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Abstract 13 

Common and rare genetic variants that impact adult cognitive performance also contribute to risk 14 

of rare neurodevelopmental conditions involving cognitive deficits in children. However, their 15 

influence on cognitive performance across early life remains poorly understood. Here, we 16 

investigate the contribution of common genome-wide and rare exonic variation to cognitive 17 

performance across childhood and adolescence primarily using the Avon Longitudinal Study of 18 

Parents and Children (n=6,495 unrelated children). We show that the effect of common variants 19 

associated with educational attainment and cognitive performance increases as children age. 20 

Conversely, the negative effect of deleterious rare variants attenuates with age. Using trio 21 

analyses, we show that these age-related trends are driven by direct genetic effects on the 22 

individual who carries these variants. We further find that the increasing effects of common 23 

variants are stronger in individuals at the upper end of the phenotype distribution, whereas the 24 

attenuating effects of rare variants are stronger in those at the lower end. Concordant results were 25 

observed in the Millenium Cohort Study (5,920 children) and UK Biobank (101,232 adults). The 26 

effects of common and rare genetic variation on childhood cognitive performance are broadly 27 

comparable in magnitude to those of other factors such as parental educational attainment, 28 

maternal illness and preterm birth. The effects of maternal illness and preterm birth on childhood 29 

cognitive performance also attenuate with age, whereas the effect of parental educational 30 

attainment does not. Furthermore, we show that the relative contribution of these various factors 31 

differ depending on whether one considers their contribution to phenotypic variance across the 32 

entire population or to the risk of poor outcomes. Our findings may help explain the apparent 33 

incomplete penetrance of rare damaging variants associated with neurodevelopmental 34 

conditions. More generally, they also show the importance of studying dynamic genetic influences 35 

across the life course and their differential effects across the phenotype distribution.  36 

 37 
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Main text 39 

Cognitive ability is an important predictor of life outcomes such as health, education, occupation, 40 

and mortality1–6. It is influenced both by genetic and environmental factors7, including extrinsic 41 

factors that have both genetic and environmental components such as parental educational 42 

attainment (EA), gestational age at birth, and maternal illness during pregnancy8–10. Results from 43 

twin studies show that the heritability of cognitive ability increases throughout development, from 44 

~0.2 in infancy to ~0.6 in adulthood11. In adults, the heritability of cognitive performance 45 

attributable to common single-nucleotide polymorphisms (the ‘SNP heritability’) was recently 46 

estimated to be 0.24, with about 60% of this being due to direct genetic effects12,13, i.e. effects of 47 

genetic variants in an individual on that individual’s own phenotype. The remaining SNP 48 

heritability is likely to  be explained by a variety of other sources, including the indirect effects of 49 

“genetic nurture” (a phenomenon whereby an individual's rearing environment is influenced by 50 

their relatives’ genetic make-up), assortative mating, and uncontrolled population stratification in 51 

genome-wide association studies (GWASs)14–17. The relative contribution of genetic nurture, 52 

assortative mating and population stratification to genetic associations is still a matter of debate, 53 

and may differ between cognitive performance and related traits such as EA and academic 54 

achievement14,18–20. However, the role of direct versus indirect genetic effects on cognitive and 55 

academic performance across different timepoints in development is under-studied, and we 56 

explore this in this work.  57 

 58 

It has become increasingly clear that the genetics of rare neurodevelopmental conditions (NDCs) 59 

involving cognitive impairment overlap with genetic factors impacting cognitive ability in the 60 

general population. While Mendelian-acting rare variants play a large role in NDCs, explaining 61 

~50% of probands in the Deciphering Developmental Disorders (DDD) study21–23, common 62 

variants explain ~10% of variation in risk of these conditions on the liability scale24,25, and this 63 

common variant risk is negatively genetically correlated with EA and adult cognitive performance 64 

in the general population24,25. Additionally, rare damaging coding variants in NDC-associated 65 

genes are associated with lower fluid intelligence as well as lower EA and reproductive success 66 

in UK Biobank26–28, and estimates suggest rare coding variants explain 1% of the variance in adult 67 

cognitive performance29.  68 

 69 

Multiple lines of evidence from both clinical30–32 and population cohorts28,33 suggest that some rare 70 

variants conferring risk of NDCs can be shared between affected children and their seemingly 71 

unaffected parents. This so-called ‘incomplete penetrance’ is seen both for large copy-number 72 

variants31 and for protein-truncating variants (PTVs) and damaging missense variants in genes in 73 

which such variants have been under negative selection throughout human history (‘constrained 74 

genes’34)32. There are several possible explanations for this apparent incomplete penetrance, 75 

including the following. Firstly, polygenic background may modify the penetrance of these rare 76 

variants; there is evidence of this from the general population28, but recent within-family analyses 77 

in NDC cohorts failed to find support for it25. Secondly, it may be that the burden of deleterious 78 

rare variants does not only impact average cognitive ability, but also its variance; in other words, 79 

in a linear regression of phenotype on genotype, the variance of the residuals varies by genotype 80 

- a statistical phenomenon known as ‘heteroscedasticity’. Specifically, it may be that there is a 81 
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higher variance in cognitive ability amongst individuals with higher burden of damaging rare 82 

variants, and only a subset of these pass the threshold for being diagnosed with intellectual 83 

disability. Thirdly, it may be that these rare variants (or at least a subset of them) influence 84 

cognitive ability in childhood more than they do in adulthood. Here, we investigate these two latter 85 

hypotheses. 86 

 87 

In this work, we sought to dissect the contribution of genome-wide common variants and rare 88 

exonic variants to cognitive performance across childhood and adolescence, using genotype data 89 

and new exome-sequence data from two British birth cohorts, the Avon Longitudinal Study of 90 

Parents and Children (ALSPAC)35 and the Millenium Cohort Study (MCS)36. Our first aim was to 91 

examine the effects of genetic measures on average cognitive performance and academic 92 

achievement as children age, then test whether these change across time and the extent to which 93 

they are due to direct genetic effects. Our second aim was to explore whether these genetic 94 

measures have differential effects at the tails of the phenotype distribution (in other words, 95 

whether they impact the variance in cognitive ability). Finally, our third aim was to compare these 96 

genetic effects to those of parental educational attainment and perinatal exposures, and to 97 

explore whether they are robust to controlling for these other measures. Our results illuminate the 98 

dynamic genetic architecture of cognitive performance across development and shed light on the 99 

factors that best predict cognitive impairment in childhood as opposed to average cognitive 100 

performance in adulthood. 101 

Results 102 

In this work, we used measurements of cognitive performance and/or school achievement from 103 

three cohorts: ALSPAC, MCS and UK Biobank. Our primary analyses were based on measures 104 

of IQ from ALSPAC that were collected at ages 4 (n=1,012), 8 (n=7,347), and 16 (n=5,270). These 105 

IQ tests have good psychometric properties37 and are longitudinally invariant, meaning that they 106 

measure the same latent construct across ages38, making them suitable for longitudinal analyses. 107 

Since missingness can induce ascertainment biases and reduce power, we imputed missing IQ 108 

values across ages by leveraging the lower missingness of other cognitive and behavioral tests 109 

and demographic variables (Supplementary Note 1; Extended Data Figure 1). We report results 110 

analyzing only the observed IQ values (“pre-imputation”) and both the observed and imputed IQ 111 

values (“post-imputation”).  112 

Influence of common variants on cognitive performance across development 113 

To assess the common variant contribution to cognitive development, we first considered the 114 

heritabilities and genetic correlations of the IQ measures across development in ALSPAC, using 115 

6,495 unrelated children with SNP genotype data, genetically-inferred European ancestry and 116 

observed or imputed IQ values. Using GREML-LDMS39, we estimated that the heritability of IQ 117 

increased between ages 4 to 16 from 0.46 to 0.56 (post-imputation), though the increase was not 118 

significant (p=0.053) (Table S2). The pairwise genetic correlations between IQ across ages were 119 

all significantly greater than zero (p<10-10) and indistinguishable from 1 (Table S2), suggesting 120 
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the common variant genetic architecture is largely stable across development. These results are 121 

consistent with previous studies40,41.  122 

 123 

We then considered the associations between IQ and polygenic indices (PGIs), which capture 124 

the effect of common SNPs ascertained for their association with a given trait. We first considered 125 

a PGI for EA (PGIEA). EA is known to have a cognitive component as well as a non-cognitive 126 

component which may capture factors such as personality traits and socioeconomic status that 127 

affect people’s ability to progress through education42. Genetic effects on these two components 128 

have been previously derived from GWASs in adults using Genomic Structural Equation 129 

Modeling42, so we also included PGIs representing each of them (PGICog and PGINonCog). For each 130 

PGI, we modeled IQ across all ages as the outcome of individual-specific random effects and 131 

several fixed effects, namely age (relative to age 4), the PGI, and their interaction, with sex and 132 

genetic principal components as covariates. With this mixed-effects linear model, we were able 133 

to account for intra-individual repeated IQ measures and estimate two parameters of interest: the 134 

effect of the PGI at baseline i.e. at age 4 (the “main effect”, estimated leveraging the data at all 135 

ages) and whether the effect changed with age (the “interaction effect”; see Box 1). We detected 136 

significant (p<.05/3) positive main effects for all PGIs pre- and post-imputation, and significant 137 

positive PGI-by-age interaction effects for all PGIs post-imputation as well as for PGIEA pre-138 

imputation (“population model, full cohort” in Figure 1A, Table S4). These results imply that the 139 

common variants ascertained for their association with cognitive performance and final 140 

educational attainment in adults explain more variance in IQ as children age.  141 

 142 

As noted above, these results give estimates of the association between children’s PGIs and IQ 143 

which do not only include direct genetic effects; they also include the influence of other correlates 144 

of the child’s genotype including the influence of parental genotypes on the child’s IQ (often 145 

termed “indirect genetic effects” or “genetic nurture”) and potential confounding due to population 146 

stratification and assortative mating. We thus sought to estimate the direct genetic effects of PGIs 147 

on IQ across development, as opposed to the ‘population effects’ just described. We repeated 148 

the above analyses adding parental PGIs as covariates in a subset of 4,968 unrelated parent-149 

offspring trios for which we measured parental genotypes or could infer them via Mendelian 150 

imputation20 (“trio model”; see Methods). After conditioning on parental PGIs, the coefficient on 151 

the child’s PGI provides an estimate of the direct genetic effects14, while the coefficient on the 152 

parents’ PGIs represents the association between the child’s phenotype and alleles in the parents 153 

that are not transmitted to the child. We found no evidence for a direct main effect of the PGINonCog 154 

(Figure 1A), implying that the population effect reflects genetic nurture or potential confounding. 155 

In contrast, we detected significant direct main effects of PGIEA and PGICog on IQ, though of 156 

weaker magnitude than the population effects both pre- and post-imputation (p<0.005, z test for 157 

difference between direct and population main effects for PGIEA and PGICog) (Figure 1A). The 158 

positive PGIEA-by-age and PGICog-by-age population effects were recapitulated when examining 159 

the direct effects (p<.05/3), and their magnitudes were statistically indistinguishable from the 160 

population effects both pre- and post-imputation (p>0.05, z test). We found no significant 161 

differences between the direct effects for  PGIEA and PGICog (p>0.05 for difference in the main and 162 

interaction effects, z test), suggesting the cognitive component of EA fully captured the direct 163 

genetic effect of PGIEA on IQ.  164 
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 165 

 166 

 167 

Box 1: Genetic effects estimated in this study 

 
We estimate a variety of genetic effects from mixed-effects models (see Methods section on 
“Associations between genetic measures and traits”), including either main or interaction effects 
combined with either population effects, direct effects or effects of non-transmitted parental 
alleles. 
 
