria (normoglycemic (HbA1c<5.7%; HbA1c< 39 mmol/mol), 108 

prediabetes (5.7% <HbA1c<6.5%; 39 mmol/mol <HbA1c<48 mmol/mol), and type 2 diabetes 109 

(HbA1c>6.5%; HbA1c>48 mmol/mol). Demographic characteristics, including age, sex, BMI, 110 

ethnicity, statin use, smoking, season at study entry, self-reported exercise in minutes, and 111 

systolic/diastolic blood pressure, were not statistically different between prediabetes/type 2 112 

diabetes and normoglycemia. However, people with prediabetes/type 2 diabetes showed higher 113 

fasting plasma glucose (P=1.61e-3), fasting insulin (P=9.30e-3), and triglyceride (P=0.0142) 114 

despite no differences in other laboratory tests.  115 

 116 

Individualized differences in glucose dysregulation by metabolic tests 117 

Participants underwent gold standard metabolic tests after 10-h overnight fasting, 118 

including an oral glucose test (OGTT), insulin suppression test (IST), and isoglycemic 119 

intravenous glucose infusion test (IIGI). The metabolic test results determined participants’ 120 

metabolic characteristics, such as insulin resistance, beta-cell dysfunction, and incretin 121 

dysfunction. Details are presented in the Methods section. 122 

People with prediabetes/type 2 diabetes participants showed significantly higher glucose 123 

levels at 2 hours of OGTT, higher 24h mean sensor-glucose, higher 24h max sensor-glucose 124 

value, more time spent in hyperglycemic range (>140 mg/dL), and higher sensor-glucose 125 

variation than the normoglycemic group (P <0.05; Supplementary Figure 1). Additionally, 126 

participants were categorized: (1) muscle IS when SSPG <120 mg/dL (68.2±20.9 mg/dL) and 127 

muscle IR when SSPG >120 mg/dL (190±52.0 mg/dL). Our determination of IR aligns with the 128 

50% of the SSPG distribution among 490 healthy volunteers that include moderate elevations of 129 
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SSPG14; (2) normal beta-cell function when the disposition index (DI) >2.2 (2.91±0.313), 130 

intermediate when 1.2 ≤ DI≤ 2.2 (1.73±0.32), and dysfunction when DI <1.2 (0.794±0.206); (3) 131 

Incretin normal function when incretin effects (IE) >64% (72.6±6.12), intermediate when 39%≤ 132 

IE ≤64% (52.6±8.31), and dysfunction when IE <39% (25.2±11.2); (4) adipose IS when adipose 133 

IR (FFA) <0.15 (0.144±0.0547), intermediate when 0.15< adipose IR <0.5 (0.418±0.132), and IR 134 

when adipose IR> 0.5 (0.769±0.0768); and (5) hepatic IS when HIR-index >3.95 (3.75±0.242), 135 

intermediate when 3.95≤ HIR-index ≤4.8 (4.36±0.250) and IR when HIR-index >4.8 136 

(4.91±0.0659). 137 

 138 

Habitual meal timing patterns are associated with hyperglycemia, insulin resistance, and 139 

incretin response.  140 

To our knowledge, the relationship between meal timing and different metabolic 141 

characteristics has not been explored previously. Briefly, the meal timing profiles for each of the 142 

36 participants were determined by segmenting the food and beverage consumption (hereafter 143 

referred to as “meal”) periods into six windows: 1) 05:00 and 08:00; 2) 08:00 and 11:00; 3) 144 

11:00 and 14:00; 4) 14:00 and 17:00; 5) 17:00 and 21:00; and 6) 21:00 and the next day 05:00. 145 

These intervals reflect the major periods of food consumption. Subsequently, the energy intake 146 

contribution from each meal timing period relative to the total daily energy intake was 147 

determined. 148 

Participants had highly variable inter-individual meal timing patterns enabling an 149 

investigation between meal timing and glucose dysregulation (Figure 2A).  We used a principal 150 

component analysis (PCA) based on six meal timing features to identify hidden dietary patterns 151 

of the food consumption timing and their relationship to glucose dysregulation pathophysiologies. 152 

Notably, the cohort clearly separated into two clusters by their HbA1c levels based on the meal 153 

timing features (Figure 2B). Specifically, individuals with lower 154 

HbA1c levels are positioned at the top left of the PCA plot, whereas those with higher 155 
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HbA1c levels are located at the bottom right indicating distinct behavior patterns in their timing 156 

of food consumption. A multiple linear regression (MLR) analysis identified daily time intervals 157 

where the separation arises, further substantiating this conclusion. Relative to participants with 158 

lower HbA1c, participants with higher HbA1c had lower energy consumption from the meal 159 

consumed between 14:00-17:00 (adjusted-P=0.021), as well as higher energy consumption 160 

from the meals 17:00-21:00 (adjusted-P=0.079) and 5:00-8:00 (adjusted-P=0.059) (Figure 1C). 161 

Similarly, the cohort was separated into three clusters by incretin function (IE%) based on the 162 

meal timing features (Figure 2D). The regression models confirmed that participants with 163 

reduced incretin function had lower energy intakes from the meal 14:00-17:00 (adjusted-164 

P=0.027) and higher energy intakes from the meals 17:00-21:00 (adjusted-P=0.018) and 11:00-165 

14:00 (adjusted-P=0.028) (Figure 2E). A similar analysis was performed for muscle insulin 166 

sensitivity (IS vs. IR) for both PCA (Figure 2F) and regression analyses (Figure 2G; adjusted-167 

P=0.049 for the window 17:00-21:00). However, the cohort was not separated into clusters by 168 

beta-cell function (disposition index), indicating no association. 169 

The distribution of timing-related diet data are shown in Figure 3A. Violin plots were 170 

used to represent both summary statistics and density information of the data. Sleep-related diet 171 

parameters were derived through time-matching, meaning that the diet and sleep data were 172 

collected concurrently. Furthermore, we comprehensively assessed associations of 36 diet 173 

parameters (i.e., nutrients, food groups, eating timing; Supplementary Table 1) with CGM 174 

profiles and glucose metabolic outcomes (Figure 3). Briefly, relevant diet features were 175 

selected through the LASSO selection (Supplementary Table 2), followed by building MLR 176 

models incorporating the selected diet features and potential confounding variables such as age, 177 

sex, ethnicity, and BMI. This combined approach reduces the data dimensionality and improves 178 

overall model performance. In the forest plot (Figure 3B), each horizontal panel corresponds to 179 

a specific glucose outcome where the point estimate (beta coefficient) of each diet parameter is 180 

present along with confidence intervals. This visualization provides a concise summary of 181 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24312545doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24312545
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

multiple regression models within one graph. The plot highlights associations that achieved 182 

statistical significance (BH-adjusted P < 0.1) between diet parameters and glucose outcomes. 183 

