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Abstract 

 

Mendelian randomization (MR) is an approach to causal inference that utilises genetic variants to 

obtain estimates of the causal effect of an exposure on an outcome in the presence of unobserved 

confounding. MR relies on a set of assumptions to obtain unbiased effect estimates, one of these 

assumptions is that there is no pathway from the genetic variants to the outcome that does not act 

through the exposure. Increasing genome-wide association study (GWAS) sample sizes for the 

exposure enables discovery of instrumental variables with smaller effect sizes. We illustrate through 

simulations how smaller effect sizes could arise from genetic variants that act through traits that 

have greater liability to confound an exposure-outcome relationship. When such genetic variants are 

selected as instruments this can bias the MR effect estimate obtained from that instrument in the 

same direction as the confounded observational association but with larger magnitude. Through 

simulation we illustrate how the total bias of the MR estimates increases across a range of standard 

MR estimation methods increases as the proportion of the genetic instruments that are associated 

with the confounder increases. However, if such heritable confounders are known and can be 

instrumented, the confounder free effect estimate can be obtained through applying a pre-

estimation filtering to standard MR methods, removing instruments that explain more variation in 

that confounder than the exposure, or by estimating effects through multivariable MR. We highlight 

the potential for SNPs identified in GWAS to be associated with potential confounders through 

examination of a recent GWAS of C-Reactive Protein. Finally, we illustrate our approach through 

estimation of the causal effect of age at menarche on type 2 diabetes, hypothesising that the MR 

effect estimate may be biased by confounding due to the inclusion of genetic variants associated 

with early life adiposity as instruments. 
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Introduction 
 

Confounding in epidemiological studies can bias observed estimated associations between traits so 

that they cannot be interpreted as the causal effect of the exposure trait on the outcome. Adjusting 

for confounders will remove this bias provided that all confounders are known and measured 

without error, which is rarely plausible.[1] Mendelian Randomisation (MR) is an alternative approach 

to causal effect estimation which utilises genetic variants to infer causality of the exposure on the 

outcome that is not biased by that confounding.[2, 3] MR is most often implemented by using 

genetic variants associated with the exposure within an instrumental variable (IV) estimation 

framework.[4]  

 

IV estimation relies on three key assumptions to be able to test for a causal effect of the exposure on 

the outcome. These assumptions are (IV1) the instrument is associated with the exposure, (IV2) 

there is no confounding of the instrument and the outcome and (IV3) there is no effect of the 

instrument on the outcome that doesn’t act through the exposure. These assumptions are 

illustrated in Figure 1A. In MR genetic variants associated with the exposure of interest are used as 

IVs. These are usually single nucleotide polymorphisms (SNPs) identified through genome-wide 

association studies (GWAS).[5] GWAS estimate the association between millions of genetic variants 

and a trait of interest. Variants associated in a GWAS with the exposure trait at a predetermined 

level are then selected to be used as IVs in the MR estimation. The level chosen is typically set to 

select all independent variants where the p-value for the estimated association between the variant 

and the exposure is smaller than 5x10-8.  This level is chosen as it is the Bonferroni corrected 5% 

significance level, given the effective number of independent tests being conducted in a GWAS. 

 

The polygenic nature of complex traits, for which there is substantial empirical support[6], posits 

that the majority of heritable variation is driven by a very large number of genetic factors, each with 

very small effect sizes. To discover such variants GWAS has been growing in sample size rapidly in 

recent years, especially through the emergence of large scale biobanks. The most recent GWAS of 

body mass index (BMI) included approximately 700,000 individuals and identified 941 independent 

SNPs associated with BMI.[7]  The most recent GWAS of educational attainment included 

approximately 3 million individuals and identified nearly 4000 independent SNPs.[8]  Similarly, this 

growing availability of large sample sizes means that for some traits where previously no SNPs were 

identified as genome-wide significantly associated with the trait (i.e. no SNPs had a p-value < 5x10
-8

) 

large studies can now identify enough SNPs to conduct MR estimation.  

 

For MR analyses involving exposures that are themselves complex traits, it is well understood that 

genetic variants associated with the exposure are mediated through other phenotypic layers.[9] 

Such mediation opens the possibility of horizontal pleiotropy if those mediating traits also have 

effects on the outcome through pathways independent of the exposure. If some, or all, of the 

variants associated with the exposure exhibit horizontal pleiotropy the MR effect estimates can be 

biased through violation of assumption IV3.  There are a number of different forms that horizontal 

pleiotropy can take and so bias MR.[4] Correlated pleiotropy is used to describe pleiotropy that 

causes bias in MR which is correlated with the magnitude of association between the SNPs and the 

exposure. Correlated pleiotropy can occur through heritable confounding, misspecification of the 

primary phenotype or reverse causation, illustrated in Figure 1B. The distinction between heritable 
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confounding and misspecification of the primary phenotype (i.e. the forms of pleiotropy illustrated 

by Figure 1B(ii) and 1B(iii)) is not always clear, especially as one may lead to the other. If the genetic 

variant for a heritable confounder is taken to be an instrument for the exposure that the heritable 

confounder influences then this misspecification of the primary phenotype will clearly lead to 

erroneous inference, with the extreme case being when the upstream phenotype is the outcome 

under investigation, as in Figure 1B(iv). As each of these mechanisms lead to the same bias in the 

resulting MR estimates and misspecification of the primary phenotype could be considered to be an 

extreme form of heritable confounding. Note however that for there to be bias in the MR estimation 

the path from the confounder to the outcome is required. If there is no effect of the confounder on 

the outcome that does not act through the exposure then MR estimates will not be biased. 

Throughout the rest of this paper we consider correlated pleiotropy driven by genetic variants 

associated with a confounder of the exposure and outcome being included within the set of 

instruments used in an MR analysis and refer to this as heritable confounding. 