Population main effect: The effect of a child’s genetic score on the phenotype at the first 
measurement time point (e.g., age 4 in the ALSPAC IQ analysis). This effect is estimated 
without adjusting for parental genetic scores in the regression, and reflects a combination of the 
effects of the child’s genetic score on their own phenotype, genetic nurture, assortative mating, 
and uncontrolled population stratification. It does not have a causal interpretation. 
 
Population interaction effect: The change in the population effect of a genetic score on the 
phenotype with age.  
 
Direct main effect: The effect of a child’s genetic score on the phenotype at the first 
measurement time point, adjusting for the parental genetic scores (i.e., a trio model).  This effect 
isolates the influence of the child’s own genetic score on their own phenotype and has a causal 
interpretation (see section IV in 43 for further discussion). 
 
Direct interaction effect: The change in the direct effect of a genetic score on the phenotype 
with age. 
 
Effects of non-transmitted alleles: These are the effects of the parental genetic scores on 
the phenotype, estimated in the trio model; in this model, the effect of transmitted alleles is 
captured by the coefficient on the child’s score, whereas the coefficients on the parents’ scores 
are mathematically equivalent to the effect of the non-transmitted alleles in the parents. These 
effects reflect a combination of genetic nurture, assortative mating, and uncontrolled population 
stratification. They do not have a causal interpretation. 
 
Note that all of these effects are estimated both on the mean of the phenotype with linear 
regression (Figures 1, 2, 4A), and also on quantiles of the phenotype (e.g., the median) with 
quantile regression (Figure 3, 4B).  

 168 
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Figure 1  170 

Association between PGIs and IQ across ages. Standardized effects and 95% confidence intervals 171 

estimated for the main effects and PGI-by-age-interaction effects for each PGI, either pre- (top) and post-172 

imputation (bottom) A) Results for the children’s PGIs not controlling (i.e. ‘population model’) and controlling 173 

(right) for parental PGIs (i.e. trio model). Population effect sizes are shown estimated in the full sample 174 

(opaque) and in the subset of children with parental PGIs (translucent), with the corresponding sample 175 

sizes shown in black and gray text respectively. B) Results for the parental PGIs from the trio model. SD: 176 

standard deviation; PGI: polygenic index; EA: educational attainment; Cog: cognitive component of EA from 177 
19; NonCog: non-cognitive component of EA from 19. The square brackets indicate significant comparisons 178 

highlighted in the text (z tests).  179 

 180 

In the trio model, we found all parental PGIs had significant main effects pre- and post-imputation 181 

and there was a nominally significant positive PGINonCog-by-age interaction post-imputation (Figure 182 

1B, Table S4). Additionally, we found the main effect of the maternal PGINonCog was significantly 183 

greater than the paternal effect post-imputation (difference in coefficients = 0.067, p=0.014, z 184 

test), though we did not find significant differences between maternal and paternal effects for 185 

PGIEA and PGICog. These results suggest that indirect genetic effects and/or confounding effects 186 

captured by the parental PGIs are significantly associated with IQ, and that the effects captured 187 

by parental PGINonCog are stronger for the maternal than the paternal PGI. The association 188 

between non-transmitted alleles in PGINonCog and children’s IQ could be because parenting 189 

behaviors correlated with PGINonCog increase children’s cognitive ability, or due to cross-trait 190 

parental assortment based on the cognitive and non-cognitive components of educational 191 

attainment. The fact that we observe a significant difference between the associations with 192 

mothers’ and fathers’ non-transmitted alleles suggest that these potentially reflect at least some 193 

‘genetic nurture’ component which differs between parents. 194 

 195 

As a complementary approach, we assessed the influence of the PGIs on academic performance 196 

in ALSPAC. In Year 6 and Year 9 (roughly ages 11 and 14, respectively; known as Key Stages 2 197 

and 3 in the UK) children were administered three standardized exams covering English, 198 

Mathematics, and Science from which we derived a composite academic performance metric 199 

which we showed was measuring the same latent construct across time (Table S1; Methods). We 200 

assessed the contribution of the three PGIs to academic performance as before, for children who 201 

had complete data for the three exams at both ages (n=3,895). We found significant (p<1.1x10 -202 
17) population effects for all PGIs and significant increases in effects with age for PGIEA and 203 

PGINonCog(p<2.1x10-8) (Extended Data Figure 2, Table S5). In a trio analysis (n=3,024), we found 204 

evidence for direct genetic effects of PGIEA and PGICog on academic performance (Extended Data 205 

Figure 2), consistent with previous work in other cohorts19. Though all of the PGI-by-age 206 

interactions were positive, only the PGIEA showed a significant increase in direct effects (p=0.014), 207 

likely due to the reduction in power of the decreased sample size and the narrower age range 208 

considered. However, broadly these results for the impact of common genetic variation on 209 

academic performance mirror what we observed for IQ.  210 
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Influence of rare variant burden on cognitive performance across development 211 

We generated new exome sequencing data on ALSPAC (8,436 children and 3,215 parents) and 212 

MCS (7,667 children and 6,925 parents) to supplement the SNP genotype and longitudinal 213 

phenotype data already available. We first used these to assess the associations between IQ and 214 

deleterious rare variant burden (RVB) in ALSPAC. We quantified RVB as the sum of gene-specific 215 

selection coefficients44 (reflecting evolutionary constraint, or negative selection) for genes in which 216 

an individual carries a rare (within-sample minor allele frequency, MAF <0.1%) predicted loss-of-217 

function, deleterious missense, or synonymous variant (RVBpLoF, RVBMissense and RVBSynonymous 218 

respectively; see Methods).  219 

 220 

RVBpLoF and RVBMissense were significantly negatively associated with IQ pre- and post-imputation 221 

(main effects p<.05/3) (Figure 2A left, Table S6). As the variance of RVBpLoF was significantly 222 

lower than that of RVBMissense (0.008 versus 0.03, p<10-10 F test), we compared their 223 

unstandardized effects and found that, as expected, RVBpLoF had a stronger effect, with its main 224 

effect being 3.2-times larger than that of RVBMissense (p=4x10-7 , z test) (Extended Data Figure 3). 225 

RVBSynonymous (a negative control) was not significantly associated with IQ at any age pre- and 226 

post-imputation (Figure 2A). The effect of RVBpLoF significantly attenuated at later ages both pre- 227 

and post-imputation (p<.05/3) and we saw the same trend at nominal significance for RVBMissense 228 

post-imputation (Figure 2A right). Similarly, we found that RVBpLoF and RVBMissense were 229 

significantly negatively associated with academic performance at age 11 but their effects 230 

attenuated with age (Extended Data Figure 4, Table S7).  231 

 232 

Next we considered the effects of RVBpLoF calculated for specific gene sets. We found that genes 233 

prioritized via common variant-based GWAS of educational attainment45 showed a stronger 234 

association with IQ in childhood than expected for similarly evolutionarily constrained genes, 235 

highlighting the convergence of common and rare variant associations for these related 236 

phenotypes on the same genes (Supplementary Note 2, Extended Data Figure 5). We also 237 

observed suggestive evidence that the attenuation of the effect of RVBpLoF on IQ with age was 238 

strongest in genes that showed preferential expression in the prenatal rather than postnatal 239 

brain46  (Supplementary Note 2, Extended Data Figure 5A), although this was less clear when 240 

examining academic performance (Figure S5). 241 

 242 

We next sought to estimate the direct genetic effects of RVB on IQ across development in a 243 

subset of 958 unrelated exome-sequenced trios by adding parental RVBs as covariates as before. 244 

We found that the estimated population and direct main effects were not significantly different 245 

from each other for either RVBpLoF nor RVBMissense  (p>0.05, z test) (Figure 2A, Table S6) and that 246 

no maternal or paternal RVBs were significantly associated with IQ after accounting for multiple 247 

testing (Figure 2B, Table S6), though this may be in part due to the larger standard errors of the 248 

estimates at this smaller sample size. This result implies that the population effects are likely 249 

minimally biased in estimating the direct effects, in contrast to what we observed for PGIs. 250 

Notably, we found significant RVBpLoF-by-age and RVBMissense-by-age interactions for direct effects 251 

both pre- and post-imputation (p<.05/3). Thus, our results show that higher exome-wide burden 252 

of rare damaging variants is associated with lower IQ in childhood, though with attenuated effects 253 

at later age, and that this pattern is recapitulated when examining the direct genetic effects. When 254 
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partitioning the effect of the burden of rare pLoFs in constrained genes into inherited variants 255 

versus de novo mutations in ALSPAC, we estimated that the former explained 3.5-4 times more 256 

variance in IQ across development than the latter (Supplementary Note 3; Extended Data Figure 257 

6). We obtained similar results when considering the association of de novo or rare inherited 258 

alleles on a composite measure of childhood cognitive performance in MCS (see Methods; Figure 259 

S1).  260 

 261 
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Figure 2 262 

Association between rare variant burden (RVB) and IQ across ages. Standardized effects and 95% 263 

confidence intervals estimated for the main effects and RVB-by-age-interaction effects for RVB calculated 264 

with three different consequence classes (pLoF, missense or synonymous), either pre- (top) and post-265 

imputation (bottom) . A) Results for the children’s RVBs not controlling (i.e. ‘population model’) and 266 

controlling (right) for parental RVBs (i.e. trio model). Population effect sizes are shown estimated in the full 267 

sample (opaque) and in the subset of children with parental RVBs (translucent), with the corresponding 268 

sample sizes shown in black and gray text respectively. B) Results for the parental RVBs from the trio 269 

model. The square brackets indicate comparisons highlighted in the text (z tests).  270 

Influence of genetic factors on the tails of the IQ distribution 271 

Our results thus far show that deleterious rare exonic and common variants influence mean IQ. 272 

However, we have yet to consider whether they differentially impact IQ at different quantiles in 273 

the IQ distribution. Importantly, deleterious rare variants in constrained genes are known to affect 274 

risk of neurodevelopmental conditions21, hinting that they may possibly have larger effects at the 275 

lower tail end of the IQ distribution. To test whether there are heterogenous genetic effects at the 276 

tails of the IQ distribution, we used quantile regression to estimate the influence of PGIs and RVB 277 

on both the median IQ as well as the bottom and top 5th percentiles in ALSPAC (Figure 3A), 278 

which roughly correspond to IQ<75 and IQ>125, respectively37.  279 

 280 

First, we considered the influence of PGIEA and PGICog, which had significant direct genetic effects 281 

on IQ in Figure 1. The effects on these different quantiles in the IQ distribution were largely 282 

concordant at any given time point (Figure S2, Table S8). For both PGIEA and PGICog, we found 283 

significant positive age interaction effects at the median and 95th quantile for population effects 284 

(p<.05/3), which were at least nominally significant when considering the direct effects (Figure 285 

3B). Notably, there was no evidence for significant age interactions at the 5th percentile for either 286 

PGI. Repeating this analysis using academic performance in ALSPAC replicated the results, 287 

showing that the standardized effect size of the PGI only significantly increased at the median 288 

and nominally at the 95th percentile (Extended Data Figure 7A). Parental PGI associations with 289 

IQ were largely uniform across the phenotype distribution and consistent across development 290 