Specifically, the energy proportion of the meal 14:00-17:00 to the total daily energy intake was 184 

inversely associated with fasting plasma glucose. Conversely, higher energy consumption from 185 

the meal 17:00-21:00 was associated with less time spent in the target glucose range (70-100 186 

mg/dL) during nighttime and more time spent in the hyperglycemic (>100 mg/dL) range. In 187 

addition, while higher carbohydrate intakes from non-starchy vegetables were related to lower 188 

next-day mean glucose levels, more carbohydrate intakes from starchy vegetables were 189 

associated with higher fasting plasma glucose, higher HbA1c, and higher 24-hour mean glucose. 190 

Finally, higher carbohydrate intakes from snacks were also associated with more time spent in 191 

the hyperglycemic range (>140 mg/dL) for 24 hours, higher nighttime mean glucose, and more 192 

time spent in the hyperglycemic range for the next day.  193 

 194 

Variation in sleep timing is associated with hyperglycemia and incretin function.  195 

      To investigate the relationship of sleep parameters with glucose control and metabolic 196 

characteristics, real-time sleep monitoring data was estimated from participants using a Fitbit 197 

Ionic band (Fitbit, Inc., San Francisco, CA). We extracted and derived 14 sleep features and 198 

observed considerable between-person variability for each sleep parameter (Figure 4A). Using 199 

feature selection via LASSO and 10-fold cross-validation (Supplementary Table 3), as well as 200 

the MLR (Figure 4B), we found that day-to-day variability of sleep features, WASO (wake up 201 

duration after sleep onset), and wake-up time were significantly associated with glucose 202 

outcomes. Specifically, higher variability in sleep efficiency was associated with higher night-203 

time mean glucose values, more time spent in the night-time hyperglycemic range (>100 mg/dL), 204 

and higher next-day mean glucose values. Moreover, higher variability in bedtime was 205 

associated with higher next-day max glucose values. WASO was related to higher glucose 206 

levels at OGTT 2 hours, and earlier wake-up time was associated with lower incretin effects. 207 
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These results indicate that a number of sleep parameters are associated with glucose 208 

dysregulation. 209 

 210 

Physical activity habits profiling and the time-dependent association with glucose values 211 

We obtained real-time step count and heart rate data from the Fitbit Ionic band. Using 212 

feature selection via LASSO and 10-fold cross-validation (Supplementary Table 4), as well as 213 

the MLR, we observed that having more steps near bedtime was associated with poor nighttime 214 

CGM outcomes in the overall cohort (Figure 4C). Specifically, more steps during 1-2 hours 215 

before bedtime were associated with higher nighttime mean glucose values and less time spent 216 

in the nighttime target glucose range. Additionally, more steps taken 1 hour before bedtime 217 

were associated with higher mean glucose values up to the next day. Furthermore, a longer 218 

sedentary duration of the day was associated with shorter time spent in the target glucose range 219 

during the night. Interestingly, a higher step density after having last food was associated with 220 

lower nighttime mean glucose and more time in the nighttime target glucose range.  221 

Next, we quantified the association of physical activity with glucose levels as a function 222 

of time. We split the time-series step count and CGM data into 7 circadian-time windows: 1) 223 

05:00 - 8:00; 2) 8:00 - 11:00; 3) 11:00 - 14:00; 4) 14:00 - 17:00; 5) 17:00 - 21:00; 6) 21:00 – 224 

24:00; and 7) 24:00 - the next day 05:00 (Supplementary Table 5). To visualize the interaction 225 

effect of step counts and insulin resistance status (i.e., IS and IR) on CGM values at different 226 

times of the day, we plotted the results from linear models fit at each combination of time 227 

windows (Figure 5A). Interestingly, insulin resistance status significantly interacted with step 228 

counts to affect glucose values primarily in the time windows at 00:00-05:00, 8:00-11:00, 11:00-229 

14:00, and 14:00-17:00 denoted by an asterisk (Figure 5A). Therefore, a shifted Pearson 230 

correlation analysis with permutation was subsequently performed between step counts and 231 

mean glucose values to examine their temporal relationship by insulin resistance subgroups. A 232 

heatmap with the shading corresponding to the correlation coefficient at the designated 233 
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combination of time windows was plotted (Figures 5B-D). Notably, we found that, in the muscle 234 

IS, steps during 14:00-17:00 were negatively correlated with CGM values within the next 48-235 

hour time window (Figure 5B). Conversely, in the muscle IR, steps during 8:00-11:00 were 236 

associated with lower glucose values within the next day, indicating the significance of activity 237 

timing for glucose levels (Figure 5C). In addition, more step counts between 00:00-05:00 were 238 

correlated with higher CGM values for up to the next 48 hours in both the IS and IR groups, with 239 

IR showing stronger correlations.  240 

 241 

Permuted correlation network analysis between diet, sleep, and physical activity habits 242 

Our diet-sleep-activity correlation network with permutation highlighted many significant 243 

correlations among diet, sleep, and activity features, and the diet factors (nutrients, food groups, 244 

eating timing) were central in the complex relationships (Figure 6A). The network plot provides 245 

an intuitive visual representation of relationships among three lifestyle behaviors at a glance. In 246 

this analysis, all three lifestyle factors were time-matched. For food groups, higher rice 247 

consumption was correlated with lower sleep efficiency and longer latency duration. In contrast, 248 

higher legume consumption was correlated with shorter latency and longer total sleep duration. 249 

Higher fruit consumption was also correlated with longer sleep duration. For nutrients, higher 250 

fiber and potassium intakes were correlated to longer sleep duration. While higher saturated fat 251 

intake was correlated to longer sedentary duration, higher vitamin D intake was correlated to 252 

longer active duration. Interestingly, higher energy contribution from the meal between 8:00-253 

11:00am and longer fasting window were correlated with longer sleep duration, whereas late 254 

eating of the first meal of the day was correlated to lower sleep efficiency. Finally, a longer 255 

duration from waking up to first food eating was correlated to a longer latency.  256 

 257 

Integrated lifestyle machine learning prediction models for glucose metabolic 258 

characteristics  259 
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We built comprehensive, integrated machine learning models to predict different 260 

metabolic characteristics based on the whole feature set comprising all lifestyle and 261 

demographic features (Figure 6B). First, 12 features emerged for predicting prediabetes/type 2 262 

diabetes and normoglycemic individuals. Among those features, a high proportion of 263 

carbohydrate intake from starchy vegetables relative to the total daily carbohydrate intake 264 

associated with prediabetes, while that from fruits was associated with normoglycemia. Other 265 

features that predicted prediabetes included higher energy intake during 5-9 pm, eating the first 266 

meal late after wake-up, and higher trans fat and sodium intakes.  267 

To distinguish muscle insulin resistance classes, longer exercise duration was the only predictor 268 

for muscle insulin sensitivity. Incretin function classes were predicted by four features: higher 269 