 

There remains a question of whether increasing GWAS sample sizes will lead to increased horizontal 

pleiotropy through heritable confounding, i.e. are smaller genetic effects for the exposure more 

likely to also have an independent path to the outcome for any given exposure-outcome 

relationship? One mechanism by which this could arise is if genetic variants that have  effects on the 

exposure that are mediated through other traits tend to be those that are more phenotypically 

connected in the overall genotype-phenotype map.  Such variants would be likely to have smaller 

effects on a trait and so only become discoverable as GWAS sample sizes increase. One implication 

of this is that the genetic variants with the largest effect sizes in the GWAS may be the least likely to 

be pleiotropic instruments.[10] Although the extent to which this will hold will depend on the 

genetic architecture of the trait.  If all of the pathways from those upstream mediating traits to the 

outcome act through the exposure then the MR effect estimates will not be biased and the 

increased GWAS sample size will increase the power of the MR estimate to detect causal effects. 

However, when one (or more) of the upstream traits is a confounder of the exposure and outcome 

this will lead to violation of the IV3 assumption and biased MR effect estimates.  

 

There are a number of MR methods available that are robust to violations of assumption IV3, each of 

which assume particular forms for the structure of the pleiotropy[4]. The most commonly used 

methods are MR Egger[11], weighted Median[12] and weighted Mode[13]. MR Egger assumes that 

the size of any pleiotropic effect of each SNP on the outcome is uncorrelated with the SNP-exposure 

association. Under correlated pleiotropy this assumption will not hold as the size of the pleiotropic 

effect will be associated with the size of the SNP-exposure association. Weighted Median assumes 

that more than half of the SNPs (weighted by their inverse variance weights) are not pleiotropic. 

Weighted Mode assumes that the modal effect estimate obtained by the weighted SNPs is not 

biased by pleiotropy and so assumes that a plurality of the SNPs are not pleiotropic. The 

assumptions made by these methods mean that the weighted mode and weighted median 

approaches will be robust to a small proportion of the SNPs included in the estimation being 

associated with a confounder of the exposure and outcome but will both be biased as the 

proportion of SNPs associated with confounders of the exposure and outcome increases. IVW and 

MR Egger will be biased if any of the SNPs are associated with the confounder, although the level of 

the bias will depend on the proportion of the SNPs used as instruments that are associated with the 
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confounder, and the presence/absence of another confounder balancing the bias in the opposite 

direction. This result has been illustrated elsewhere.[14] 

 

Alternative methods of MR estimation are available that adjust for correlated pleiotropy under 

particular assumptions of the structure the pleiotropy takes.[14-21] These approaches are often 

computationally intensive, using Bayesian estimation approaches applied to a large number of 

genetic variants. They also impose an assumption of a structure of the relationship between the 

pleiotropic variants and other variants, often assuming that the plurality of the instruments are 

valid.   

 

Here we propose two alternative approaches to estimation in the presence of correlated pleiotropy 

when the confounder or confounders are hypothesised and measured; including the confounder in a 

multivariable MR (MVMR) and removing the SNPs associated with the confounder through 

confounder-based Steiger filtering. Each approach relies on knowledge of the likely confounders, 

however when this is unknown the other traits associated with the genetic instruments, and so most 

likely to be confounders, can be identified through PheWAS analysis.[22] The advantage of these 

approaches are that they are simple to implement and already widely used in MR analyses. They 

therefore provide a simple approach to explore the potential for bias from heritable confounding in 

MR studies.  

 

The remainder of this paper is structured as follows; we first compare the bias from confounding in 

IV estimation to linear regression. We explore the question of whether increasing GWAS sample 

sizes could increase the rate of correlated pleiotropy through a simulation of a network of traits 

explained by set of genetic variants.  We then present a simulation study to illustrate the bias 

induced by correlated pleiotropy and how MVMR and confounder-based Steiger filtering can correct 

the bias. We consider the example of C-reactive protein (CRP) and explore how many potential 

confounders are likely to be associated with SNPs identified in the most recent large GWAS of CRP. 

Finally, we consider estimation of the causal effect of age at menarche on risk of type 2 diabetes and 

show that in this analysis the univariable IVW MR estimate is likely to be biased by correlated 

pleiotropy from SNPs associated with childhood adiposity.  

 

Results 
 
Bias in IVW MR estimates compared to linear regression  
 

In this section we consider a simple model of a relationship between an exposure (�) and an 

outcome (�) which is confounded by a single unobserved confounder (�). The exposure is 

associated with a single instrument (�) that also has an effect on the outcome via the unobserved 

confounder. This single instrument could be considered to be a genetic risk score constructed from 

all SNPs identified as strongly associated with the exposure in a GWAS. We additionally assume that 

all relationships are linear and there are no interactions. We focus on the setting with a single 

heritable confounder for simplicity and clarity however in any application there would also be a 

number of non-heritable confounders as well as potentially more than one heritable confounder. 
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The results given here therefore only compare the results for bias from a single heritable confounder 

and not the overall bias that would be expected.  The model we consider can be written as;  

 

� � ��� �  ���� � ���� � 	�  

� �  ��� � 
��� � ���� � 	�  

� �  ��� � 
��� � 	� 

 

Where 	� , 	� and 	� are all uncorrelated random error terms.  This model is illustrated in Figure 2A.  

 

In this model the estimate of the effect of the exposure on the outcome from linear regression is 

given by; 
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As we have assumed no other confounders in this simple model 	� is independent of the exposure 

� and so ��∑ �	�� � 0. We can additionally define ���  as the estimate that would be obtained 

from a regression of � on �. Note: this will not be the same as ��� due to the confounding of � and 

� by � but will estimate the correlation between � and �. Therefore; 

 

������� �  ��� � ������#�1�  

This can alternatively be expressed as; 
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Where ���
�  is the variation in � explained by �. i.e. the true causal effect of the exposure on the 

outcome plus a bias term that depends on the effect of the confounder on the outcome and the 

correlation between the confounder and the exposure.  