(Extended Data Figure 8).  Collectively, these results suggest the observed increase with age in 291 

the effect of the two PGIs on IQ was driven by increasing genetic effect in the upper half of the IQ 292 

distribution.  293 

 294 
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 295 
Figure 3 296 

Influence of common and rare variants on the tails of the IQ distribution, using IQ measures post-imputation 297 

in ALSPAC. A) Schematic showing two scenarios where a genetic measure is associated with IQ and has 298 
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uniform effects across the IQ distribution (left) versus a scenario in which the genetic measure has 299 

heterogeneous effects on IQ across the IQ distribution (right). B) Standardized effects and 95% confidence 300 

intervals for quantile regression of the 5th, 50th, and 95th percentile estimated from mixed-effects modeling 301 

with post-imputation IQ at ages 4, 8, and 16 for EA and EA-cog PGIs before (left) and after (right) controlling 302 

for parental genetic measures. C) Same as (B) using RVBpLoF and RVBMissense as genetic measures. See 303 

Figure S3 for results from this mixed-effects model pre-imputation, and Figure S2 and Figure S4 for cross-304 

sectional estimates at each age. The square brackets indicate significant comparisons highlighted in the 305 

text (z tests).  306 

 307 

As additional replication, we then considered the association between PGIEA and a single 308 

measure of cognitive performance from each of MCS and UK Biobank. In MCS, cognitive tests 309 

were administered at multiple ages, but previous work showed that these are not longitudinally 310 

invariant47, so we instead extracted a single composite cognitive measure from the tests 311 

administered at ages 3 and 7 (see Methods) to represent overall cognitive performance in early 312 

childhood. In UK Biobank, we used the results for the verbal-numerical reasoning test (sometimes 313 

called “fluid intelligence”) conducted at baseline, to represent adult cognitive performance. We 314 

hypothesized that we would see relatively uniform effects across quantiles of early childhood 315 

cognitive performance measured in MCS, as we did for IQ in ALSPAC at age 4 (Figure S2). Given 316 

the differential age interactions across quantiles observed in ALSPAC (namely the increasing 317 

effect with age that is seen only in the top half of the distribution), we predicted that, in UK Biobank 318 

adults, the PGIEA effects would be markedly stronger at the top 5% and median than the bottom 319 

5%. Our results were concordant with these two predictions  (Extended Data Figure 7B): neither 320 

the population (n=5,920) nor direct (n=5,309) effects were statistically different across quantiles 321 

in MCS, while we found significant heterogeneity in UK Biobank when examining both the 322 

population effect (n=101,232) and direct effect (n=11,859), with the direct effect at the top 5% 323 

being 1.62 times greater than that at the bottom 5% (p=0.0084).   324 

 325 

Secondly, we considered the influence of rare variant burden on these different quantiles of the 326 

IQ distribution at different ages in ALSPAC. We found substantial heterogeneity in effects  of 327 

RVBpLoF across the IQ distribution earlier in development that attenuated with age (Figure S4; 328 

Table S9). Notably, at age 4, the population effect of RVBpLoF at the 5th percentile was 3.9-times 329 

greater than that at the 95th percentile (p=9x10-5, z test) and 2.2-times greater than at the median 330 

(p=7x10-4), whereas by age 16, the estimates at the different quantiles were not significantly 331 

different from one another. Put another way, this implies that, at age 4, the variance in IQ in people 332 

with high RVBpLoF is greater than in those with lower RVBpLoF, but this is driven by there being 333 

more people with lower rather than higher IQ, as illustrated in the right-hand plot in Figure 3A; 334 

however, by age 16, RVBpLoF shows uniform effects at the distribution tails. As a consequence of 335 

this, the significant attenuation of population effects with age was observed only at the 5th 336 

percentile and median, but not at the 95th percentile, for both RVBpLoF and RVBMissense (Figure 3B). 337 

This finding was recapitulated when examining direct genetic effects of RVBpLoF although not 338 

RVBMissense  (Figure 3B). Although we detected no significant effects of parental RVB on mean IQ 339 

in the trio model (Figure 2B), we detected a nominally significant negative effect of maternal 340 

RVBpLoF on the bottom 5th percentile, suggesting that the effect of genetically-influenced parental 341 

behaviors on IQ may vary across the IQ distribution (Extended Data Figure 8). This is in line with 342 

our recent finding of a significant effect of non-transmitted rare damaging maternal alleles on risk 343 
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of neurodevelopmental conditions (Extended Data Figure 10B in 25). Repeating the RVBpLoF 344 

analysis on school grades in ALSPAC, we similarly find stronger associations between RVBpLoF 345 

and academic performance at the 5th percentile that attenuate as children age (Extended Data 346 

Figure 7A). These results stand in contrast to those for the PGIs for which the significant age 347 

interactions were seen only in the top half of the IQ distribution.  348 

 349 

To try to replicate these results in independent cohorts, we then considered the association 350 

between the RVBpLoF and RVBMissense and measures of cognitive performance in MCS (n=5,666) 351 

and UK Biobank (n=101,232). Given the heterogeneity of effects on IQ observed at age 4 in 352 

ALSPAC (Figure S4), we hypothesized that in MCS, we would find stronger effects for RVBpLoF at 353 

the bottom 5% of our composite cognitive performance measure from early childhood. In UK 354 

Biobank, we predicted that the differences across quantiles would be minimal since we observed 355 

increasingly uniform effects across the quantiles by age 16 in ALSPAC (Figure S4). Our findings 356 

were concordant with these two predictions: the bottom 5% had an effect 1.82-times stronger than 357 

the median and 2.4-times stronger than the 95th percentile in MCS (p=0.019 and 0.011, 358 

respectively), while we found no significant differences in effects across quantiles in UK Biobank 359 

(Extended Data Figure 7B). Thus, in summary, we show that the negative effects of RVB are 360 

strongest on the lower tail of the distribution of cognitive ability, and that these effects attenuate 361 

with age, driving the overall attenuation of the RVB effect on mean IQ previously observed in 362 

Figure 2. 363 

Relative contribution of genetic and other exposures to IQ 364 

Finally, we compared the longitudinal effects of common and rare genetic variants on IQ (Figures 365 

1 and 2) to the effects of other factors that have previously been associated with children’s 366 

academic and cognitive outcomes (see Methods). We tested the effects of two perinatal factors, 367 

namely maternal illness during pregnancy and premature birth (as measured by the number of 368 

weeks born preterm), and the effect of realized parental educational attainment on IQ in ALSPAC 369 

using a mixed-effects linear model. When fitting the variables separately (i.e. marginal 370 

associations shown in blue points in Figure 4A), we found that paternal and maternal EA were 371 

strongly associated with IQ (Figure 4A top) and showed no evidence for an age interaction effect 372 

(Figure 4A bottom). We additionally found that maternal illness and weeks born preterm are 373 

negatively associated with IQ (Figure 4A top) and that these associations attenuated with age 374 

(Figure 4A bottom), consistent with previous findings using school grades in ALSPAC and 375 

MCS48,49. The standardized effects for these perinatal exposures were weaker than those for rare 376 

variants, with maternal illness and weeks born preterm explaining 0.18% and 0.35% of the 377 

variance in IQ at age 4 respectively, versus 1.40% for RVBpLoF and RVBMissense collectively 378 

(p=5.2x10-4 and 0.027, respectively) (Figure 4A top).  379 

 380 

Since these perinatal factors considered are both associated with lower parental EA50–52, and 381 

parental EA is correlated with both the parents’ and the child’s genetics, the effects of these 382 

various factors on the child’s cognitive ability are likely not independent. Thus, we considered a 383 

model in which we jointly fit parental EA and the perinatal exposures together with the genetic 384 

scores that showed significant direct effects in Figure 1 and 2, namely offspring and parental 385 

PGIEA and the child’s RVBpLoF and RVBMissense (conditional estimates shown in orange in Figure 386 
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4A). The incremental R2 of the joint model (excluding weeks born preterm due to the lower sample 387 

size) relative to a baseline model with sex and genetic 10 PCs was 22.8% at age 4, 21.2% at age 388 

8 (p=0.29 for a z-test for difference in variance explained compared to age 4) and 25.6% at age 389 

16 (p=0.073 and 0.0045 relative to age 4 and 8 respectively, z test). We found that when jointly 390 

fit with the other variables, the parental PGIEA associations became nonsignificant, though the 391 

child’s direct effect estimate did not significantly change (Figure 4A top). Similarly, the effects of 392 

the child’s RVBpLoF and RVBMissense on IQ did not significantly attenuate after controlling for these 393 

different exposure variables and PGIEA. The association between weeks born preterm and IQ was 394 

no longer significant in the conditional analysis, though this may be due to reduced power in the 395 

joint model. Maternal and paternal EA showed similar effect sizes to each other, which were also 396 

similar to those captured by the direct genetic effect of the child’s PGIEA. Collectively, these results 397 

highlight that the magnitude of effects of these genetic measures on childhood IQ is comparable 398 

to those of other well-established influences. Importantly also, the changing effects of RVB and 399 

PGSEA on IQ with age that we have described above still persist after conditioning on parental EA 400 

and these perinatal exposures (Figure 4A bottom). 401 

 402 

Given our prior observation of differential effects of genetic measures on the tails of the IQ 403 

distribution, we further considered the influence of parental EA and these perinatal exposures on 404 

the median and top and bottom 5th percentiles of the IQ distribution. When considering each of 405 

the variables in separate mixed-effects quantile regressions (Figure 4B, marginal estimates), we 406 

found that paternal and maternal education had similar magnitudes of main effects as well as 407 

uniform effects across quantiles, and we detected a nominally significant positive age interaction 408 

(p=0.029) for paternal education at the 95th percentile (Figure 4B). We also found substantial 409 

heterogeneity in the effect of weeks born preterm, displaying highly significant main effects at the 410 

95th percentile (effect size = -0.120, p=8.44x10-6) that significantly attenuated with age 411 

(p=0.00421), as previously observed when examining the effect on mean IQ (Figure 4A bottom), 412 

while we detected no significant effects at the 5th percentile (effect size = -0.022, p=0.389). In 413 

contrast, for maternal illness, we detected significant main effects at the 5th (p=5.97x10 -8) that 414 

attenuated with age (p=5.06x10-4), while the main effect at the 95th percentile was nonsignificant. 415 

These results suggest that different perinatal factors may have varying impacts across the IQ 416 

distribution, with some factors predominantly affecting the upper or lower tails of cognitive ability. 417 

 418 

We then further explored the differential effects on the different quantiles of the IQ distribution in 419 

a joint model of the genetic and other exposures (Figure 4B, conditional estimates), excluding 420 

weeks born preterm due to high missingness. We detected significant maternal PGIEA main effects 421 

on the 5th and 50th percentiles of the IQ distribution (Figure 4B) which were not observed in the 422 

conditional analysis of mean IQ (Figure 4A), suggesting the heterogeneous effects across the IQ 423 

distribution may have masked these associations. This result suggests that the mother’s PGIEA, 424 

independently of its influence on the mother’s actualized EA, is associated with the child’s IQ at 425 

the lower tail of the IQ distribution either due to genetic nurture or confounding tagged by the 426 

paternal PGIEA. In comparison, neither paternal nor maternal EA showed heterogeneity of main 427 

effects across the IQ distribution (Figure 4B top). However, paternal EA did show a significant 428 

positive age interaction at the 95th percentile (Figure 4B bottom) which was not observed when 429 

considering the effect on mean IQ (Figure 4A bottom), suggesting the influence of paternal EA on 430 
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IQ increases at later stages of development among those at the top of the IQ distribution. Thus, 431 

in summary, our results indicate that the factors that best predict which children will have cognitive 432 

difficulties or will excel cognitively across childhood are different from those that best predict 433 

average IQ.  434 
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Figure 4 436 