BMI, higher fat intake, and higher caloric intake between 5-9 pm predicted incretin dysfunction. 270 

To predict adipose insulin resistance classes, 12 features were selected, where high intake of 271 

carbohydrates and fat, high BMI, older age, and longer fasting window predicted adipose insulin 272 

resistance.  273 

 274 

Discussion 275 

The interaction between lifestyle behaviors (i.e., diet, sleep, and physical activity) and 276 

their relationship with glucose regulation are not fully understood. To capture temporal patterns 277 

of habitual lifestyle behaviors and glucose levels in normal participant settings, we leveraged the 278 

power of digital health monitoring technologies such as wearable biosensors, continuous 279 

glucose monitoring (CGM), and smartphone apps. Furthermore, we used deep metabolic 280 

phenotyping using standardized metabolic tests, including OGTT, insulin suppression test, and 281 

isoglycemic intravenous glucose infusion test. Consequently, we obtained the habitual lifestyle 282 

data of 2,307 meals, 1,809 days of sleep, and 2,447 days of physical activity in real-time. 283 

Numerous lifestyle features were derived by matching the occurring times recorded and their 284 

concurrent dynamic relationships were explored. CGM data were also synchronized with the 285 
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lifestyle features based on timestamps. As such, we discovered several novel relationships of 286 

lifestyle habits with glucose outcomes using machine learning algorithms, including glucose-287 

related measurements (HbA1c, fasting plasma glucose, CGM measures) and metabolic 288 

characteristics (insulin resistance, beta-cell function, incretin function): 1) habitual eating timing 289 

was associated with hyperglycemia, insulin resistance, and incretin dysfunction, whereas 290 

nutrient intake levels were not with these parameters; 2) timing of increased physical activity in 291 

muscle IS and IR participants was associated with the differential benefits of glucose control 292 

with IS displaying activity benefits in the afternoon and IR in the morning; 3) Integrated ML 293 

prediction models demonstrated that a different set of lifestyles predicted distinct metabolic 294 

characteristics such as muscle IR, adipose IR or incretin dysfunction.  295 

The relationship between meal timing and different metabolic characteristics has not 296 

been explored previously. From our PCA analyses, the participants with lower HbA1c, higher 297 

incretin effect, and muscle insulin sensitivity clustered together, and the driving features were 298 

increased caloric consumption between 14:00 and 17:00 relative to their total daily caloric intake. 299 

In contrast, the participants with higher HbA1c, lower incretin effect, and insulin resistance 300 

clustered together, and they consumed more calories between 17:00-21:00. This finding is 301 

notable because nutrient intake and food group features failed to show these associations 302 

(Supplementary Figures 2,3,4,5)  303 

Furthermore, in our comprehensive analysis of all diet parameters and glucose 304 

outcomes, higher energy consumption between 17:00-21:00 was associated with less time 305 

spent in the night-time target glucose range and more time spent in the hyperglycemic range. 306 

This deleterious relationship is not due to total caloric intake, which was similar between the two 307 

groups, indicating that food timing affects glucose levels, possibly through its effects on, or due 308 

to, circadian physiology. These results support previous work showing associations of night-time 309 

meals with higher blood glucose, insulin, and HbA1c levels in both healthy and individuals with 310 

diabetes15,16. One possible explanation may be a partial desynchrony of food-entrainable 311 
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peripheral clocks with the central clock in the presence of high-caloric dinners in some animal 312 

studies17,18. In addition, the significant association of higher caloric intake 14:00-17:00 with lower 313 

fasting plasma glucose suggests the beneficial effects of afternoon snacks or early dinner on 314 

glucose control. Although one might speculate that the benefits of eating more during this 315 

window may be through suppression of higher meal consumption later, our further analyses 316 

showed that the higher caloric intake 14:00-17:00 was still significantly related to fasting glucose 317 

regardless of caloric intakes of later meals (meals 17:00- 21:00 and 21:00-5:00 next day). In line 318 

with these results, snack consumption before dinner was suggested to enhance beta cell 319 

responsiveness19.  Overall, the findings from eating habits highlight the importance of monitoring 320 

eating habits--not only meal composition but also timing--for preventing type 2 diabetes. 321 

Our data showed that irregular sleep timing and efficiency were associated with higher 322 

insulin resistance and higher glucose values from CGM data, underscoring the importance of 323 

regular sleep hygiene. Irregular sleep habits and nighttime disruption, perhaps due to untimely 324 

light exposure, may result in an abnormal phase relationship with peripheral metabolic clocks for 325 

glucose control homeostasis. Although it has been documented that shift workers with irregular 326 

sleep-wake schedules showed elevated insulin resistance20,21, our data support that free-living 327 

individuals who are not shift workers but have high day-to-day variations in their sleep schedule 328 

also have poor glucose regulation (Supplementary Figure 6). Additionally, our findings 329 

demonstrate associations between variance in sleep disruption (WASO) throughout the night 330 

and higher glucose levels during the OGTT test. These results highlight the significance of 331 

minimizing variations in sleep fragmentation across nights beyond the known negative impact of 332 

sleep fragmentation on glucose control as previously reported22-24. In addition, sleep timing (i.e., 333 

later wake-up time) was also associated with better incretin effects irrespective of total sleep 334 

duration. Because the median wake-up time of our cohort is 6:56 am, waking up later than ~7 335 

am might be beneficial for incretin function. Incretins respond to meal ingestion, and they have 336 

diurnal rhythms in secretion25, with slower release at night compared to daytime. Furthermore, 337 
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one RCT study26 showed the major effects of nocturnal light exposure on baseline and 338 

postprandial GLP-1 levels independent of sleep deprivation. Therefore, light exposure induced 339 

by habitual early wake-up time may decrease incretin function, compromising the incretin-340 

stimulated insulin secretion in the pancreas. Future studies investigating the underlying 341 

mechanism mediating these effects are warranted. 342 

Notably, in our study, the timing of increased physical activity was associated with 343 

differential benefits of glucose control across different metabolic conditions. We found significant 344 

time series interactions between step counts and insulin resistance status to influence sensor-345 

glucose levels, suggesting potential differences in the response of CGM values to activity 346 

between the IS and IR groups (Figure 5A, Supplementary Figure 7). Indeed, our subgroup 347 

analyses revealed that the muscle IR group showed subsequent lower CGM mean values when 348 

increasing steps during the morning (8:00–11:00 am). In contrast, the muscle IS group had 349 

subsequent lower CGM mean values when increasing steps during the afternoon (14:00–17:00). 350 