 

The estimate of the effect of the exposure on the outcome from IV estimation is given by; 
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The instrument � is independent and exogenous so taking expectations of this expression, 

��∑ �	�� � 0, ��∑ �	�� � 0  and ��∑ �	�� � 0. Therefore; 
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This is the true causal effect of the exposure on the outcome plus a bias term that depends on the 

ratio of the pleiotropic effect of the instrument on the outcome (���
��) to the effect of the 

instrument on the exposure (
�� �  ���
��). i.e. the larger the pleiotropic effect as a proportion of 

the effect of the instrument on the exposure the larger the bias of the IV estimator.  The bias in the 

MR estimate from a single heritable confounder will be less than the bias of the linear regression 

estimator from the same confounder when;  

���
��

�� �  ���
��

� ������ 

 

The smaller the pleiotropic effect as a proportion of the effect of the instrument on the exposure the 

more likely this is to hold. Under a simpler model of heritable confounding, where U is a confounder 

of X and Y and has its own independent genetic profile in which � influences only one path, i.e. 


�� � 0 the bias term for the IV estimator reduces to 
���

���
. The implication of this is that if the 

genetic variants influence the exposure � only through the confounder � the bias in the MR 

estimate from that confounder will always be greater than the bias in the observational association 

from the same confounder.   

 

 

To illustrate the relationship between the bias of linear regression and IV estimation across different 

levels of pleiotropy we simulated the model given in Figure 2A varying the effect of the instrument 

on the confounder but holding all other parameters constant. We estimated ��� using linear 

regression and the two-stage least squares IV estimator. The mean bias of each estimator across 

1000 repetitions for varying levels of confounding is given in Figure 2B. These results illustrate how 

the bias of the IV estimator increases as the pleiotropic effect via the confounder increases and can 
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be substantially more than the bias from linear regression. Note that the exact position and slope of 

these lines will depend on the other parameters in the model. Figures 2C and 2D show the same bias 

plots as Figure 2B with an additional non-heritable confounder added to the model. The direction of 

the confounding from this additional confounder is varied from positive (Figure 2C) to negative 

(Figure 2D). These plots highlight how the overall bias of each estimator will depend on other factors 

as well as the level of heritable confounding and the bias of the estimate from MR may not always 

act in the same direction as the bias  of the estimate from linear regression even in the presence of 

heritable confounding due to other confounding.  

 

Increasing GWAS sample size may increase correlated pleiotropy 
 

GWAS sample sizes of complex traits are continually growing, pursuing a well-worn strategy to 

uncover hundreds or thousands of smaller effect sizes that in aggregate will explain a large polygenic 

component of phenotypic variation. A genetic variant inducing correlated pleiotropy must influence 

a trait that is a parent to both exposure and outcome. We hypothesised that such a genetic variant 

would generally be associated with more traits upstream of the exposure than valid instruments, 

and therefore would have relatively smaller effects on the exposure than valid instruments. The 

consequence of such a relationship would be that increasing GWAS sample sizes to identify more 

instruments of smaller effect sizes could lead to increasing bias in MR estimates.  

 

To evaluate this hypothesis we performed simulations in which we consider that all hypothesised 

exposure-outcome relationships exist in a broader genotype-phenotype network. The network 

represents a directed acyclic graph where all nodes are traits except those that have no parents, 

which are genetic variants. The simulation proceeds by randomly choosing two traits, one as 

exposure and one as outcome, and then evaluating a) which variants are instruments for the 

exposure, and whether or not the instruments act through confounders in the graph, and b) the path 

length from instrument to exposure. The length of the edge between any pair of nodes has been 

fixed to be the same length for all edges.  

 

Figure 3 illustrates that in this model instruments that act via confounders tend to have smaller 

effects due to more traits lying on the path from the genetic variant to the exposure. For traits 

where our simulation is a realistic model of the underlying biology an implication of this result is that 

as sample sizes grow for GWAS, the rate of discovery of genetic instruments that are liable to act via 

confounders will grow. However, it is possible that this will not hold for all traits, for some traits it 

may be that the strongest effects are via confounders (e.g. because those confounders have very 

strong effects on the exposure) and the genetic variants with smaller effects will be the 

unconfounded ones. It is therefore important to consider if this model is likely to hold for each 

exposure trait considered.  

 
Simulating the impact of genetic confounding on MR estimates 
 

We simulated a model with an exposure and outcome which are confounded by a third (potentially 

unobserved) heritable trait. Here exposure has no causal effect on the outcome however, linear 

regression of the exposure on the outcome would give a positive estimate of the association 

between the exposure and outcome due to confounding. The exposure is influenced by two traits, 
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one simply mediates genetic effects onto the trait (i.e. influences on X), whereas the other is a 

heritable confounder of the exposure and the outcome. Both mediator and confounder are each 

associated with a set of genetic variants. This model is illustrated in Figure 4, which corresponds to 

the scenario illustrated in Figure 1B(ii). We have included only a single heritable confounder in these 

models, no non-genetically influenced confounders and have assumed that all other IV assumptions 

hold. The results therefore illustrate the bias resulting from that confounder and not the overall bias 

that would be expected in either the linear regression or the MR estimates.  

 

The genetic variants associated with the mediator are valid instruments for estimating the effect of 

the exposure on the outcome whereas genetic variants associated with the confounder are not as 

there is a path from them to the outcome that does not act via the exposure. Therefore, MR using 

just the set of genetic variants associated with the mediator (G1) would estimate the true null causal 

effect of the exposure on the outcome. However, if the researcher mistakenly includes genetic 

variants in G2 as instruments for X, bias in the MR will be introduced through the pleiotropic 

pathway. We use this simulation to illustrate how MR is biased under correlated pleiotropy and 

explore the ability of commonly used pleiotropy robust methods to identify this bias when different 

proportions of the total set of genetic variants are in sets G1 and G2.  

 

Results from this simulation are given in Figure 4 and Supplementary Tables 1 and 2. When the total 

proportion of the variation in the exposure is explained by genetic variants that act on that exposure 

through the confounder is moderate IVW and MR Egger are biased across all p-value selection 

thresholds, however both weighted median and weighted mode correctly estimate the causal effect 

of the exposure on the outcome (Figure 4, Supplementary Table 1). When almost all of the SNPs are 

associated with the confounder all univariable methods of estimation are biased and give results 

that are consistent with each other (Figure 4, Supplementary Table 1). With a stricter p-value cut-

off, equivalent to a smaller sample size, MR Egger is very imprecise. This is expected as a stricter p-

value cut off will mean fewer SNPs are included in the estimation and MR Egger has low power when 

the number of SNPs included in the estimation is small. In all cases both MVMR and the univariable 

MR approaches with Steiger filtering between the exposure and confounder applied gave unbiased 

estimates of the causal effect of the exposure on the outcome. However, each of these methods 

requires the confounder to be known (/suspected) and have GWAS summary statistics available.  