Associations between genetic and other factors and IQ across ages in ALSPAC. A) Standardized effects 437 

and 95% confidence intervals for the main effects (top) and measure-by-age-interaction effects (bottom) 438 

obtained from mixed-effects models fitted for IQ post-imputation. These were obtained from four models, 439 

as indicated in the key: marginal associations from models in which only the indicated variable(s) were 440 

included in the model (in addition to standard covariates), and conditional associations from models in 441 

which all the variables were included in the same model. Note that we estimated the marginal and 442 

conditional effects either using only individuals who had gestational age information (n=1,595) or all 443 

individuals (n=4,563), dropping the “weeks born preterm” variable in the latter case. See Methods for 444 

details. B)  Standardized effects and 95% confidence intervals for the main effects (top) and measure-by-445 

age-interaction effects (bottom) for quantile regression of the 5th, 50th, and 95th percentile estimated from 446 

mixed-effects quantile regression modeling for IQ post-imputation using both marginal and conditional 447 

associations as in (A). In (B), marginal effect sizes for the child’s PGIEA, RVBpLoF, and RVBMissense, which 448 

were previously shown in Figures 1 and 2 are replotted to facilitate comparisons of effect size with the 449 

conditional analysis results. Asterisks indicate whether the estimate is significantly different from 0; note 450 

that curly brackets with asterisks indicate that the estimates spanned by the bracket are all significant. 451 

Discussion 452 

Here we explored the contribution of common and rare variants to cognitive performance 453 

longitudinally across childhood and adolescence. We showed that common and rare variants 454 

differ in their effects on IQ and school achievement across time. While the effect of rare damaging 455 

variants attenuates between childhood and adolescence (Figure 2), the effect of common variants 456 

associated with educational attainment and cognitive performance in adulthood increases (Figure 457 

1). In both cases, these changes are due to direct genetic effects, with no evidence for an age 458 

interaction effect of non-transmitted common or rare alleles in parents (Figure 1B), nor indeed for 459 

any effects of non-transmitted rare alleles on average IQ at all (Figure 2B). Our common variant 460 

findings are similar to those of Malanchini et al. who showed that the effect of a polygenic score 461 

for non-cognitive skills on academic achievement increased over development in a different 462 

cohort, including in within-family analyses53. 463 

 464 

In theory, the increasing effect of polygenic indices for educational attainment and adult cognitive 465 

performance with age could simply be because the underlying SNP effects have been estimated 466 

on adult phenotypes which are better correlated with IQ in later childhood than early childhood54,55. 467 

Having said that, we observed suggestive evidence for an increase in the total SNP heritability of 468 

IQ with age in ALSPAC (p=0.053) (Table S2), consistent with the trend reported in another 469 

cohort40. Additionally, the common variant genetic correlations between IQ measured at the 470 

different ages and educational attainment measured in adulthood were not significantly different 471 

from 1 (Table S3), suggesting the increase in PGI effects are most likely due to genome-wide 472 

amplification of genetic effects as opposed to different common variants impacting cognitive ability 473 

differentially at different ages11. By contrast, our finding that the effects of rare variants attenuate 474 

as children age cannot be explained by the way the variant weights were obtained; this is because 475 

the weights are based on estimates of historical negative selection against deleterious variants in 476 

each gene in large population-based cohorts of adults44, rather than through association studies 477 

with a phenotype.  478 
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 479 

Genetic studies typically test for genetic effects on the mean of the phenotype, although some 480 

have also considered effects on variance56–59 or differential effects on different quantiles of 481 

anthropometric traits and biochemical measures60. Here, we examined the longitudinal effects of 482 

common and rare variants on different quantiles of the IQ distribution, which essentially tests for 483 

an effect on the phenotypic variance and skew. In so doing, we found that increasing effects of 484 

PGIEA and PGICog on mean IQ with age were driven by effects on the top half of the phenotype 485 

distribution, whereas the attenuating effects of RVBpLoF were driven by those in the lower tail 486 

(Figure 3). The latter observation appears to be driven by RVBpLoF having a larger effect on the 487 

5th than the 95th percentile of IQ at age 4 and 8, but similar effects at the distribution tails by age 488 

16 (Figure S4). Results based on measures of cognitive performance in MCS and UK Biobank 489 

were concordant with these observations from ALSPAC (Extended Data Figure 7B). These results 490 

imply that the genetic profile of children in the highest and lowest ranges of cognitive ability differ 491 

across development (Extended Data Figure 9). Figure 5 summarizes our key findings for the IQ 492 

trajectories of individuals with different common and rare variant genetic backgrounds; children in 493 

the high versus low PGIEA groups become more differentiated across development, though with 494 

more of the stratification occurring due to increasing IQ particularly in the high PGIEA group, while 495 

the stratification in IQ due to RVBpLoF is strongest at the earlier ages and attenuates particularly 496 

in the high RVBpLoF group. 497 

 498 

Our results imply that there is higher variance in IQ amongst individuals with higher RVBpLoF in 499 

early childhood, which could be potentially due to gene-by-environment or gene-by-gene effects, 500 

or simply to stochasticity. This effect on the variance, particularly due to increased effects on the 501 

lower tail of the IQ distribution, provides a mechanism to explain the pervasiveness of incomplete 502 

penetrance and variable clinical presentation in rare neurodevelopmental conditions. This is 503 

because an increased proportion of children with high rather than low RVBpLoF will cross the liability 504 

threshold and be diagnosed with these conditions, but some will be well below diagnostic 505 

thresholds. Multiple neurodevelopmental conditions exhibit a high degree of phenotypic 506 

variability, even amongst carriers of the same causal mutation, such as in neurofibromatosis type 507 

161. Although quantitative measures of intellectual impairment are relatively rare in studies of 508 

these conditions, there is evidence, for example, that patients with tuberous sclerosis complex 509 

(TSC) have not only lower mean IQ but also higher variance in IQ than unaffected sibling controls 510 

(F-test for a difference in variance between cases and controls; p=0.004 for TSC1, p=0.033 for 511 

TSC2)62. Taken together, our results support two hypotheses for the incomplete/variable 512 

penetrance of rare NDC-associated variants. Firstly, these variants impact variance in cognitive 513 

ability early in life, consistent with heterogeneous phenotypes of children with NDCs. Secondly, 514 

they have larger effects on average cognitive ability in early childhood than later in life, consistent 515 

with apparently clinically unaffected parents passing on these pathogenic variants to affected 516 

children.  517 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

https://paperpile.com/c/ESp1ks/eFn49+viicM+NlbZb+JqKZh
https://paperpile.com/c/ESp1ks/loDmv
https://docs.google.com/document/d/1RaF7luhtbHApMyBaM_nhmNDBje0P-03Fn0piZ8FI89o/edit#heading=h.yuekmc9n7aau
https://paperpile.com/c/ESp1ks/OIxFm
https://paperpile.com/c/ESp1ks/BqUHM
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


19 

 

 518 

Figure 5 519 

Summary of phenotypic trajectories across development, as inferred in this work. The plot shows average 520 

trajectories of IQ (inferred post-imputation) for individuals grouped by genetic measures. The high/low 521 

PGIEA groups are individuals with a value that is one or more standard deviations above/below 0. The low 522 

RVBpLoF group are individuals with RVBpLoF below 0.01 (approximately 9.6% of individuals) and the high 523 

RVBpLoF group are individuals with RVBpLoF greater than 0.4 (approximately 1.5% of individuals); these 524 

cutoffs were chosen arbitrarily for illustrative purposes. The change in mean genetic measure/IQ between 525 

ages 4 and 16 are shown on the right hand side of the plots. Bands indicate 95% CI. The decrease in mean 526 

IQ in the low PGIEA group is explained by the fact that, due to PGIEA effects becoming stronger towards the 527 

top of the IQ distribution, those that had a high IQ earlier in development will tend towards their genetically 528 

predicted lower IQ at later ages, thereby lowering the average IQ in this group. 529 

 530 

The increasing heritability of IQ with age is well established but its causes remain unclear11. In 531 

contrast to our results for rare variants, we found evidence across cohorts for increasing direct 532 

genetic effects of PGIs with age, particularly at the top of the IQ distribution; to our knowledge, 533 

this has not been previously demonstrated. This may be relevant to the so-called ‘Matthew effect’, 534 

the phenomenon whereby individual differences in ability compound over time and increase gaps 535 

in cognitive and academic outcomes as children age63–66. If this effect is particularly driven by 536 

those with high cognitive performance, this could explain the increase in common variant effects 537 

over time that we observe for the upper tail of the phenotype distribution. Several potential 538 
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mechanisms could drive this, including evocative gene-environment correlations, such as high-539 

performing children being selected into more from cognitively-stimulating environments, or active 540 

gene-environment correlations, such as high-performing children being more effective learners 541 

and hence increasing their cognitive performance more relative to their peers67. Potentially 542 

relevant to this is our observation for a significant age interaction effect for paternal EA at the 95th 543 

quantile (Figure 4B).   544 

 545 

When comparing the relative magnitude of the main effects of genetic versus other factors on IQ 546 

in ALSPAC, we found that the RVB contribution was slightly larger than but broadly comparable 547 

to those of the perinatal exposures, and the direct effect of common variants associated with EA 548 

was comparable to that of parental EA (Figure 4A top), highlighting the substantial contribution of 549 

genetic variation across the allele frequency spectrum to variance in cognitive performance. 550 

Importantly, we showed that inherited rare damaging coding variants explain more variance in 551 

childhood IQ in the general population than do de novo mutations (Supplementary Note 3), in 552 

contrast to what is observed in cohorts of children with neurodevelopmental disorders21,32. We 553 

further showed that the effects of both rare damaging variants and perinatal factors on cognitive 554 

ability attenuate as children age (Figure 4A bottom). This may be due to acute, time-limited effects 555 

during early neurodevelopment that can be attenuated by later plasticity, potentially in response 556 

to environmental influences. If this is true, one might predict that the attenuation of these effects 557 

with age are strongest in less deprived households. Testing this hypothesis will need larger 558 

datasets than studied here. In contrast to these other factors, the effect of parental EA on average 559 

IQ does not change across development, whereas the direct effect of EA-associated common 560 

variants increases (Figure 4A bottom), suggesting a cumulative influence. These observations 561 

have important implications for how we identify people at risk of poor outcomes in early versus in 562 

later life.  563 

 564 

There are several limitations of this study. Firstly, our primary findings about changing genetic 565 

effects with time are based on measurements of IQ at only three time points in a single cohort 566 

(ALSPAC). There is a dearth of cohorts with longitudinal measures of IQ in childhood and 567 

adolescence with sufficient sample size and appropriate genetic data for us to attempt direct 568 

replication. Thus, we have relied on replication with school grades measured at two timepoints in 569 

ALSPAC (not totally independent of our IQ results, given the overlapping sample) (Extended Data 570 

Figures 2 and 4; Figure S5), or, for some analyses, a single measure of cognitive performance 571 

from MCS and UK Biobank (Extended Data Figure 7, Figure S1, Figure S6), which we found to 572 

show strong genetic correlations with IQ in ALSPAC (rg 1.09,  95% CI [0.97-1.21]) and with adult 573 

cognitive performance42 (rg 0.89, [0.69-1.09]) and EA45 (rg 0.89, [0.72-1.08]). Broadly, the results 574 

from these replication analyses supported our primary findings in ALSPAC. Secondly, IQ tests 575 

are less reliable in early life68, and those used in ALSPAC may be less accurate at measuring the 576 

tails of the distribution69. If the accuracy at the tails differed between the tests used at different 577 

ages, this could potentially have induced spurious interaction effects between the genetic scores 578 

and age. However, the fact that we see age interaction effects in opposite directions for common 579 

versus rare variants for the same trait, and replicate trends in other cohorts and with other 580 

cognitive performance measures, suggests that this is not a likely scenario. Thirdly, our 581 

assessment of perinatal factors affecting IQ is limited by sample size (so that we had to aggregate 582 
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various maternal illnesses into a single variable) and by the limited range of gestational ages in 583 