Furthermore, the IR group seems to be more sensitive to the 0:00-5:00 am activity. This finding 351 

was not seen as an overall cohort (Figure 5D) but held, to a lesser extent, for other metabolic 352 

characteristics: lower CGM mean values from morning activity in the dysfunctional groups (i.e., 353 

prediabetes, beta-cell dysfunction, incretin dysfunction), in contrast to benefits following 354 

afternoon activity in the normoglycemic groups (Supplementary Figure 8). Previous studies 355 

have shown mixed results when modifying timing of exercise on glycemic control. Consistent 356 

with our findings, one RCT study showed that morning moderate-intensity exercise improved 357 

metabolic benefits in individuals with diabetes27. However, other studies reported more 358 

efficacious glycemic control from afternoon or evening moderate-to-vigorous exercise or no 359 

differential effects between morning and afternoon exercises among people with or without type 360 

2 diabetes28-31. These inconsistencies across the studies may arise from variable intensity levels 361 

and modes of exercise used across the studies. Different exercise may trigger differential 362 

metabolic pathways of systemic glucose regulation, however, we could not determine the 363 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24312545doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24312545
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

intensity levels or specific types of activity of our participants solely based on their step count 364 

data. Nonetheless, our findings suggest that individuals with varying metabolic profiles (IS vs IR) 365 

may respond differently to the timing of increased activity, particularly those leading to higher 366 

step counts. Although the mechanism for this difference by activity timing is not clear, one 367 

possibility for the benefit of morning activity in the insulin-resistant group is through morning 368 

catecholamine peaks32. Perhaps morning exercise promotes skeletal muscle to uptake 369 

catecholamine-induced free fatty acids released from adipose tissues, and subsequently, an 370 

abnormality in lipid-induced insulin signaling could be ameliorated.  371 

Not surprisingly, our data showed a significant association between sitting duration and 372 

less time in the night-time target glucose range, highlighting the importance of breaking up 373 

prolonged sitting as a first-line prevention/treatment regimen for glycemic regulation33. In 374 

support of this finding, we also observed CGM peaks within the range of HR/HRmax 0.32 to 375 

0.45, and the subsequent declines in CGM values when HR/HRmax surpassed 0.65 (Figure 376 

5E). This pattern highlights the importance of elevating HR/HRmax, which could be achieved by 377 

increasing activity such as aerobic training. Moreover, while a higher step density after eating 378 

the last food of the day (steps/hour) was associated with better night-time CGM outcomes, more 379 

steps close near bedtime (1-2 hours) associated with poor nighttime CGM outcomes. The data 380 

suggest that increased postprandial activity (after dinner) may be advantageous for glycemic 381 

control; however, increasing activity shortly before bedtime is unlikely to confer benefits. Future 382 

human studies with a rigorous design that considers exercise modes and granular time windows 383 

relative to meals are also warranted to accurately quantify the beneficial effects of exercise on 384 

glycemic end-points in people at risk for type 2 diabetes. 385 

Finally, while the data above revealed individual associations between diet, sleep, and 386 

physical activity with glucose outcomes, we subsequently constructed comprehensive 387 

integrated prediction models. These models incorporated simultaneously all three lifestyle 388 

features along with demographic data (i.e., a total of 47 features) to predict various metabolic 389 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24312545doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24312545
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

characteristics. In our prediction models, dietary features, including nutrients, food groups, and 390 

eating timing, played a central role in distinguishing normal from dysfunctional groups as 391 

compared to other lifestyle features. This finding was further supported by our correlation 392 

network analysis, where we explored the simultaneous interrelationships among these three 393 

lifestyle behaviors. The data suggest that modifying dietary habits (i.e., both dietary composition 394 

and eating timing) may be the most powerful strategy to prevent and manage glucose 395 

dysregulation. Interestingly, a long-time gap between wake-up and first food time was a 396 

predictor for prediabetes or type 2 diabetes. Although the underlying mechanism is unclear, one 397 

possible explanation could be having first food relatively late after waking up in the morning 398 

could disrupt the circadian rhythm. Indeed, it was shown that important hormones and 399 

adipokines in glucose regulation peak during the first 5 hours after wake-up in animal studies34. 400 

To our knowledge, this is the first study to explore how all three lifestyle factors are 401 

associated with metabolic phenotypes such as insulin resistance, beta-cell dysfunction, or 402 

incretin dysfunction, all of which could contribute to the development of type 2 diabetes. This 403 

investigation goes beyond standard clinical lab tests (e.g., HbA1c) and CGM data. We 404 

successfully built most final prediction models with excellent performance (Supplementary 405 

Table 6). Additionally, another strength of this study lies in examining the concurrent 406 

interrelationships among habitual lifestyle features captured in real-time by wearables and other 407 

digital health technologies.  408 

This study revealed numerous novel associations between lifestyle patterns and glucose 409 

outcomes among participants at risk for type 2 diabetes residing in the SF Bay area. Thus, we 410 

acknowledge the possibility that the observed associations might not be generalizable to other 411 

populations. Additionally, as the data is observational rather than intervention-based, we cannot 412 

guarantee that the observed associations would hold true among individuals with prediabetes in 413 

an intervention setting. Future lifestyle intervention studies, especially those addressing timing 414 

considerations, are warranted.  415 
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We also acknowledge that lifestyle modifications might not be effective for everyone, 416 

particularly those with a genetic risk. Since our study did not genotype participants for common 417 

SNPs related to diabetes, we cannot exclude the possibility that the beneficial associations of 418 

lifestyle factors in our study may be specific to individuals with certain genetic variants 419 

predisposing them to diabetes. However, a recent large longitudinal cohort study35 420 

demonstrated that adopting a healthy lifestyle can mitigate the effects of genes associated with 421 

various diseases, including diabetes, by over 60%. Moreover, another recent intervention 422 

study36 showed that lifestyle intervention was particularly effective in individuals at high genetic 423 

risk. Therefore, while we recognize that lifestyle modifications may not be universally effective, 424 

their value remains significant regardless of genetic or biological background. Future 425 

intervention studies are needed to explore the impact of lifestyle timing modifications on glucose 426 

regulation in individuals at risk due to genetic factors. Lastly, this human study had a relatively 427 

small sample size which might have limited the statistical power of the study findings. To 428 

address this limitation, we employed several methods, including permutation, cross-validation, 429 

and multiple testing correction to enhance validity and minimize bias in the data analysis. While 430 

the extensive and resource-intensive phenotyping resulted in a relatively modest sample size, it 431 

is the unique aspect of our study that enabled us to explore lifestyles and specific glucose 432 

metabolic traits. 433 

 This cohort is particularly important since there is a great benefit to delaying or 434 

preventing the onset of type 2 diabetes. Our study demonstrates that diet, sleep, and physical 435 

activity are strongly associated with divergent glucose outcomes measured objectively and 436 

concurrently by continuous glucose monitoring and extended standardized metabolic tests. 437 