 

In these simulations there is a single confounder of the exposure and outcome of interest biasing the 

estimates obtained. These results therefore show how the MR effect estimates are biased by that 

confounder in the same direction as the confounded observational association and may be 

substantially more biased than the observational association. In practice it is likely that there may be 

many potential confounders, some of which will be associated with a subset of the genetic variants 

selected as instruments. The overall bias in the linear regression will depend on the direction and 

magnitude of the bias from all of the confounders and so is likely to be substantially more than the 

bias in the MR estimation from confounding. The results obtained here would apply to each of the 

heritable confounders, and both Steiger filtering and MVMR could be applied to each of them in turn 

to identify and reduce that bias.   

 

Table 1 shows the mean number of genetic variants in each simulation that were selected for the 

univariable MR estimation methods (IVW, MR Egger, weighted median and weighted mode). When 
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the mediator is associated with as many SNPs as the confounder in the data generating process the 

final proportion of SNPs that are associated with the confounder in the MR estimation is small due 

to the effects of those SNPs on the exposure being smaller. Weighted median and weighted mode 

MR estimation methods are therefore unbiased as their assumptions regarding the proportion of 

SNPs unaffected by pleiotropy are satisfied. When most of the SNPs are associated with the 

confounder fewer SNPs are selected for estimation. However, most of them are associated with the 

confounder and so violate the IV assumptions leading to bias in all of the univariable MR methods of 

estimation. 

 
Example: Heritable confounding in genetic variants associated with C-
Reactive Protein 
 

To illustrate how some GWAS may be detecting genetic variants associated with pleiotropic effects, 

we considered a single potential exposure that has been widely used as an exposure in MR studies; 

C-Reactive Protein (CRP), a marker of inflammation.[23-25] These studies have considered CRP using 

either all GWAS significant loci or using a cis MR approach, making use only of the significant loci 

that lie close to the CRP gene.[26] Cis-MR has the advantage of reducing the probability of high 

levels of pleiotropy however it has lower power than standard genome-wide MR approaches and 

limited ability to investigate how sensitive the results are to that pleiotropy. A recent GWAS has 

identified a large number of genetic variants associated with CRP across the genome, many of which 

may be associated with CRP due to their influence on traits which are upstream of CRP. We 

therefore explore the extent of heritable confounding that these additional SNPs may add to MR 

studies. We made use of the FUMA platform[27] to identify other traits that have been associated 

with the genomic loci in a recent large GWAS of CRP.[28]  

 

The genetic signature of CRP was comprised of 728 lead SNPS  (i.e., SNPs associated with CRP levels 

at p< 5x10-8 and LD r2 < 0.1) in 266 genomic loci and we identified 33,573 SNP -> trait associations 

among these lead SNPs or related SNPs in strong LD (LD r
2
 > 0.6) in the GWAS Catalog. The full list of 

these associated traits is given in the Supplementary material Section 2. Many of the SNPs identified 

as associated with CRP in the GWAS are likely to be associated with CRP through the traits we have 

identified. Therefore, these traits are potential heritable confounders which may bias any MR 

estimation which includes CRP as an exposure or outcome. We therefore selected 5198 traits for 

follow up analysis. These traits can be broadly categorised into: anthropometry measures related to 

height and weight, bone mineral density, glycaemic measures, proteins, metabolites and smoking 

behaviour traits (full list given in Supplementary Material Section 2).  For each of these traits we 

estimated whether MR showed evidence of a causal effect of the trait on CRP. We applied Wald 

ratio for traits with a single SNP available as an instrument, inverse variance weighting for all traits 

with two or more SNPs available as instruments. Where possible (>3 SNPs) we also applied MR 

Egger, Weighted Median and Weighted Mode. Table 2 summarises the proportion of the analyses 

conducted that indicated evidence of a causal effect using a heuristic threshold to identify 

associations that indicate a potential causal effect (p<0.05).  These results indicate that 

approximately 20% of the traits identified as associated with CRP-SNPs had an effect on CRP and so 

are potential confounders in any analysis including CRP. These effects were consistent across 

different pleiotropy robust MR estimators. These traits have the potential to bias any MR estimate in 
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which CRP is an exposure through heritable confounding and indicate the importance of considering 

this form of bias.  

 
Example: Estimation of the effect of age at menarche on risk of type 2 
diabetes 
 

We illustrate the potential for genetic variants associated with a confounder to bias MR estimation 

through a example estimating the causal effect of age at menarche on risk of type 2 diabetes. Here, 

we expect that adiposity confounds age at menarche and type 2 diabetes, and with a well-powered 

GWAS for age at menarche, some of the instruments will arise via body mass index and therefore 

MR estimation of this effect is likely to be biased. The hypothesised DAG is given in Figure 5 and 

results are given in Table 3. Univariable MR analysis shows an estimated causal effect of age at 

menarche on type 2 diabetes using IVW [odds ratio for a category increase in age at menarche on 

the risk of type 2 diabetes: 0.76, 95% confidence interval: 0.65 to 0.89]. However, this result is not 

consistent across the robust MR methods.  

 

We also applied Steiger filtering in which 9 of 181 instruments for age at menarche appeared to 

primarily influence childhood adiposity were removed, leading to an attenuated effect estimate [OR: 

0.90, 95% CI 0.79 to 1.02] (Figure 6).  Including childhood adiposity in a MVMR more substantially 

attenuates the effect estimate obtained [OR: 0.99, 95% CI: 0.78 to 1.09]. As childhood adiposity is an 

established risk factor for both age at menarche and – through adulthood BMI - type 2 diabetes, 

these results are likely to reflect the model given in Figure 2b and suggest that the result seen in the 

naïve IVW estimation is likely to be biased by confounding from SNPs associated with childhood 

adiposity.  As has been shown elsewhere, there is an overlap in the SNPs associated with childhood 

and adulthood adiposity.[29] As adiposity is a well-established risk factor for Type 2 Diabetes the 

SNPs associated with childhood adiposity will also be associated with Type 2 Diabetes through 

adulthood adiposity.  