ALSPAC; all children in this subsample were born after 32 weeks’ gestation, thus excluding very 584 

and extremely premature babies who might be expected to have the greatest cognitive deficits8, 585 

potentially explaining why we saw no effects of gestational age on the 5th centile (Figure 4B). A 586 

final limitation is that our results may be affected by non-random missingness within the cohorts 587 

and biased ascertainment and attrition across time, known to be present in both birth cohorts35,70. 588 

We have attempted to mitigate non-random missingness by imputation of missing IQ measures 589 

in ALSPAC (Figure S1) and by Mendelian imputation of unmeasured parental genotypes for our 590 

trio-based PGI analyses. To mitigate ascertainment bias and attrition, we incorporated weights in 591 

MCS to render the sample representative of the whole UK population. In general, our conclusions 592 

in ALSPAC were unchanged when analyzing IQ before versus after imputation, although the latter 593 

was obviously better powered, and there were some differences particularly in the findings from 594 

the quantile regressions (Supplementary Note 4; Figure 3BC versus Figure S3; Figure S4A 595 

versus S4B). However, one example of an analysis that is likely to have been impacted by 596 

ascertainment bias is the estimation of the fraction of the rare variant effect on IQ that is due to 597 

de novo mutations, as noted in Supplementary Note 3  (Extended Data Figure 6).  598 

 599 

Our study prompts several strands of future work. Perhaps most importantly, future research 600 

should extend upon our findings to investigate how genetic and other factors might be best 601 

employed to identify children at risk of poor cognitive outcomes, so that interventions may be 602 

targeted at those who most need help. It should also seek to confirm the relevance of our 603 

observations to the incomplete penetrance of rare damaging variants in NDCs. If we had NDC 604 

cohorts with genetic and longitudinal phenotype data from both affected children and parents who 605 

appear to be clinically unaffected, we could directly test whether in fact, these variants were 606 

associated with reduced cognitive ability or educational achievement earlier in the parents’ lives, 607 

and whether their effects on these traits attenuate as they aged. Finally, future work should seek 608 

to better understand why there are differential time-varying genetic effects on children depending 609 

on their level of cognitive ability, and why the effect of our rare variant burden scores attenuates 610 

with time. For example, is the latter observation purely driven by the expression patterns of the 611 

evolutionarily constrained genes that are more heavily weighted in this score (Extended Data 612 

Figure 5A), with these prenatally expressed genes becoming progressively less important in brain 613 

function as children age? Or is it that children with particularly marked cognitive deficits in early 614 

childhood, who appear to be particularly influenced by these rare variants (Figure 3C), are 615 

targeted for interventions which help to mitigate the effects of these rare variants over time? More 616 

broadly, our results suggest that heteroscedastic and time-varying effects of genetic variants on 617 

human phenotypes deserve more exploration. 618 
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GWAS: Genome-wide association study; NDCs: neurodevelopmental conditions; PTV: protein 620 
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Data availability 671 

 672 

Researchers can apply to access data from ALSPAC 673 

(https://www.bristol.ac.uk/alspac/researchers/access/), MCS (https://cls.ucl.ac.uk/dataaccess-674 

training/data-access/), and UK Biobank (https://www.ukbiobank.ac.uk/enable-your-675 

research/apply-for-access). 676 

 677 

Online Methods 678 

Cohorts 679 

We report results from the Avon Longitudinal Study of Parents and Children (ALSPAC)35,71, 680 

Millennium Cohort Study36 (MCS), and UK Biobank cohorts.  681 

 682 

ALSPAC 683 

In ALSPAC, pregnant women with expected deliveries between April 1st 1991 and December 31 684 

December were recruited in the greater Bristol area (formerly Avon county), resulting in an initial 685 

sample of 14,541 pregnancies enrolled into the study, of which 13,988 resulted in live births of 686 

children surviving to age 1. Data collected after the age of 7 was available for an additional 906 687 

pregnancies from other phases of enrollment, which resulted in an additional 913 children that 688 

survived to age 1. At initial enrollment, 14,203 unique mothers were in the study, which increased 689 

to 14,833 unique mothers enrolled after the additional phases of enrollment (G0 mothers). The 690 

partners of G0 mothers (G0 partners) were also invited to participate in the study, of which 12,113 691 

provided data at one point in the study and 3,807 are currently enrolled. From birth to early 692 

adulthood, mother and children were followed up with questionnaires and clinical and 693 

psychometric data collection across several time points. Biosamples used for genotyping and 694 

exome sequencing were obtained from most children and some of the mothers and fathers.  695 

 696 

In the current study, data from 6,495 unrelated children with European inferred genetic ancestry 697 

(G1 children; described below) were used, along with genetic and/or survey data collected on 698 

4,968 G0 mothers and 4,563 G0 partners. Please note that the study website contains details of 699 

all the data that is available through a fully searchable data dictionary and variable search tool: 700 

http://www.bristol.ac.uk/alspac/researchers/our-data/. Ethical approval for the study was obtained 701 
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from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. 702 

Consent for biological samples has been collected in accordance with the Human Tissue Act 703 

(2004). Informed consent for the use of data collected via questionnaires and clinics was obtained 704 

from participants following the recommendations of the ALSPAC Ethics and Law Committee at 705 

the time. At age 18, study children were sent 'fair processing' materials describing ALSPAC’s 706 

intended use of their health and administrative records and were given clear means to consent or 707 

object via a written form. Data were not extracted for participants who objected, or who were not 708 

sent fair processing materials. 709 

 710 

MCS 711 

MCS recruited 18,552 pregnant mothers (2000-2002) using a sampling scheme to ensure a 712 

nationally representative sample across the UK, as previously described36. Mothers and children 713 

were followed longitudinally and had genetic data collected at age 14 from children, mother, and 714 

fathers where available. Ethical approval for the collection of saliva samples from these individuals 715 

as part of the sixth sweep was obtained from London-Central Research Ethics Committee. 716 

Genotype and newly generated exome data are available for ~8,000 and ~7,000 children, 717 

respectively (~13,000 and ~7,000 parents). 718 

 719 

UK Biobank 720 

The UK Biobank is a prospective cohort of over 500,000 individuals sampled throughout the UK 721 

between 2006 and 2010. Individuals have extensive phenotype data and genetic data including 722 

genotype array 72 and whole exome sequence data73. 723 

Cognitive performance measures across cohorts 724 

In this study we used various cognitive performance and school performance measures across 725 

the three cohorts. 726 

 727 

In ALSPAC, children had IQ measured at ages 4 (Wechsler Preschool and Primary Scale of 728 

Intelligence), 8 (Wechsler Intelligence Scale for Children), and 16 (Wechsler Abbreviated Scale 729 

of Intelligence). Linked educational records are available, including national  standardized exam 730 

scores in English, Math, and Science administered at the end of Key Stage 2 (Year 6 at around 731 

11 years old) and Key Stage 3 (Year 9 at around 14 years old). To create a composite measure 732 

of academic performance, we standardized each score and, at a given Key Stage examination 733 

point, computed a one-factor model score using factanal function in R using the Bartlett method 734 

for scoring, explaining 74% and 77% of the variance at Key Stage 2 and 3 exams, respectively. 735 

The factor loadings and factor variance explained for the three exams were nearly identical at 736 

Key Stage 2 and 3 (Table S1), implying longitudinal invariance. 737 

 738 

In MCS, children completed various cognitive performance tests at several ages. Those at later 739 

ages had a greatly reduced sample size, so we focused on those at ages 3 to 7. These included 740 

Bracken School Readiness at age 3, reading vocabulary at ages 3 and 5, pattern construction at 741 
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ages 5 and 7, and word reading and progress in math at age 7. These were summarized into a 742 

single cognitive performance measure using a one-factor model score using the factanal function 743 

in R and Bartlett method for scoring, explaining 39% of the variance. 744 

 745 

In UK Biobank, individuals were asked thirteen questions testing verbal-numerical reasoning in a 746 

limited time frame during the initial assessment visit. We used the sum of questions answered 747 

correctly as a measure of fluid intelligence (data field 20016.0), as has been used previously in 748 

genetic studies of cognitive ability 74. 749 

Imputation of IQ values in ALSPAC 750 

Imputation of missing IQ values was carried out using SoftImpute75 using rank.max = 4.5 and 751 

lambda = 4.5.  Before imputation, all variables were standardized to have mean 0 and variance 752 

1. To assess the imputation accuracy obtained using three potential sets of variables (described 753 

below), we set 100 random individuals with measured IQ values at a given age to missing, 754 

conducted phenotype imputation, and calculated correlations between the true measured values 755 

and the imputed values, repeating this procedure 100 times.  756 

 757 

We considered the following sets of variables: 758 

1) Base set: sex (kz021), birth weight (kz030), maternal and paternal socio-economic groups 759 

(b_seg_m and b_seg_p), and IQ values at ages 4 (cf813), 8 (f8ws112), and 16 (fh6280).  760 

2) Expanded set: base set plus development score at age 2 (cf783), sociability score at age 761 

3 (kg623a/c), additional verbal and performance IQ at age 4 (cf811, cf812), nonword 762 

repetition and multisyllabic word repetition at age 5 (cf470, cf480), communication score 763 

at age 6 (kq517),  Skuse social cognition score at age 7 (kr554a/b), cognitive scores at 764 

age 8 including Sky Search, Diagnostic Analysis of Nonverbal Accuracy, nonword 765 

repetition, verbal and performance IQ, children communication checklist score (f8at062, 766 

f8dv443, f8dv444, 8dv445, f8dv446,  f8sl100, f8sl101,  f8sl102, f8ws110, and f8ws111, 767 

ku506a). 768 

3) Auxiliary set: expanded set excluding base set variables. 769 

 770 

When calculating the imputation accuracy using the expanded or auxiliary sets, we removed 771 

verbal and performance IQ at each age, although in practice very few children had only one 772 

measured at a given age.  773 

 774 

For the imputation of the final IQ values, we used the expanded set and required that each 775 

individual had nonmissing values for at least one IQ test and at least 20% of the variables used 776 

for imputation. Final IQ values were standardized to mean 0 and standard deviation of 1.  777 
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Genotype data preparation and imputation 778 

ALSPAC 779 

ALSPAC genotype data were generated and processed as described in 71. We further removed 780 

individuals with high genotype missingness >3%. We restricted analyses to autosomal SNPs with 781 

MAF >0.5%, missingness rate <3%, and that had HWE test p>1x10-5.  782 

 783 

We used KING76 for relatedness inference and removed 152 samples who had first degree 784 

relationships but were reported as coming from different families and another 16 samples who 785 

did match available exome sequencing data supposedly for the same individuals resulting in 786 

8,831 children, 9,302 mothers, and 1,706 fathers. To identify a set of unrelated children, we 787 

iteratively identified the child with the greatest number of genetically inferred relatives (3rd degree 788 

or closer) and removed them, recalculated the number of inferred relatives per child, and repeated 789 

the first step until no children were inferred to have any relatives. This resulted in a total of 6,495 790 

unrelated children with genotype array and whole exome sequence data. 791 

 792 

To identify individuals of genetically inferred European ancestry, we projected samples onto 1,000 793 

Genomes phase 3 individuals77 using the smartpca function from EIGENSOFT version 7.2.178. 794 