Notably, the extensive associations reported here remain independent of BMI, ethnicity, age, 438 

and sex. Moreover, in our comprehensive prediction models, different metabolic characteristics 439 

are predicted by a different set of lifestyle features, implying the need for individual approaches 440 
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to improve lifestyle in this vulnerable population. Furthermore, the data suggest obvious diurnal 441 

patterns in lifestyle behaviors that influence glucose physiology and implicate the timing of food 442 

intake, sleep, and exercise could be a powerful behavioral regimen to ensure appropriate 443 

glycemic control. Overall, a future human intervention study coupled with multi-omics profiling is 444 

a logical next step to confirm the observed associations and address underlying molecular 445 

mechanisms.  446 

 447 

Methods 448 

Study Design, Participants, and Sample Collection 449 

36 healthy adults (> 18 y of age; median 57.6y; 17 males and 19 females) were recruited 450 

from the San Francisco Bay Area, California. Inclusion criteria were general health, including no 451 

prior diabetes diagnosis and no diabetes medication. Participants underwent evaluations and 452 

screening tests at the Clinical and Translational Research Unit after overnight fasting (e.g., 453 

HbA1c, fasting plasma glucose, insulin, lipid panel, and creatinine at baseline).  The study 454 

protocol was reviewed and approved by the Institutional Review Board at Stanford University 455 

School of Medicine Human Research Protection Office (Institutional Review Board #43883). All 456 

participants provided written informed consent. This trial is registered on ClinicalTrials.Gov 457 

(NCT03919877; “Precision Diets for Diabetes Prevention”; 2019-04-18).  458 

 459 

Lifestyle Deep Profiling using Wearable Biosensors and Feature Extraction 460 

By leveraging the power of real-time digital health monitoring technologies, we 461 

monitored participants’ dietary intake, sleep characteristics, physical activity, and glucose levels 462 

in real-time throughout the study period (at least 14 consecutive days). Participants were asked 463 

not to change their sleep and activity habits during the study. Moreover, participants were 464 

required to maintain their normal eating, sleep, and physical activity habits without change 465 

during the study. 466 
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For dietary data collection, participants were required to log all food and beverage items 467 

consumed in real-time on the Cronometer food tracking app (Cronometer Software, Inc., 468 

Revelstoke, BC, Canada). A median of 20.5 days of food logs were collected from 36 469 

participants. Over 92% of participants provided more than 10 days of diet data during the study 470 

period. To enhance the accuracy of the diet data, days with a reported daily caloric intake of 471 

less than 500 kcal as well as those reporting an overnight fasting period exceeding 24 hours 472 

were excluded. Registered dietitians monitored participants' food log entries (food items, 473 

calories, and nutrient compositions) throughout the study. It was also ensured that all 474 

participants could record dietary intake data for at least two weekdays and one weekend day to 475 

capture a more accurate and representative understanding of their typical dietary habits. There 476 

was no missing dietary data for all 36 participants. A total of 74 diet features (51 energy-477 

adjusted nutrient levels, 10 food groups, and 13 meal timings) were extracted (Supplementary 478 

Table 1). 479 

For sleep and physical activity data collection, participants wore a Fitbit Ionic band (Fitbit, 480 

Inc., San Francisco, CA) for the study period. The Fitbit data was available for 24 out of 36 481 

participants due to a product recall of Fitbit Ionic for potential burn hazards during the study 482 

period. As such, a median of 47.5 nights of sleep data and 64 days of physical activity data 483 

were collected from 24 participants. To ensure data accuracy, only days with 4 to 12 hours of 484 

overnight sleep data were considered, and days with less than 500 steps were excluded. 14 485 

sleep features (1 quantity, 9 qualities, 4 timings) and 23 physical activity features (4 activity 486 

levels, 19 timings) were extracted (Supplementary Table 1). This study did not use the 487 

duration for each sleep stage because we did not have access to open-source Fitbit data to 488 

independently validate the algorithm predicting sleep structure in our population. Finally, heart 489 

rate (HR) data were also extracted. 490 

For continuous glucose monitoring, participants wore a Dexcom G4 CGM device 491 

(Dexcom Inc., San Diego, CA) for the study period. Of note, readings from glucose monitoring 492 
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devices were not made available to the participants until the study-end, therefore, lifestyle habits 493 

were not affected by the recordings. CGM data were collected for a median of 36.5 days from all 494 

36 participants (14 to 69 days), with a median wear time of 23.5 hours per day. 495 

 496 

Glucose Metabolic Physiological Tests 497 

Participants underwent glucose metabolic tests after 10-h overnight fasting to determine 498 

metabolic characteristics, such as insulin resistance, beta-cell dysfunction, and incretin 499 

dysfunction. The details of the physiologic tests will be published elsewhere and are 500 

summarized as follows.  501 

Muscle insulin resistance was quantified through an insulin suppression test (IST). In a 502 

validated IST37,38, participants were infused with octreotide (0.27 μg m-2 min-1), insulin (32 mU m-503 

2 min-1), and glucose (267 mg m2 min-1) for 240 min. In this test, participants showed different 504 

levels of steady-state plasma glucose (SSPG), indicating the individual’s ability of insulin-505 

mediated glucose disposal12.  506 

 Beta cell function was assessed during an oral glucose tolerance test (OGTT). 507 

Specifically, plasma glucose levels were measured at 16 timepoints (-10, 0, 10, 15, 20, 30, 40, 508 

50, 60, 75, 90, 105, 120, 135, 150, and 180 min) following a 75g oral glucose load, while insulin 509 

and C-peptide were measured at 7 timepoints (0, 15, 30, 60, 90, 120, 180 min) using Millipore 510 

radioimmunoassay assay at the Core Lab for Clinical Studies, Washington University School of 511 

Medicine in St. Louis (WashU). The insulin secretion rate was calculated from C-peptide levels 512 

during the OGTT test using the Insulin SECretion (ISEC) software. Then, a disposition index (DI; 513 

(pmol*dL)/(kg*ml))13, was calculated as the area under the insulin secretion rate, divided by the 514 

SSPG. Based on the DI, the beta cell function was determined.    515 

 Incretin function was quantified using an isoglycemic intravenous glucose infusion (IIGI) 516 

test. In an IIGI test, participants were infused with dextrose continuously via an intravenous 517 
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catheter. The incretin effect (IE%) can be quantified by comparing plasma glucose and C-518 

peptide profiles responding to the dextrose load either orally (OGTT) or intravenously (IIGI).  519 

 The hepatic insulin resistance (HIR) index equation, using insulin, BMI, body fat%, and 520 