 

Discussion 
 

In this paper we have shown how correlated pleiotropy due to heritable confounding can bias MR 

effect estimates when the genetic variants selected as instruments are associated with a confounder 

of the exposure and outcome of interest. We show that the bias in MR from including instruments 

associated with a heritable confounder could be greater than the bias in the linear regression from 

that confounder. In our network simulations we show, under a plausible model of biological effects, 

how genetic variants associated with confounders of an exposure and outcome may be associated 

with more traits upstream of the exposure than genetic variants which are associated with the 

exposure but not confounders of the exposure and outcome. The implication of this is that, as GWAS 

sample sizes increase these confounding genetic variants are increasingly likely to be detected as 

strongly associated with the exposure. This will increase the presence of correlated pleiotropy in MR 

effect estimates which use genetic variants strongly associated with the exposure in a GWAS as 

instruments for that exposure. Through simulations where there is a mixture of valid instruments or 

those acting via confounders, we show that bias caused by a specific confounder in MR estimation 

could be larger than the bias in the observation association caused by the same confounder and that 
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this problem is likely to increase as sample sizes increase. Although it is likely that there will also be 

non-heritable confounding biasing the results from linear regression these results highlight how MR 

results may be increasingly biased as sample sizes for GWAS grow.  

 

If a large proportion of the genetic instruments are associated with a confounder of the exposure 

and outcome, correlated pleiotropy will bias all of the standard pleiotropy robust methods of 

estimation. In this case each pleiotropy robust method is biased in the same way as the IVW 

estimator, potentially leading to false confidence in the results obtained. These results are likely to 

particularly apply to exposures that are downstream of a phenotype (such as BMI) which is 

associated with many genetic variants and has an influence on a wide range of traits, or where there 

are relatively few genetic variants directly associated with the exposure of interest. In these cases a 

high proportion of the genetic variants used may be associated with one or more heritable 

confounders, increasing the overall bias in the MR estimates.  

 

We show that this bias from the inclusion of genetic variants associated with a confounder could be 

corrected through the application of either MVMR including the confounder, or Steiger filtering to 

remove any genetic variants that explain more variation in the confounder than the exposure. We 

therefore recommend that researchers applying MR with summary statistics generated from large 

GWAS studies check the association of their SNPs with the main potential confounders of the 

exposure and the outcome through a PheWAS analysis. Any genetic variant-trait associations found 

should then be checked for whether the trait involved is likely to be a confounder.[30] Steiger 

filtering, removing SNPs that explain more variation in the confounder than the exposure, and/or 

MVMR also including the confounder can then be applied to the MR analysis as an additional 

robustness test. A substantial difference between the results obtained is an indication of bias in the 

original MR analysis. However, in practice it is likely that confounders will not be 

identifiable/measured and there will be a number of confounders acting in this way and so such an 

approach does not guarantee the remove of all bias from heritable confounding.  

 

Recently novel MR methods have been proposed that attempt to adjust for correlated 

pleiotropy.[14, 16, 18, 19, 31, 32] Each of these methods depends on different assumptions about 

the nature of the correlated pleiotropy and applies a different approach to correct for that 

pleiotropy. When standard MR methods are suspected to be biased by correlated pleiotropy then 

applying one or more of those approaches will help to identify whether correlated pleiotropy is 

present.  

 

We have previously shown that adjustment for a potential confounder in the GWAS for the exposure 

will not mitigate bias in the MR estimates.[33, 34] This is because the adjustment for the confounder 

generates an inverse association between those genetic variants and the exposure. This biases the 

results obtained from the GWAS the opposite direction to the direction of effect of the genetic 

variant on the confounder. Previous work showed that this could be corrected by inclusion of the 

confounder the GWAS was adjusted for in a MVMR estimation[33] however all of the results 

described here would equally apply in that setting.  

 

Where the exposure has a clear biological mechanism by which some genetic variants  affect the 

exposure, comparing the results obtained for the MR estimation with all genetic variants to the 
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results obtained for the genetic variants which have a known biological pathway can help to support 

the results or highlight the potential for bias in the MR estimate. Here we used the example trait of 

CRP to explore how many of the genetic variants detected in a recent GWAS were likely to be 

associated with confounders. These results showed a high level of pleiotropy among the variants 

identified, with many of the traits identified showing evidence of having an effect on CRP and so 

being potential confounders. These results highlight how prevalent heritable confounding bias is 

likely to be for many traits. CRP is an exposure for which alternative ‘cis-MR’ approaches could be 

used, making use only of the genetic variants identified within the CRP gene region. Where possible 

such an approach is likely to be more robust to heritable confounding than using the full set of 

genome-wide significantly associated variants and so both approaches should be used if possible.   

 

In our illustrative application we estimated the effect of age at menarche on risk of Type 2 diabetes. 

The standard IVW effect estimate showed a negative causal effect with later age at menarche 

estimated to be protective for risk of type 2 diabetes. This effect however attenuated in all of the 

robust methods as well as when Steiger filtering or MVMR was applied to adjust for childhood 

adiposity. Childhood adiposity is an established risk factor for both age at menarche[22, 35, 36] and 

type 2 diabetes, through adulthood adiposity, [29, 37-40] and these analyses support the effect 

observed in the IVW estimation being driven by a set of SNPs that are associated with the 

confounder childhood adiposity being included as instruments for age at menarche. 