We used linkage disequilibrium (LD)-pruned SNPs (pairwise r2 <0.2 in batches of 50 SNPs with 795 

sliding windows of 5) with MAF > 5% and removed 24 regions with high or long-range LD, 796 

including the HLA79. All ALSPAC samples projected onto European ancestry samples. We then 797 

performed PCA identically on the unrelated ALSPAC samples and projected all individuals into 798 

the PCA space. 799 

 800 

Prior to imputation, we removed palindromic SNPs, SNPs that were not in the imputation 801 

reference panel, and SNPs with mismatched alleles. We imputed the samples to the TOPMed r2 802 

reference panel using the TOPMed imputation server80–82. We kept well imputed common variants 803 

with Minimac4 R2 >0.8 and MAF >1%.  804 

MCS 805 

MCS genotyped data were generated and processed as described in 83. A set of unrelated 806 

individuals with genetically-inferred European ancestry were described in a similar manner to 807 

ALSPAC, as described previously 25. We kept well imputed common variants with Minimac4 R2 808 

>0.8 and MAF >1%.  809 

 810 

UK Biobank 811 

UK Biobank genotype data were generated, processed, and imputed by UKB as described in 72. 812 

Sample quality control consisted of excluding individuals with >3% missingness, inconsistent sex, 813 

sex aneuploidy, or withdrawn consent and relatedness was similarly calculated using KING as 814 

previously described. As in the other cohorts, we kept autosomal SNPs with MAF >1%, 815 

missingness rate <3%, and passed the HWE test (p-value>1x10-5). To identify UKB individuals 816 

with genetically inferred European ancestry, we similarly projected samples onto the 1,000 817 
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Genomes Phase 3 individuals and assigned individuals to a genetic ancestry based on their 818 

Mahalanobis distance to the nearest continental ancestry group centroid using the top 6 PCs. 819 

Those more than 6 standard deviations from the centroid along any axis were removed. Unrelated 820 

individuals were identified using the iterative exclusion procedure as previously described, 821 

resulting in 387,531 unrelated individuals. PCs were recalculated in this subset of unrelated 822 

individuals using smartpca as previously described, and related individuals were projected into 823 

this PCA space.  824 

Calculating polygenic scores 825 

SNP weights for polygenic scores were estimated using LDpred2-auto84, which does not require 826 

a tuning dataset and automatically estimates the required hyper-parameters from the discovery 827 

sample85. The  LD reference panel was computed from unrelated individuals from the target 828 

dataset for a set of 1,444,196 HapMap3+86 variants72. GWAS summary statistics for EA16 829 

excluding 23andMe or 23andMe only (used for PGIEA UK Biobank samples), EA-Cog and EA-830 

NonCog42 were matched with the list of overlapping SNPs.  831 

 832 

Once the weights were generated, we scored individuals using the --score function in PLINK v1.9, 833 

which calculates the weighted sum of genotypes across a set of SNPs for each individual.  834 

Mendelian imputation of parental genotypes  835 

When an individual had at least one parent with genotype data in the cohort, we imputed the 836 

expected parental genotype of the other parent. To do so, we used snipar20 across the three 837 

cohorts. We supplied relatedness inference using KING output and used the default options 838 

throughout. We used the previous weights derived from each GWAS using LDpred2-auto to 839 

calculate the PGIs in the full trios using the pgs.py script provided in the snipar package.  840 

GWAS of IQ and cognitive performance 841 

We used the linear regression function lm in R to conduct GWASs on the IQ measures pre- and 842 

post-imputation in ALSPAC and the cognitive performance measure in MCS on unrelated 843 

genetically inferred European ancestry individuals, controlling for 10 genetic PCs and sex. We 844 

removed variants with MAF<1% or missingness >2%. 845 

Heritability and genetic correlations 846 

We used both GREML-LDMS39 and LD score regression87,88 to estimate SNP heritabilities and 847 

genetic correlations from the summary statistics of the GWASs conducted on the IQ measures 848 

and external GWASs using the previously described LD reference panel on HapMap3 SNPs.  849 

Other exposures impacting IQ in ALSPAC 850 

We considered the following exposures: maternal and paternal educational attainment (EA), 851 

weeks born preterm, and a composite variable representing maternal illness. For educational 852 

attainment, we used the highest qualification reported by the parent and coded it as done 853 
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previously reported16, with a university degree equalling 20 years of education, A levels as 13, O 854 

levels/vocational as 10, and Certificate of Secondary Education/no degree as 5 (c645a and c666a 855 

for the mother and father, respectively). Maternal illness was defined as a binary variable 856 

indicating whether or not a mother had at least one of the following conditions reported during the 857 

pregnancy in her obstetric clinical records: preeclampsia, anemia (DELP_1060), any diabetes 858 

(pregnancy_diabetes), or genital herpes, gonorrhea, syphilis, urinary tract infection, vaginal 859 

infection, or hepatitis B noted during delivery (DEL_P1050-1055). Weeks born preterm was coded 860 

as 40 minus the gestational age at birth in weeks assessed in a formal pediatric assessment 861 

(DEL_B4401). All variables were standardized to have mean zero and standard deviation 1. 862 

Exome sequencing data preparation 863 

Whole exome sequencing data quality control for ALSPAC and MCS cohorts  was carried out by 864 

the Human Genetics Informatics team at the Sanger Institute as described in 89. Briefly, GATK 865 

v4.2 was used to call short variants (SNVs and indels) in 11,994 samples from ALSPAC and 866 

11,916 samples from MCS. Sample quality-control (QC) measures were employed to remove 867 

outliers on several metrics (e.g., heterozygosity, variant counts) and likely sample mismatches. 868 

To identify low quality variants (variant QC), a random forest was trained on pre-defined truth sets 869 

in each cohort individually. The random forest filtering was then applied in combination with 870 

genotype-level and missingness filters to balance precision, recall, true and false positive rates, 871 

and synonymous transmission ratios. Specifically, SNVs were filtered (genotypes set to missing) 872 

if they an allele depth (DP) < 5, a heterozygous allele balance ratio (AB) < 0.2, or a genotype 873 

quality (GQ) < 20 (ALSPAC) or < 15 (MCS); Indels were filtered using these thresholds: DP < 10, 874 

AB < 0.3, GQ <10 (ALSPAC) or GQ < 20 (MCS). The variants were excluded if they failed the 875 

random forest filtering or if the fraction of missing genotypes (missingness) exceeded 0.5. The 876 

final dataset included 8,436 children and 3,215 parents in ALSPAC and 7,667 children and 6,925 877 

parents in MCS. Calling and QC of de novo mutations is described in the Supplementary Methods. 878 

 879 

In UK Biobank, we performed quality control for whole exome sequencing data on 469,836 880 

participants within the UKB research analysis platform. First, we split and left-aligned multi-allelic 881 

variants in the population-level Variant Call Format files into separate alleles using bcftools 882 

norm90. Next, we performed genotype-level filtering using bcftools filter separately for Single 883 

Nucleotide Variants (SNVs) and Insertions/Deletions (InDels) using a missingness-based 884 

approach. Specifically, SNV genotypes with a depth lower than 7 and genotype quality lower than 885 

20, or InDel genotypes with a depth lower than 10 and genotype quality lower than 20, were set 886 

to missing. We further tested for an expected alternate allele contribution of 50% for heterozygous 887 

SNVs using a binomial test, and SNV genotypes with a binomial test p-value ≤ 0.0001 were set 888 

to missing. Finally, we recalculated the proportion of individuals with a missing genotype for each 889 

variant and excluded all variants with a missingness value greater than 50%. 890 
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Classification of deleterious rare variants 891 

All variants were annotated using the MANE transcript from Ensembl91. In MCS and ALSPAC, 892 

rare pLoFs were defined as pLoFs annotated as high confidence by LOFTEE34 that had CADD92 893 

(if SNVs) > 25, were not located in the last exon or intron, and had a gnom-AD34 V3 allele 894 

frequency of <3x10-5 (up to ~ 5 occurrences in gnomAD r3 genomes & ~ 10x in exomes) and an 895 

in sample allele frequency of <0.1% among the unrelated set of children from that cohort91. Rare 896 

damaging missense variants were defined using identical allele frequency and CADD filters to 897 

pLoFs but were additionally required to have an MPC score93 ≥ 2. Rare synonymous variants 898 

were defined with identical allele frequency thresholds.  899 

 900 

In UKB individuals with inferred European genetic ancestry, we defined rare variants as those 901 

with a within-sample allele frequency <0.001%. For pLoFs, we retained only those variants 902 

defined as high-confidence PTVs by LOFTEE and CADD > 25 as in MCS and ALSPAC. For 903 

missense variants, we defined the damaging missense variants by including variants with REVEL 904 

> 0.5, AlphaMissense94 > 0.56, and MPC > 2. 905 

 906 

Calculating rare variant burden scores 907 

We calculated RVB using the following formula: 908 

𝑅𝑉𝐵𝑖,𝑐  =  ∑ 𝐼𝑔,𝑐(𝑖)𝑆𝑔

 

𝑔∈𝐺

 909 

where 𝐼𝑔,𝑐(𝑖) is an indicator function for whether an individual i has a variant of consequence c in 910 

gene g, 𝑆𝑔 is the fitness cost for heterozygous carriers of a pLoF allele in gene i estimated in Sun 911 

et al.44 , and G is the set of all autosomal genes. 912 

 913 

For analyses to ascertain the relative contribution of de novo versus inherited variants 914 

(Supplementary Note 2), we also calculated a separate rare variant burden metric which we call 915 

constrained variant count: 916 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑝𝐿𝑜𝐹 𝑐𝑜𝑢𝑛𝑡𝑖  =  ∑ 𝐼𝑔,𝑝𝐿𝑜𝐹(𝑖)

 

𝑔∈𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑔𝑒𝑛𝑒𝑠

 917 

where 𝐼𝑔,𝑝𝐿𝑜𝐹(𝑖) is an indicator function for whether an individual i has a pLoF in gene g, and 918 

constrained genes is the set of genes identified as constrained in 44. 919 

 920 

Sampling and non-response weights in MCS 921 

Sampling weights were developed by MCS to adjust for the nonrandom sampling scheme devised 922 

for the study95. We used the full UK sampling weights. Nonresponse inverse probability weights 923 

were developed for each sample as described previously25. Briefly, we used logistic regression to 924 

predict whether an individual had complete data for a given regression. We then extracted the 925 

predicted values for all individuals with complete data from the logistic regression which 926 
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correspond to their relative probabilities of having complete data, calculated the inverse of that 927 

value, and used that as the nonresponse weight. To combine sampling and nonresponse weights, 928 

we multiplied the two weights and incorporated them into the regressions. 929 

Associations between genetic measures and traits 930 

Cross-sectional associations for a genetic score and IQ were conducted using the lm function in 931 

R, restricting to unrelated samples with genetically-inferred European ancestry as follows: 932 

 933 

IQi ~ Gi+PC1i+..+PC10i+sexi 934 

 935 

where Gi is the genetic score (PGI or RVB) for child i and PC1-10i are their genetic PCs.  936 

 937 

Genetic scores, unless otherwise stated, were standardized to mean 0 and standard deviation 1. 938 

In trio-based analyses, the parental genetic values were similarly standardized and regression 939 

was conducted as follows: 940 

 941 

IQi ~ Gi+Gi,m+Gi,p+PC1i+..+PC10i+sexi 942 

 943 

where Gi,m and Gi,p are the genetic scores for child i’s mother and father, respectively.  944 

 945 

Mixed effect linear models were conducted using the lme4 package in R96. The same covariates 946 

were used for the cross-sectional analysis with the addition of age, an age-by-genetic score 947 

interaction effect and a child-specific random intercept term as follows: 948 

 949 

IQi,t ~ agei,t+Gi+agei,t*Gi+PC1i+..+PC10i+sexi+Ci 950 

 951 

where agei,t and IQi,t are child i’s age and IQ at age t and Ci is a child-specific random effect 952 

intercept. Age was coded as age-4 such that the genetic predictor intercept estimate was 953 

equivalent to the effect at the first age at which IQ data were collected. In the trio-based analyses, 954 

an age interaction effect was additionally modeled for the parental genetic values as follows: 955 