HDL cholesterol levels, was validated against endogenous glucose production measured during 521 

euglycemic–hyperinsulinemic clamp39. Adipose tissue insulin resistance was calculated based 522 

on the average plasma free fatty acid (FFA) measured at 90, 100, and 110 min during the 523 

modified IST. 524 

 525 

Statistical Analyses       526 

         To test for differences in baseline demographics, labs, and metabolic test results 527 

between normoglycemia and prediabetes/type 2 diabetes groups, the Kruskal-Wallis test was 528 

used for non-normally distributed continuous variables, and the x2 test or Fisher’s exact test 529 

was used for categorical variables. 530 

To identify dietary patterns and their relationship to metabolic characteristics in the 531 

cohort, PCA was performed on meal timing features. They were classified/color-coded by 532 

HbA1c, insulin resistance SSPG, incretin effect, or beta-cell function DI. Then, we used 533 

covariate-adjusted multiple linear regression (MLR) models to examine differences in energy 534 

contribution of each meal timing between metabolic groups while adjusting for age, sex, BMI, 535 

and ethnicity. P-values were BH-adjusted for multiple testing. 536 

         To assess individual associations of diet, sleep, and activity features with glucose 537 

outcomes (CGM and metabolic test results), we used the least absolute shrinkage and selection 538 

operator (LASSO) combined with MLR. For each glucose outcome, we performed a grid search 539 

(values ranging from λ=1010 to λ=10-2) to optimize the hyperparameter and selected the model 540 

that minimizes test misclassification error (MSE). The LASSO models selected lifestyle features 541 

associated with glucose outcomes and provided an estimate of the predictive values of the 542 

feature individually (Supplementary Tables 2,3,4) Then, we used MLR to examine individual 543 
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associations of diet, sleep, and activity with glucose outcomes. P-values were BH-adjusted for 544 

multiple testing. 545 

To examine the effects of the time series interaction between step counts and SSPG 546 

status on CGM mean values, linear models with permutation were fit at the 7-time windows of 547 

24 hours (05:00-8:00, 8:00-11:00, 11:00-14:00, 14:00-17:00, 17:00-21:00, 21:00-24:00, and 548 

24:00-the next day 05:00). Then, a shifted Pearson correlation analysis with permutation was 549 

performed between step counts and CGM mean values by SSPG status subgroups through the 550 

7-time windows. Moreover, to identify intercorrelations among the three lifestyles, we used 551 

Spearman correlation with permutation. All correlation and interaction analyses were adjusted 552 

for multiple testing.  553 

Finally, we built integrated, comprehensive models based on all three lifestyle modalities 554 

and demographic information to predict metabolic characteristics. Since many features are 555 

highly dependent on each other, we removed obvious dependencies and kept a total of 47 556 

features to start with (e.g., baseline BMI was kept, and height and weight were removed). 557 

Features were then centered and scaled. Since we needed to include all three lifestyle factors 558 

simultaneously for building the prediction models, there were missing values for individuals 559 

without Fitbit data. We chose to use the cohort mean to replace these NA values, as MICE-560 

imputed data failed to predict all metabolic classes. Next, the LASSO approach selected 561 

relevant features, and then models with no regularization were built39. The hyperparameter 562 

lambda was selected through leave-one-out. The model was selected based on the MSE. In all 563 

analyses, P-values were adjusted for multiple testing.  564 

 565 

Data Availability. The datasets generated and/or analysed during the current study are 566 

available from the corresponding author on reasonable request. All nonPHI data will be shared 567 

indefinitely on a publicly available database at the time of publication. The data include CGM 568 
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(time-shifted), clinical information, and demographics. The study protocol is shared as a 569 

Supplementary Information. 570 

 571 

Code Availability. The underlying code for this study is available and can be accessed via this 572 

link (https://github.com/mikeaalv/lifestyle_glucose_control).  573 
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Figure Legends 746 

Fig 1. Lifestyle Profiling and Glucose Metabolic Phenotyping. We enrolled 36 participants 747 

mixed with normoglycemia, prediabetes, or type 2 diabetes. We collected 24 hours of real-time 748 

data on the lifestyle behaviors and glucose levels of the study participants for at least 14 days 749 

using wearable devices and smartphone applications. In addition, gold standard glucose 750 

metabolic tests were conducted (i.e., OGTT, IST, and IIGI tests) to determine participants’ 751 

metabolic characteristics such as beta-cell dysfunction, incretin dysfunction, and insulin 752 

resistance.  753 

 754 

Figure 2 Meal timing patterns associated with distinct metabolic characteristics 755 

a, Heterogeneity in meal timing profiles between persons (n = 36). The food and beverage 756 

consumption (referred to as “meal”) periods were segmented into six windows. 1) 05:00 and 757 

08:00; 2) 08:00 and 11:00; 3) 11:00 and 14:00; 4) 14:00 and 17:00; 5) 17:00 and 21:00; and 6) 758 

21:00 and the next day 05:00. The energy intake contribution from each meal timing window 759 

relative to the total daily energy intake was determined. A bar indicates each participant. 760 

Different colors comprising the bar represent six meal timings. The length of the color 761 

corresponds to the contribution (%) of each meal to the total daily energy intake (100%). 762 

b, PCA plot showing the cohort separation by the six meal timing features. A circle-shaped point 763 

indicates each participant. The color gradation represents one’s HbA1c level ranging from low 764 

(yellow) to high (red). 765 

c, Box plots showing differences in energy contribution from six meal timings by glycemic status 766 

(normoglycemia when HbA1c<5.7% (HbA1c< 39 mmol/mol) and prediabetes when 5.7% 767 

<HbA1c<6.5% (39 mmol/mol <HbA1c<48 mmol/mol)). Statistical significance was derived from 768 

the covariate-adjusted multiple linear regression models including HbA1c, age, sex, BMI, and 769 

ethnicity. The central line inside the box represents the median, and the error bars indicate 1.5 770 

times the IQR from the lower and upper quartiles. The symbols indicate a statistically significant 771 
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difference (BH-adjusted P value < 0.05 for asterisk, and BH_adjusted P value < 0.1 for cross) in 772 

energy contribution from each meal timing between normoglycemia and prediabetes groups. 773 

PreDM, prediabetes. 774 

d, PCA plot showing the cohort separation by the six meal timing features. A circle-shaped point 775 

indicates each participant. The color represents one’s incretin effects ranging from low (yellow), 776 

intermediate (light green), to high (dark green). 777 

e, Box plots showing differences in energy contribution from six meal timings by incretin effects. 778 