 

The results given here highlight why it is important to consider whether the IV assumptions are likely 

to hold even when a range of MR estimates give consistent results for the effect of the exposure on 

the outcome. This is particularly true when there is a strongly genetically predicted potential 

confounder for the exposure and outcome, such as BMI, that has not been accounted for in the MR 

estimates or where the total number of genetic variants associated with the exposure of interest is 

likely to be small. This checking could be done in systematically through PheWAS analysis or through 

expert subject knowledge of the likely confounders.[30]  

 

While these results show that the MR results can be more biased than linear regression from the 

exclusion of a single heritable confounder there are many other sources of bias for both types of 

estimation that should be considered when determining how much weight to give to the results 

from each type of analysis. It is likely that there will be a number of confounders of the exposure and 

outcome, if only some of these are heritable in the way described here then the MR estimates may 

still be less biased from confounding than the observational linear regression estimates. Additionally, 

MR can overcome bias and effect attenuation from measurement error that occurs in linear 

regression. However, MR is subject to other forms of bias such as population stratification and 

pleiotropy of other forms which should also be considered in any analysis.  

 

A limitation of the results here is how we have set up the structure of relationships between genetic 

variants and phenotypes. In our network simulations we assumed that every edge has the same 

strength of effect. In our simulations of the bias of the different MR estimators we have assumed the 

same distribution in size of the association between the relevant genetic variants and the exposure 

and confounder. These assumptions are relatively strong and are not likely to be realistic for every 

trait. For some traits the confounders may have much stronger genetic effects than the exposure, 

which will accentuate the biases described here. For other traits  the direct effect of the genetic 
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variants on the exposure will be much larger than for the confounders, meaning that bias of the type 

described here will be less prevalent. Which of these is likely to hold, along with how strongly the 

confounders are likely to affect the outcome, will determine how much of a problem the results 

described here are likely to be in any particular case. Each MR study conducted should therefore 

consider individually how likely there is to be bias from heritable confounding in that setting and 

what the main confounders causing that bias may be.  

 

Methods 
 

Network simulations 
We use the randomDAG function in the R/dagitty package to simulate a DAG with an arbitrary 

number of nodes, and a fixed probability that any set of nodes is connected. Nodes with no parents 

in the simulated DAG are identified as genetic variants, and 500 trait pairs are selected at random, in 

each pair assigning one to be the hypothesised exposure and one to be the hypothesised outcome. 

We then identify the path length for every genetic variant for the exposure, and also determine 

whether they act via a confounder, or otherwise (i.e. directly or through other traits that mediate 

the association between the genetic variant and the exposure and have no paths to the outcome). 

The effect size of the genetic variant on the exposure is �� where � is the path length from genotype 

to exposure, and for simplicity every edge in the DAG has the same effect � � 0.2. These 

simulations were conducted for a set of parameters of graph size N=75, 100, 125, 150 and graph 

density based on probability of an edge occurring ranging from p = 0.01, 0.02, …, 0.1. Each 

parameter combination was repeated 10 times.  

 

Simulations evaluating MR methods 
We generated the data in this model for two separate samples. In each sample 400 SNPs were 

generated using a binomial distribution. The proportion of these SNPs associated with the mediator 

and the confounder varied across the simulations, varying between 50% associated with each trait to 

12.5% associated with the mediator and 87.5% associated with the confounder. The SNP-trait (i.e. 

mediator/confounder) association was drawn from a normal distribution with mean 0 and standard 

deviation of 0.04 for each SNP, orientated so all SNPs had a positive association with the relevant 

trait.  

 

The confounder was generated as the sum of all the confounder - SNP effects plus a random error 

term. The mediator was generated as the sum of all mediator – SNP effects plus a random error 

term. The exposure was generated as the sum of the mediator, the confounder and a random error 

term. As shown earlier, SNPs associated with a mediator may be more strongly associated with the 

exposure than SNPs associated with a confounder. Therefore, we down weighted the confounder – 

exposure association by 25% relative to the mediator – exposure association (by multiplying them by 

0.75) to mimic this more distant association. Results with this down weighting varied (to 50% and 

0%) are given in the supplementary material. Finally, the outcome was generated as the effect of the 

confounder and a random error term.  

 

In one of the samples generated we estimated the association between all of the SNPs and each of 

the exposure and confounder to generate GWAS summary statistics. This was repeated in the 
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second sample for the SNPs and the outcome. We then select all SNPs (from either set) that were 

significantly associated with the exposure in the first sample at a defined p-value threshold in these 

summary statistics to estimate the effect of the exposure on the outcome using summary-data MR 

methods. Following what is currently standard practice in summary-data MR the same sample was 

used for the SNP-exposure association in estimation as had been used to identify the SNPs 

associated with the exposure.  We applied four common univariable MR methods of estimation 

IVW[41], MR Egger[11], weighted median[12] and weighted mode[13]. We additionally estimated 

the model using multivariable MR (MVMR)[42, 43] including the confounder as an additional 

exposure, including all SNPs significantly associated with the confounder at the same p-value 

threshold. All univariable methods of estimation were repeated with Steiger filtering[44] applied 

between the exposure and confounder to remove SNPs that explain more variation in the 

confounder than the exposure.  

 

With all other things fixed increasing the sample size will decrease the standard error in the SNP-trait 

association proportionally across all of the SNPs. This will lead to more SNPs being selected based on 

a fixed p-value threshold cut-off. Therefore, to model varying the sample size in the GWAS while 

keeping all other aspects of the data constant we varied the p-value threshold used to select SNPs 

for use as instruments in the MR across our simulations with larger p-values being equivalent to a 

larger sample size.    

 

Simulation details 
A set of 400 SNPs were generated as; 

��
~��2, 0.4� 

 

For individual   and SNP !. The SNP exposure effects were generated as; 

 



~"�0, 0.04�� 

 

The confounder was generated as; 

#� �  

���
 � 	�  

 

Where 	�  is a randomly normally distributed error term with mean 0 and standard deviation 1. 

�  is 

an SNP effects vector for the confounder where the elements of 

 associated with the mediator 

(rather than the confounder) have been set to 0.  

 

The mediator was generated as; 

$� �  

���
 � 	�  

 

Where 	�  is a randomly normally distributed error term with mean 0 and standard deviation 1. 

�  

is an SNP effects vector for the confounder where the elements of 

 associated with the 

confounder (rather than the mediator) have been set to 0.  

 

The exposure was generated as;  

�� �  $� � 0.75#� � 	� 

 

Where 	�~ "�0, 1�.   

 

The outcome was generated as; 
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�� � 0.5#� � 	� 

 

Where 	�~ "�0, 1�.   