 956 

IQi,t ~ agei,t+Gi+agei,t*Gi+Gi,m+agei,t*Gi,m+Gi,p+agei,t*Gi,p+PC1i+..+PC10i+sexi+Ci 957 

 958 

For cross-sectional and longitudinal quantile regression modeling, we used the R package 959 

quantreg97 and rqpd98, respectively, using the same models as above. Mixed-effects model 960 

standard errors were determined using bootstrapping with 500 bootstrap replications. 961 

 962 

For the academic performance score, the cross-sectional models were performed in the same 963 

way described above, with the addition of age at testing in weeks as a covariate (ks2age_w and 964 

ks3age_w). As there were only two timepoints, a slightly different longitudinal model was used for 965 

the linear modeling (Extended Data Figures 2 and 4) as follows: 966 

 967 

(APS9,i-APS6,i) ~  Gi+age6,i+age9,i+PC1i+..+ PC10i+sexi 968 
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 969 

where APS6/9,i and age6/9,i are the academic performance scores and ages of individual i at Year 970 

6 and 9, respectively. The coefficient estimated for Gi in this regression is equivalent to G’s effect 971 

at Year 9 minus that at Year 6 within an individual, i.e. the age interaction effect. To compare the 972 

effects for the quantile regression effect size estimates at Years 6 and 9, we conducted z tests 973 

between the effect sizes (Extended Data Figure 7A). 974 

Marginal and conditional associations between genetic and other factors and 975 

IQ 976 

To assess the associations between genetic and other factors with IQ (Figure 4), we considered 977 

both marginal and conditional models. For marginal models, we conducted the following 978 

regressions: 979 

 980 

IQi,t ~ agei,t+Ei+agei,t*Ei+PC1i+..+PC10i+sexi+Ci 981 

 982 

where Ei is the given measure of interest. In Figure 4, the coefficient on the Ei  term (i.e. the main 983 

effect) is shown in the top panel, and the coefficient on the age i,t*Ei term (i.e. the interaction effect) 984 

in the bottom panel. 985 

 986 

As maternal and paternal EA are highly correlated, we modified the model for the effects of 987 

parental EA as follows: 988 

 989 

IQi,t ~ agei,t+EAi,m+EAi,p+agei,t*EAi,m+agei,t*EAi,p+PC1i+..+PC10i+sexi+Ci 990 

 991 

where EAi,m and EAi,p are the maternal and paternal EA respectively. Similarly, we fit the PGIEA 992 

values for the child, mother, and father jointly in a trio model. 993 

 994 

To calculate the variance explained by a given variable, we took the square of the standardized 995 

effect size of that variable’s main effect. To calculate the total variance explained by two 996 

uncorrelated variables (e.g. RVBpLoF and RVBMissense that have a correlation of -0.01, p=0.16), we 997 

summed the squares of their standardized effect sizes. To test for difference in effect size between 998 

the combination of RVBMissense and RVBpLoF versus other factors, we used the square root of the 999 

previous variance explained estimate as the effect size estimate and determined the standard 1000 

error for that effect size by summing the square of the standard error for each effect estimate and 1001 

then taking the square root of the new estimate. We were then able to use z tests to compare the 1002 

effect size estimates as done previously. 1003 

 1004 

For the full joint models, we included all genetic and other measures in a single model, with a 1005 

main and age interaction effect for each measure. Since only a subset of probands had 1006 

information on gestational age, we fitted the full joint model both with and without the ‘weeks born 1007 

preterm’ variable.  1008 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


32 

 

References 1009 

1. Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A. & Goldberg, L. R. The Power of 1010 

Personality: The Comparative Validity of Personality Traits, Socioeconomic Status, and 1011 

Cognitive Ability for Predicting Important Life Outcomes. Perspect. Psychol. Sci. 2, 313–345 1012 

(2007). 1013 

2. Johnson, W., Corley, J., Starr, J. M. & Deary, I. J. Psychological and physical health at age 1014 

70 in the Lothian Birth Cohort 1936: links with early life IQ, SES, and current cognitive function 1015 

and neighborhood environment. Health Psychol. 30, 1–11 (2011). 1016 

3. Strenze, T. Intelligence and socioeconomic success: A meta-analytic review of longitudinal 1017 

research. Intelligence 35, 401–426 (2007). 1018 

4. Schmidt, F. L. & Hunter, J. General mental ability in the world of work: occupational 1019 

attainment and job performance. J. Pers. Soc. Psychol. 86, 162–173 (2004). 1020 

5. Deary, I. J., Whalley, L. J. & Starr, J. M. A Lifetime of Intelligence: Follow-up Studies of the 1021 

Scottish Mental Surveys of 1932 and 1947. (American Psychological Association, 2009). 1022 

6. Christensen, G. T., Mortensen, E. L., Christensen, K. & Osler, M. Intelligence in young 1023 

adulthood and cause-specific mortality in the Danish Conscription Database – A cohort study 1024 

of 728,160 men. Intelligence 59, 64–71 (2016). 1025 

7. Deary, I. J., Cox, S. R. & Hill, W. D. Genetic variation, brain, and intelligence differences. Mol. 1026 

Psychiatry 27, 335–353 (2022). 1027 

8. Husby, A., Wohlfahrt, J. & Melbye, M. Gestational age at birth and cognitive outcomes in 1028 

adolescence: population based full sibling cohort study. BMJ 380, e072779 (2023). 1029 

9. Makharia, A. et al. Effect of environmental factors on intelligence quotient of children. Ind. 1030 

Psychiatry J. 25, 189–194 (2016). 1031 

10. Brynge, M. et al. Maternal infection during pregnancy and likelihood of autism and intellectual 1032 

disability in children in Sweden: a negative control and sibling comparison cohort study. 1033 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/mGwOt
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/zRHui
http://paperpile.com/b/ESp1ks/YyTrl
http://paperpile.com/b/ESp1ks/YyTrl
http://paperpile.com/b/ESp1ks/YyTrl
http://paperpile.com/b/ESp1ks/YyTrl
http://paperpile.com/b/ESp1ks/YyTrl
http://paperpile.com/b/ESp1ks/YyTrl
http://paperpile.com/b/ESp1ks/L5r1F
http://paperpile.com/b/ESp1ks/L5r1F
http://paperpile.com/b/ESp1ks/L5r1F
http://paperpile.com/b/ESp1ks/L5r1F
http://paperpile.com/b/ESp1ks/L5r1F
http://paperpile.com/b/ESp1ks/L5r1F
http://paperpile.com/b/ESp1ks/Lu352
http://paperpile.com/b/ESp1ks/Lu352
http://paperpile.com/b/ESp1ks/Lu352
http://paperpile.com/b/ESp1ks/Lu352
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/pKyP3
http://paperpile.com/b/ESp1ks/T0RhP
http://paperpile.com/b/ESp1ks/T0RhP
http://paperpile.com/b/ESp1ks/T0RhP
http://paperpile.com/b/ESp1ks/T0RhP
http://paperpile.com/b/ESp1ks/T0RhP
http://paperpile.com/b/ESp1ks/T0RhP
http://paperpile.com/b/ESp1ks/QKDug
http://paperpile.com/b/ESp1ks/QKDug
http://paperpile.com/b/ESp1ks/QKDug
http://paperpile.com/b/ESp1ks/QKDug
http://paperpile.com/b/ESp1ks/QKDug
http://paperpile.com/b/ESp1ks/QKDug
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Acrwk
http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/Yo5g4
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


33 

 

Lancet Psychiatry 9, 782–791 (2022). 1034 

11. Plomin, R. & Deary, I. J. Genetics and intelligence differences: five special findings. Mol. 1035 

Psychiatry 20, 98–108 (2015). 1036 

12. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies 1037 

new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018). 1038 

13. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in 1039 

estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022). 1040 

14. Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–428 1041 

(2018). 1042 

15. Young, A. I. et al. Relatedness disequilibrium regression estimates heritability without 1043 

environmental bias. Nat. Genet. 50, 1304–1310 (2018). 1044 

16. Okbay, A. et al. Polygenic prediction of educational attainment within and between families 1045 

from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 1046 

(2022). 1047 

17. Nivard, M. G. et al. More than nature and nurture, indirect genetic effects on children’s 1048 

academic achievement are consequences of dynastic social processes. Nat Hum Behav 8, 1049 

771–778 (2024). 1050 

18. Wang, B. et al. Robust genetic nurture effects on education: A systematic review and meta-1051 

analysis based on 38,654 families across 8 cohorts. Am. J. Hum. Genet. 108, 1780–1791 1052 

(2021). 1053 

19. Demange, P. A. et al. Estimating effects of parents’ cognitive and non-cognitive skills on 1054 

offspring education using polygenic scores. Nat. Commun. 13, 4801 (2022). 1055 

20. Young, A. I. et al. Mendelian imputation of parental genotypes improves estimates of direct 1056 

genetic effects. Nat. Genet. 54, 897–905 (2022). 1057 

21. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo 1058 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/Yo5g4
http://paperpile.com/b/ESp1ks/jxh5b
http://paperpile.com/b/ESp1ks/jxh5b
http://paperpile.com/b/ESp1ks/jxh5b
http://paperpile.com/b/ESp1ks/jxh5b
http://paperpile.com/b/ESp1ks/jxh5b
http://paperpile.com/b/ESp1ks/jxh5b
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/FUE1u
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/Hybxk
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/kigO9
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/frG8g
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/mPMYD
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/ObCyi
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/icWxu
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/jcSG0
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/vJQt3
http://paperpile.com/b/ESp1ks/EtZ5e
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


34 

 

mutations in developmental disorders. Nature 542, 433–438 (2017). 1059 

22. Martin, H. C. et al. Quantifying the contribution of recessive coding variation to developmental 1060 

disorders. Science 362, 1161–1164 (2018). 1061 

23. Martin, H. C. et al. The contribution of X-linked coding variation to severe developmental 1062 

disorders. Nat. Commun. 12, 627 (2021). 1063 

24. Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe 1064 

neurodevelopmental disorders. Nature 562, 268–271 (2018). 1065 

25. Huang, Q. Q. et al. Dissecting the contribution of common variants to risk of rare 1066 

neurodevelopmental conditions. bioRxiv (2024) doi:10.1101/2024.03.05.24303772. 1067 

26. Chen, C.-Y. et al. The impact of rare protein coding genetic variation on adult cognitive 1068 

function. Nat. Genet. 55, 927–938 (2023). 1069 

27. Gardner, E. J. et al. Reduced reproductive success is associated with selective constraint on 1070 

human genes. Nature 603, 858–863 (2022). 1071 

28. Kingdom, R., Beaumont, R. N., Wood, A. R., Weedon, M. N. & Wright, C. F. Genetic modifiers 1072 

of rare variants in monogenic developmental disorder loci. Nat. Genet. 56, 861–868 (2024). 1073 

29. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. 1074 

Nature 614, 492–499 (2023). 1075 

30. Wright, C. F. et al. Evaluating variants classified as pathogenic in ClinVar in the DDD Study. 1076 

Genet. Med. 23, 571–575 (2021). 1077 

31. Wolstencroft, J. et al. Neuropsychiatric risk in children with intellectual disability of genetic 1078 

origin: IMAGINE, a UK national cohort study. Lancet Psychiatry 9, 715–724 (2022). 1079 