Statistical significance was derived from the covariate-adjusted multiple linear regression 779 

models including incretin effects %, age, sex, BMI, and ethnicity. The central line inside the box 780 

represents the median, and the error bars indicate 1.5 times the IQR from the lower and upper 781 

quartiles. The asterisk indicates a statistically significant difference in energy contribution from 782 

each meal timing among the incretin groups (BH-adjusted P value <0.05). IE, incretin effect. 783 

f, PCA plot showing the cohort separation into two clusters by the six meal timing features. A 784 

point indicates each participant, and the different shapes and colors of the points represent 785 

muscle insulin sensitivity status (green circle for IS and orange triangle for IR).  786 

g, Box plots showing differences in energy contribution from six meal timings by muscle insulin 787 

sensitivity. Statistical significance was derived from the covariate-adjusted multiple linear 788 

regression models including insulin sensitivity (SSPG), age, sex, BMI, and ethnicity. The central 789 

line inside the box represents the median, and the error bars indicate 1.5 times the IQR from the 790 

lower and upper quartiles. The asterisk indicates a statistically significant difference (BH-791 

adjusted P value < 0.05) in energy contribution from each meal timing between IS and IR 792 

groups. IS, insulin sensitive; IR, insulin resistant. 793 

  794 

Figure 3 Personal profiling of meal timing-related dietary habits and their associations 795 

with glucose metabolic outcomes. 796 
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a, Violin plots showing timing-related diet features in the cohort. The violin plots illustrate kernel 797 

probability density of the data at different values and the horizontal bar depicts the median of 798 

the distribution. The error bars represent the data within 1.5 times the IQR from the lower and 799 

upper quartiles. First food time (am), time of eating the first food of the day; last food time (pm), 800 

time of eating the last food of the day; daily eating span (sec), eating time window between the 801 

first food and the last food; last food ~ bed time (sec), time spent from the last food till the bed 802 

time; wake-up time ~ first food (sec), time spent from wake-up in the morning till eating the first 803 

food. Sleep-related diet parameters were derived through time-matching. 804 

b, Forest plot showing associations of diet parameters with glucose metabolic outcomes using 805 

LASSO feature selection combined with multiple linear regression. A horizontal panel in the plot 806 

represents each glucose outcome model (i.e., glucose metrics comprising metabolic tests and 807 

CGM). Associations that achieved statistical significance (BH-adjusted P < 0.1) between diet 808 

parameters and glucose outcomes are listed in this figure. The coefficient of each diet feature (a 809 

point of estimate depicted as the central marker) was derived from the covariate-adjusted 810 

multiple linear regression models (all diet features, age, sex, BMI, and ethnicity). The error bars 811 

represent the 95% confidence interval for the point estimate. %E Meal, energy proportion (%) of 812 

the meal timing to the total daily energy intake; %Carb, carbohydrate proportion (%) of the food 813 

group out of the total daily carbohydrate intake from all food groups; FPG, fasting plasma 814 

glucose; IR, insulin resistant; SSPG, steady-state plasma glucose, representing muscle insulin 815 

resistance. Hyperglycemic range for 24h was defined as >140 mg/dL, and for night time as > 816 

100 mg/dL. Time in target range for 24h was defined as 70-140 mg/dL and for night time as 70-817 

100 mg/dL. 818 

  819 

Figure 4 Personal profiling of sleep and physical activity habits and their associations 820 

with glucose metabolic outcomes. 821 
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a, Violin plots showing sleep and physical activity habits and related timing features in the 822 

cohort. The violin plots illustrate kernel probability density of the data at different values and the 823 

horizontal bar depicts the median of the distribution. The error bars represent the data within 1.5 824 

times the IQR from the lower and upper quartiles. Total sleep duration is the actual time spent 825 

asleep, and latency duration is the time spent to accomplish the transition from full wakefulness 826 

to sleep onset. Sleep efficiency is determined by wake-up after sleep onset (WASO) divided by 827 

the total sleep duration. The midpoint of sleep is the clock time between sleep onset and wake 828 

up. Sedentary duration is the duration of “0” step count per day (minutes), and movement 829 

duration is the duration of non-zero step count per day (minutes).  Active duration is the hours 830 

per day for which the step count > 250. Units for each panel are as follows: sec for total sleep 831 

duration, WASO, and latency; % for sleep efficiency; AM for the midpoint of sleep and wake-up 832 

time; PM (10, 11) and AM (0, 1, 2, 3) for bed time and sleep onset time. “Steps Last Food ~ Bed 833 

Time" and "Steps Wake-Up ~ First Food'' features were derived by aligning the times of diet, sleep, 834 

and physical activity behaviors of each individual. 835 

b, Forest plot showing associations of sleep parameters with glucose metabolic outcomes using 836 

LASSO feature selection combined with multiple linear regression. A horizontal panel in the plot 837 

represents each glucose outcome model (i.e., glucose metrics comprising metabolic tests and 838 

CGM). Associations that achieved statistical significance (BH-adjusted P < 0.1) between sleep 839 

parameters and glucose outcomes are listed in this figure. The coefficient of each sleep feature 840 

(a point of estimate depicted as the central marker) was derived from the covariate-adjusted 841 

multiple linear regression models (all sleep features, age, sex, BMI, and ethnicity). The error 842 

bars represent the 95% confidence interval for the point estimate. Night-time was defined as the 843 

period during which participants took their night sleep, based on their Fitbit sleep data, and the 844 

hyperglycemic range for nighttime was defined as > 100 mg/dL. WASO, wake-up after sleep 845 

onset. 846 
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c, Forest plot showing associations of physical activity parameters with glucose metabolic 847 

outcomes using LASSO feature selection combined with multiple linear regression. A horizontal 848 

panel in the plot represents each glucose outcome model. Associations that achieved statistical 849 

significance (BH-adjusted P < 0.1) between activity parameters and glucose outcomes are listed 850 

in this figure. The coefficient of each activity feature (a point of estimate depicted as the central 851 

marker) was derived from the covariate-adjusted multiple linear regression models (all activity 852 

features, age, sex, BMI, and ethnicity). The error bars represent the 95% confidence interval for 853 

the point estimate. Time in target range for night time was defined as 70-100 mg/dL. 854 

 855 

Figure 5 Time series associations between physical activity and sensor-glucose 856 

outcomes by insulin resistance status 857 

a, Interaction effects plot for step counts and SSPG status on CGM. Effects of step count and 858 