 

This data was generated for two different samples and summary statistics were generated by 

estimating the linear regressions; 

#� � '� �  ��
��
 � (�  
 

and  

�� �  '� � ��
��
 � (� 

 

For all ! in the first sample and  

�� � '� �  ��
��
 � (� 

 

For all ! in the second sample, to obtain estimates of ��
 , ��
  and ��
.  

 

 

All models were simulated with a sample size of 100,000 for each of the exposure and outcome 

samples and 1000 repetitions.  

 

Heritable confounding in genetic variants associated with C-Reactive Protein 
 

C-reactive protein (CRP) is a widely studied acute phase hepatic protein and inflammation marker.  

Early observational studies consistently found associations between elevated CRP levels with 

increased cardiovascular disease (CVD) risk, motivating interest in targeting CRP as a therapeutic for 

CVDs.[45] In contrast with the observational findings, human genetics studies leveraging SNPs in the 

CRP locus revealed no direct causative links between CRP and cardiovascular diseases (CVDs),[28, 46, 

47]  indicating that CRP may not be the inflammatory driver of heart disease, which diminished the 

interest in developing CRP-targeted therapies.[46, 47] It appears that the associations between CRP 

and CVD observed in observational studies were likely influenced by confounding factors from other 

biomarkers and risk factors causally related to CVDs.[45, 48]  More recent GWASs of circulating CRP 

levels have been conducted,[28, 49-51] uncovering hundreds of variants across the genome linked to 

CRP levels.  Many of the loci are involved in metabolic and immune response pathways,[28] and the 

CRP GWAS demonstrates strong genetic correlation with cardiometabolic risk factors and 

biomarkers such as LDL cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and 

triglycerides.[51] Correspondingly, MR studies instrumenting CRP levels with SNPs located 

throughout the genome have identified consistent, adverse relationships CRP and various CVD 

outcomes,[52-55] replicating the biased observational estimates and suggesting that heritable 

confounding with other CVD biomarkers and risk factors may be present.   

 

We therefore sought to explore the pleiotropic relationships of the genomic loci associated with CRP 

to assess whether there is evidence for heritable confounding. SNPs associated with CRP levels were 

identified from in a recent GWAS of >500,000 individuals with European genetic ancestry.[28] This 

GWAS identified 266 loci as associated with CRP, 211 of which were novel. We made use of the 

FUMA platform[27] to identify other traits which have also been associated the 266 CRP genomic 

loci.  We first identified the lead SNPs the CRP loci (independent SNPs LD r2 < 0.1, and GWAS P-values 
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< 5)10-8) and performed a look up in the GWAS Catalog[56] (look up was performed on April 10th, 

2024) on 728 lead SNPs and 3,077 independent SNPs in strong LD with the lead SNPs (GWAS P-

values < 5)10-8 and LD r2 >0.1 with the respective lead SNP).   

 

The resulting list of associated traits was curated to prioritise biomarkers and risk factors over 

diseases. From this curated list we conducted a summary-data MR analysis of each trait on to CRP 

levels. Where only one SNP was available as associated with the exposure trait of interest the Wald 

ratio was calculated. For traits with 2 or more SNPs the IVW MR effect estimate was obtained and 

for traits with 3 or more SNPs the MR Egger[11], Weighted Mode[13] and Weighted Median[12] 

estimates were also obtained.  

 

Estimation of the effect of age at menarche on type 2 Diabetes 
All data used were downloaded from MRC IEU OpenGWAS[57]. SNP – exposure associations were 

extracted for age at menarche for data on recalled age at which periods started for women in UK 

Biobank (n = 243,944) obtained through the IEU GWAS pipeline[58, 59]. SNP – exposure associations 

were obtained for childhood adiposity for a previously conducted GWAS using data on self-reported 

childhood adiposity for men and women in UKBiobank.[29] SNP – outcome associations for Type 2 

diabetes was taken from a GWAS from FinnGen[60] to avoid sample overlap with UKBiobank.   

 

We applied the univariable summary data estimation approaches; IVW, MR Egger, weighted median 

and weighted mode and additionally MVMR adjusting for BMI. For each approach we selected all 

SNPs associated with the relevant exposure at genome-wide significance (p-value for the SNP-

exposure association < 5x10
-8

). For the MVMR we selected all SNPs associated with either age at 

menarche or childhood adiposity at the same threshold. Each univariable method was applied twice, 

once including all SNPs and once with Steiger filtering applied to remove SNPs that explained more 

variation in childhood adiposity than age at menarche. Steiger filtering was not applied to the MVMR 

estimation due to the inclusion of childhood adiposity as an exposure. Selected SNPs were then 

clumped to retain only independent SNPs (r2 < 0.001 based on a reference LD panel).  All analyses 

were done in R using the ‘TwoSampleMR’ package with default parameters for SNP selection and 

clumping applied.[61] 
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Figures 
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Figure 1: Instrumental Variable assumptions and potential mechanisms that can generate 

correlated pleiotropy and bias MR. 
Figure illustrating the IV assumptions and the different mechanisms that can cause correlated pleiotropy in MR 

studies in the absence of a causal effect of the exposure on the outcome. X is the exposure of interest, Y is the 

outcome, C is a confounder of the exposure and outcome. G is a set of SNPs associated with the exposure, some 

of which may be associated through another phenotype.  

A. Illustration of the main IV assumptions; (1) the IV should be associated with the exposure, (2) there 

should be no confounding of the IV and the outcome and (3) there should be no pathway from the IV 

to the outcome that doesn’t act through the exposure. The dashed lines represent associations that 

should not exist for the IV assumptions to be satisfied. 

B. i) Uncorrelated horizontal pleiotropy, some of the SNPs in G are associated with Y through X2  ii) and 

iii) show forms of heritable confounding and mis-specification of the primary phenotype. In ii) some of 

the SNPs in G are associated the exposure through the confounder, in iii) ALL of the SNPs in G are 

associated with the exposure through the confounder. iv) reverse causation.   
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Figure 2 – The Bias of linear regression and IV estimators when instruments have a pleiotropic 

effect through a single heritable confounder.  
A. A simple model with a single IV associated with an exposure and a confounder. This is used in obtaining the 

expressions for bias given above and for generating the simulation results in (b). 