SSPG status on mean glucose values were assessed through linear models at each time 859 

window, permuted as in the Pearson correlation analysis. We split the time-series of step counts 860 

into 7-time windows of the day. The X-axis indicates the standardized step counts of a specific 861 

time window, and the Y-axis represents the corresponding glucose values up to the next 48 862 

hours. The orange line represents IR, and the green line IS, where interaction effects were 863 

considered significant (asterisk) if multiple testing-adjusted q-value < 0.01. 864 

b, c, d Shifted correlation analysis plot between step count and CGM in different time windows 865 

of the day (b, Insulin-sensitive; c, Insulin-resistant; d, Overall cohort). We split the time-series of 866 

step counts into 7-time windows of the day, and correlations with CGM up to 48 hours were then 867 

calculated using permuted Pearson correlation and considered significant (asterisk) if multiple 868 

testing-adjusted q-value < 0.01. The color gradation represents correlation coefficients ranging 869 

from -0.5 (negative correlation) to 0.5 (positive correlation). CGM, continuous glucose 870 

monitoring. 871 
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e, 2D scatter plot that shows the distribution of CGM as a function of HR/HRmax for all 872 

participants over a shared period.  Each point represents a data entry, color-coded by time of 873 

day (PST). The scatterplot shows a noticeable pattern between HR/HRmax and CGM values for 874 

all participants. 875 

 876 

Fig 6. Comprehensive lifestyle prediction of glucose metabolic characteristics and 877 

lifestyle modification suggestion. 878 

a, Diet, sleep and physical activity correlation network analysis. Concurrent correlations 879 

between lifestyle features were calculated using Spearman correlation with permutation and 880 

considered significant if multiple testing-adjusted q value < 0.2. The color gradation represents 881 

correlation coefficients ranging from -1.0 to 1.0. Different colors of points indicate different types 882 

of lifestyle features: light green (diet); purple (sleep); red (activity); dark green (combined 883 

features from diet and sleep); blue (combined features from diet, sleep, and activity). 884 

b, Integrated lifestyle prediction model of metabolic characteristics. The LASSO classification 885 

model was built upon all lifestyle features, and model coefficients of selected features were 886 

visualized. The classifications are for Normoglycemia vs. PreDM/type 2 diabetes; Adipose IS vs 887 

IR; Incretin normal vs. intermediate vs. dysfunction; and Muscle IR vs. IS. Different colors 888 

indicate different types of lifestyle features. Sex (1 male, 0 female) and ethnicity (1 Caucasian, 0 889 

non-Caucasian) are two levels of numerical values. Latency is the time spent to accomplish the 890 

transition from full wakefulness to sleep onset. %E Meal, energy proportion (%) of the meal 891 

timing to the total daily energy intake; %Carb, carbohydrate proportion (%) of the food group out 892 

of the total daily carbohydrate intake from all food groups; Duration Wake-Up ~ First Food, the 893 

time gap between morning wake-up and the first food consumption; Movement/Sedentary 894 

Duration, the ratio of movement duration to sedentary duration; Education, the years of 895 

education; PreDM, prediabetes; IS, insulin sensitive; IR, insulin resistance. Nutrients (e.g., fat 896 

and sodium) are the daily dietary intakes of the corresponding nutrients. 897 
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c, Personalized lifestyle recommendation for glucose metabolic benefits. Pictorial summary of 898 

findings of this study (lifestyle recommendation for individuals with different insulin sensitivity). 899 

Boxes with different colors in both insulin-resistant and insulin-sensitive panels represent 900 

different types of lifestyle actions. Utensil icons in yellow and green boxes indicate % energy 901 

consumption during the corresponding time window. A running icon in a blue box indicates step 902 

counts during the corresponding time window. A horizontal bar in a pink box indicates consistent 903 

action (i.e., consistent bedtime). A bed icon in a gray box indicates sleep. An upward arrow in 904 

the boxes indicates increased action and a downward arrow indicates decreased action. For 905 

example, the upward arrow with the utensil icon in the yellow box indicates increased energy 906 

intake between 14:00-17:00 in IS or IR individuals. Boxes with different colors in the Glucose 907 

Control Benefit panel indicate the glucose control benefit effects by corresponding lifestyle 908 

intervention actions (matched colors). CGM, continuous glucose monitoring; FPG, fasting 909 

plasma glucose; HGR, hyperglycemic range (>100 mg/dL during the night); TIR, time in target 910 

range (70-100 mg/dL during the night). 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 
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Table 1. Baseline demographics and clinical lab results of the study cohort 924 

 

Overall Cohort 

(n = 36) 

Normal 

(n=16) 

Prediabetes 

or T2D 

(n=20) 

P-value 

Demographics 

Age, y 56.1 ± 11.4 53.5 ± 11.7 58.2 ± 10.9 0.324 

Sex, n (M / F) 17 / 19 6 / 10 11 / 9 0.478 

BMI, kg/m2 26.1 ± 3.39 25.4 ± 2.95 26.6 ± 3.72 0.427 

Ethnicity, n (Caucasian / Asian) 

        26 / 9 14 / 2 12 / 7 0.135 

Medication Statin Use, n (Yes / No) 

  2 / 34 1 / 15 1 / 19 1.000 

Smoking, n (Yes / No) 

 2 / 25 1 / 10 1 / 13 1.000 

Season at Study Entry, n (Spring / Summer / Fall / Winter) 

 4 / 13 / 9 / 9 3 / 3 / 4 / 6 1 / 10 / 5 / 3 0.128 

Exercise, min 159 ± 114 204 ± 79.3 133 ± 126 0.0988 

Systolic Blood 

Pressure, mmHg 
116 ± 9.72 113 ± 8.97 119 ± 9.78 0.0946 

Diastolic Blood  

Pressure, mmHg 
72.5 ± 7.88 70.4 ± 7.27 74.1 ± 8.14 0.147 

Clinical Labs 

HbA1c, % 5.64 ± 0.376 5.31 ± 0.224 5.90 ± 0.231 3.25e-07* 
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Fasting Plasma 

Glucose, mg/dL 
97.9 ± 12.9 90.6 ± 10.6 104 ± 11.7 0.00161* 

Triglyceride,mg/dL 93.2 ± 41.0 76.1 ± 33.4 107 ± 42.1 0.0142* 

Total Cholesterol,   

mg/dL 
188 ± 35.8 182 ± 27.1 193 ± 41.5 0.464 

HDL, mg/dL 61.5 ± 19.5 62.8 ± 12.9 60.4 ± 23.8 0.171 

LDL, mg/dL 108 ± 28.7 104 ± 27.1 111 ± 30.1 0.265 

Non-HDL, mg/dL 126 ± 34.0 119 ± 31.5 132 ± 35.4 0.143 

Fasting Insulin, mmol/L 9.54 ± 6.93 6.59 ± 3.57 12.0 ± 8.10 0.00930* 

Creatinine, mg/dL 116 ± 70.6 121 ± 80.2 112 ± 63.3 0.921 

hs-CRP, mg/L 1.19 ± 1.62 0.881 ± 0.854 1.44 ± 2.02 0.482 

ALT/SGPT, U/L 27.3 ± 11.6 26.4 ± 9.95 28.1 ± 12.9 1.000 

Continuous variables are reported as mean ± standard deviation, and categorical variables as count. 925 

Asterisk in the P-value column indicates statistical significance (P < 0.05) between normoglycemia 926 

and prediabetes/T2D groups. 927 

 928 
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