B. Bias from estimation by linear regression and two-stage least squares for the model in (a) estimated assuming U 

is unobserved and there is no other confounding. Linear Regression gives the bias of the observational 

association,  IV (direct effect) sets  and gives the bias of the IV estimator, IV (no direct effect) sets 

 and gives the bias of the IV estimator. The relative positions of these plots depends on the other 

parameters in the model and the assumption of no other (non-heritable) confounding. 

C. Bias plots given in B with the addition of a positive non-heritable confounder of the exposure and outcome.  

D. Bias plots given in B with the addition of a negative non-heritable confounder of the exposure and outcome.  
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Figure 3. Network-based simulations of the origin of instruments.  

A.  Illustration of a random network. For each possible trait pair we assign an exposure (X) and an outcome (Y). In 

this simplified example instrument G1 is considered to act ‘directly’ because there is no confounding path 

between X and Y, whereas G2 is considered to act via a confounding path. The effect size of each instrument is 

determined based on all edges having a uniform effect of 0.1.  

B.  The mean effect of instrument on the exposure (y-axis) across simulations (x-axis and point size), stratified by 

whether they act ‘directly’ or via confounding paths. We observe that in general direct instruments have larger 

effects than those acting via confounders. 
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Figure 4 – Simulation of bias from a single heritable confounder in linear regression and MR. 
 

A. The model used to generate the data in the simulation. X is the exposure of interest, Y is the outcome, C is a 

(potentially observable) confounder of the exposure and outcome, M is a mediator upstream of X. G1 is a set of 

SNPs associated with the mediator, G2 is a set of SNPs associated with the confounder. SNPs in G1 may be 

associated with the exposure through the mediator and SNPs in G2 may be associated with the exposure through 

the confounder. There is no causal effect of the exposure on the outcome.  

B. B Results for the simulations varying; the proportion of the SNPs in G2 and whether Steiger filtering is applied. 

Total number of SNPs – 400, % given is the % in G2, the rest are valid SNPs for X (i.e. G1). All SNPs that are 

significantly associated with X in the simulated data are included in the univariable MR estimation and all SNPs 

significantly associated with X or C are included in the MVMR estimation. There is no causal effect of X on Y, the 

effect of M on X is 1, of C on Y is 0.4 and of C on X is 0.75. n=10000, reps=1000. The effect of X on Y is estimated 

by; Linear regression, IVW, MR Egger, weighted median, weighted mode and MVMR including C as an additional 

exposure. Steiger filtered results includes all univariable estimators with Steiger filtering applied to remove SNPs 

that explain more variation in C than X.  
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Figure 4 – Illustrative diagram for the hypothesised relationships between adiposity, age at 

menarche and Type 2 Diabetes. Gam is a set of genetic variants associated with age at menarche, Gadi is a 

set of genetic variants associated with childhood adiposity.  

 

 

 

 

 

 

Figure 5 – SNP-exposure and SNP-outcome association for SNPs included in the univariable MR 

estimation in estimation of the effect of age at menarche on Type 2 Diabetes SNP-exposure and SNP-

outcome associations for the SNPs used in the MR estimation of the effect of age at menarche on type 2 diabetes (T2D). All 

SNPs are genome-wide significantly associated with age at menarche, those SNPs that showed a stronger association with 

childhood adiposity than age at menarche are highlighted in blue.   
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Tables 
 

Table 1 – The number of SNPs selected in each simulation. 

P-value No. SNPs Exposure Confounder % for confounder 

50% of simulated SNPs associated with confounder 

5x10
-12

 57 39 18 31% 

5x10
-8

 97 61 36 37% 

5x10
-6

 131 79 52 40% 

5x10
-4

 182 104 78 43% 

87.5% of simulated SNPs associated with confounder 

5x10
-12

 42 10 32 76% 

5x10
-8

 79 15 64 80% 

5x10
-6

 112 20 92 82% 

5x10
-4

 164 27 137 84% 

The number of SNPs selected as associated with the exposure (out of the 400 generated) based on the p-value cutoff used 

for selection. Exposure gives the number of those that were generated as associated with the exposure and Confounder 

the number of those that were generated as associated with the confounder but selected as associated with the exposure. 

Numbers are means across all iterations, rounded to the nearest whole number.   

 

Table 2 – Proportion of traits that show evidence of a causal effect on C-Reactive Protein in MR 

 No of tests % P < 0.05 % P < 0.01 

Wald ratio/IVW 3770 21.7% 13.9% 

MR Egger 1480 27.5% 19.2% 

Weighted median 1478 29.0% 19.6% 

Weighted mode 1478 22.7% 13.7% 

Results from MR estimation of the effect of up to 5202 traits on CRP. Traits were selected from those strongly associated 

with at least one lead SNP in a recent CRP GWAS. Wald ratio was used for traits with 1 SNP available as an instrument and 

IVW was used for traits with 2 or more SNPs available as instruments. MR Egger, Weighted median and Weighted mode 

where additionally applied for all traits with 3 or more SNPs available as instruments.  

 

Table 3 – MR effect estimates for age at menarche on Type 2 diabetes. 

 All SNPs included Steiger filtering applied 

 OR 95% CI p-value OR 95% CI. p-value 

IVW 0.76 [0.65, 0.89] 0.0005 0.90 [0.79, 1.02] 0.11 

MR Egger 0.86 [0.55, 1.32] 0.51 1.21 [0.83, 1.75] 0.32 

Weighted median 0.94 [0.81, 1.10] 0.43 1.03 [0.87, 1.21] 0.74 

Weighted mode 1.05 [0.83, 1.33] 0.68 1.07 [0.83, 1.37] 0.61 

MVMR  0.99 [0.78, 1.09] 0.33 - - - 

OR: Effect estimates given in odds ratios for an increase in type 2 diabetes risk for a category increase in age at menarche. 

Univariable MR - 181 SNPs, with Steiger filtering – 168 SNPs, MVMR 273 SNPs. 
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