32. Samocha, K. E. et al. Substantial role of rare inherited variation in individuals with 1080 

developmental disorders. bioRxiv (2024) doi:10.1101/2024.08.28.24312746. 1081 

33. Wright, C. F. et al. Assessing the Pathogenicity, Penetrance, and Expressivity of Putative 1082 

Disease-Causing Variants in a Population Setting. Am. J. Hum. Genet. 104, 275–286 (2019). 1083 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/EtZ5e
http://paperpile.com/b/ESp1ks/EtZ5e
http://paperpile.com/b/ESp1ks/EtZ5e
http://paperpile.com/b/ESp1ks/EtZ5e
http://paperpile.com/b/ESp1ks/EtZ5e
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/BBa6z
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/HzAlB
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/kCmvm
http://paperpile.com/b/ESp1ks/GlBh0
http://paperpile.com/b/ESp1ks/GlBh0
http://paperpile.com/b/ESp1ks/GlBh0
http://paperpile.com/b/ESp1ks/GlBh0
http://paperpile.com/b/ESp1ks/GlBh0
http://paperpile.com/b/ESp1ks/GlBh0
http://dx.doi.org/10.1101/2024.03.05.24303772
http://paperpile.com/b/ESp1ks/GlBh0
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/sFCMJ
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/GBkyc
http://paperpile.com/b/ESp1ks/4UFmo
http://paperpile.com/b/ESp1ks/4UFmo
http://paperpile.com/b/ESp1ks/4UFmo
http://paperpile.com/b/ESp1ks/4UFmo
http://paperpile.com/b/ESp1ks/4UFmo
http://paperpile.com/b/ESp1ks/4UFmo
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/6IZU5
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/HZdWd
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/yMuAT
http://paperpile.com/b/ESp1ks/3fRM
http://paperpile.com/b/ESp1ks/3fRM
http://paperpile.com/b/ESp1ks/3fRM
http://paperpile.com/b/ESp1ks/3fRM
http://paperpile.com/b/ESp1ks/3fRM
http://paperpile.com/b/ESp1ks/3fRM
http://dx.doi.org/10.1101/2024.08.28.24312746
http://paperpile.com/b/ESp1ks/3fRM
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
http://paperpile.com/b/ESp1ks/2yYh7
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


35 

 

34. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 1084 

141,456 humans. Nature 581, 434–443 (2020). 1085 

35. Fraser, A. et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: 1086 

ALSPAC mothers cohort. Int. J. Epidemiol. 42, 97–110 (2013). 1087 

36. Connelly, R. & Platt, L. Cohort profile: UK Millennium Cohort Study (MCS). Int. J. Epidemiol. 1088 

43, 1719–1725 (2014). 1089 

37. Wechsler, D. Wechsler Adult Intelligence Scale--Third Edition. Front. Psychol. 1090 

doi:10.1037/t49755-000. 1091 

38. Niileksela, C. R. & Reynolds, M. R. Enduring the tests of age and time: Wechsler constructs 1092 

across versions and revisions. Intelligence 77, 101403 (2019). 1093 

39. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing 1094 

heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015). 1095 

40. Trzaskowski, M., Yang, J., Visscher, P. M. & Plomin, R. DNA evidence for strong genetic 1096 

stability and increasing heritability of intelligence from age 7 to 12. Mol. Psychiatry 19, 380–1097 

384 (2014). 1098 

41. Mollon, J. et al. Genetic influence on cognitive development between childhood and 1099 

adulthood. Mol. Psychiatry 26, 656–665 (2021). 1100 

42. Demange, P. A. et al. Investigating the genetic architecture of noncognitive skills using 1101 

GWAS-by-subtraction. Nat. Genet. 53, 35–44 (2021). 1102 

43. Benjamin, D. J., Cesarini, D., Turley, P. & Young, A. S. Social-Science Genomics: Progress, 1103 

Challenges, and Future Directions. (2024) doi:10.3386/w32404. 1104 

44. Sun, K. Y. et al. A deep catalogue of protein-coding variation in 983,578 individuals. Nature 1105 

(2024) doi:10.1038/s41586-024-07556-0. 1106 

45. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association 1107 

study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018). 1108 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/QkZMF
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/VYWZK
http://paperpile.com/b/ESp1ks/ESwlr
http://paperpile.com/b/ESp1ks/ESwlr
http://paperpile.com/b/ESp1ks/ESwlr
http://paperpile.com/b/ESp1ks/ESwlr
http://paperpile.com/b/ESp1ks/ESwlr
http://paperpile.com/b/ESp1ks/ESwlr
http://paperpile.com/b/ESp1ks/JhYok
http://paperpile.com/b/ESp1ks/JhYok
http://paperpile.com/b/ESp1ks/JhYok
http://paperpile.com/b/ESp1ks/JhYok
http://dx.doi.org/10.1037/t49755-000
http://paperpile.com/b/ESp1ks/JhYok
http://paperpile.com/b/ESp1ks/Uqmi5
http://paperpile.com/b/ESp1ks/Uqmi5
http://paperpile.com/b/ESp1ks/Uqmi5
http://paperpile.com/b/ESp1ks/Uqmi5
http://paperpile.com/b/ESp1ks/Uqmi5
http://paperpile.com/b/ESp1ks/Uqmi5
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/TGGsG
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/Xkwq7
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/6H7T
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/vmNaq
http://paperpile.com/b/ESp1ks/gB1O
http://paperpile.com/b/ESp1ks/gB1O
http://dx.doi.org/10.3386/w32404
http://paperpile.com/b/ESp1ks/gB1O
http://paperpile.com/b/ESp1ks/TrWYr
http://paperpile.com/b/ESp1ks/TrWYr
http://paperpile.com/b/ESp1ks/TrWYr
http://paperpile.com/b/ESp1ks/TrWYr
http://paperpile.com/b/ESp1ks/TrWYr
http://paperpile.com/b/ESp1ks/TrWYr
http://dx.doi.org/10.1038/s41586-024-07556-0
http://paperpile.com/b/ESp1ks/TrWYr
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
http://paperpile.com/b/ESp1ks/OdgZo
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


36 

 

46. Li, M. et al. Integrative functional genomic analysis of human brain development and 1109 

neuropsychiatric risks. Science 362, (2018). 1110 

47. McElroy, E. et al. Feasibility of retrospectively harmonising cognitive measures in five British 1111 

birth cohort studies. UK: CLOSER (2021). 1112 

48. Odd, D., Evans, D. & Emond, A. M. Prediction of school outcome after preterm birth: a cohort 1113 

study. Arch. Dis. Child. 104, 348–353 (2019). 1114 

49. Alterman, N. et al. Gestational age at birth and academic attainment in primary and 1115 

secondary school in England: Evidence from a national cohort study. PLoS One 17, 1116 

e0271952 (2022). 1117 

50. Noghanibehambari, H., Salari, M. & Tavassoli, N. Maternal human capital and infants’ health 1118 

outcomes: Evidence from minimum dropout age policies in the US. SSM Popul Health 19, 1119 

101163 (2022). 1120 

51. Granés, L., Torà-Rocamora, I., Palacio, M., De la Torre, L. & Llupià, A. Maternal educational 1121 

level and preterm birth: Exploring inequalities in a hospital-based cohort study. PLoS One 1122 

18, e0283901 (2023). 1123 

52. Baranowska-Rataj, A., Barclay, K., Costa-Font, J., Myrskylä, M. & Özcan, B. Preterm Births 1124 

and Educational Disadvantage: Heterogeneous Effects Across Families and Schools. 1125 

(CESifo, Center for Economic Studies & Ifo Institute, 2019). 1126 

53. Malanchini, M. et al. Genetic associations between non-cognitive skills and academic 1127 

achievement over development. Nat Hum Behav (2024) doi:10.1038/s41562-024-01967-9. 1128 

54. McCall, R. B. Childhood IQ’s as Predictors of Adult Educational and Occupational Status. 1129 

Science 197, 482–483 (1977). 1130 

55. Keage, H. A. d. et al. Age 7 intelligence and paternal education appear best predictors of 1131 

educational attainment: The Port Pirie Cohort Study. Aust. J. Psychol. 68, 61–69 (2016). 1132 

56. Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on 1133 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/A9Fw
http://paperpile.com/b/ESp1ks/2PaBV
http://paperpile.com/b/ESp1ks/2PaBV
http://paperpile.com/b/ESp1ks/2PaBV
http://paperpile.com/b/ESp1ks/2PaBV
http://paperpile.com/b/ESp1ks/2PaBV
http://paperpile.com/b/ESp1ks/2PaBV
http://paperpile.com/b/ESp1ks/xFj0i
http://paperpile.com/b/ESp1ks/xFj0i
http://paperpile.com/b/ESp1ks/xFj0i
http://paperpile.com/b/ESp1ks/xFj0i
http://paperpile.com/b/ESp1ks/xFj0i
http://paperpile.com/b/ESp1ks/xFj0i
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/y7zke
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Lgmsw
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/Oz3qO
http://paperpile.com/b/ESp1ks/1xa5D
http://paperpile.com/b/ESp1ks/1xa5D
http://paperpile.com/b/ESp1ks/1xa5D
http://paperpile.com/b/ESp1ks/1xa5D
http://paperpile.com/b/ESp1ks/1xa5D
http://paperpile.com/b/ESp1ks/CyuI
http://paperpile.com/b/ESp1ks/CyuI
http://paperpile.com/b/ESp1ks/CyuI
http://paperpile.com/b/ESp1ks/CyuI
http://paperpile.com/b/ESp1ks/CyuI
http://paperpile.com/b/ESp1ks/CyuI
http://dx.doi.org/10.1038/s41562-024-01967-9
http://paperpile.com/b/ESp1ks/CyuI
http://paperpile.com/b/ESp1ks/yrnsl
http://paperpile.com/b/ESp1ks/yrnsl
http://paperpile.com/b/ESp1ks/yrnsl
http://paperpile.com/b/ESp1ks/yrnsl
http://paperpile.com/b/ESp1ks/yrnsl
http://paperpile.com/b/ESp1ks/yrnsl
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/qQ1y3
http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/eFn49
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


37 

 

phenotypic variability in the UK Biobank. Sci Adv 5, eaaw3538 (2019). 1134 

57. Paré, G., Cook, N. R., Ridker, P. M. & Chasman, D. I. On the use of variance per genotype 1135 

as a tool to identify quantitative trait interaction effects: a report from the Women’s Genome 1136 

Health Study. PLoS Genet. 6, e1000981 (2010). 1137 

58. Cao, Y., Wei, P., Bailey, M., Kauwe, J. S. K. & Maxwell, T. J. A versatile omnibus test for 1138 

detecting mean and variance heterogeneity. Genet. Epidemiol. 38, 51–59 (2014). 1139 

59. Ek, W. E. et al. Genetic variants influencing phenotypic variance heterogeneity. Hum. Mol. 1140 

Genet. 27, 799–810 (2018). 1141 

60. Wang, C. et al. Genome-wide discovery for biomarkers using quantile regression at biobank 1142 

scale. Nat. Commun. 15, 6460 (2024). 1143 

61. Pasmant, E., Vidaud, M., Vidaud, D. & Wolkenstein, P. Neurofibromatosis type 1: from 1144 

genotype to phenotype. J. Med. Genet. 49, 483–489 (2012). 1145 

62. Tye, C. et al. Long-term cognitive outcomes in tuberous sclerosis complex. Dev. Med. Child 1146 

Neurol. 62, 322–329 (2020). 1147 

63. Bast, J. & Reitsma, P. Analyzing the development of individual differences in terms of 1148 

Matthew effects in reading: results from a Dutch Longitudinal study. Dev. Psychol. 34, 1373–1149 

1399 (1998). 1150 

64. Shaywitz, B. A. et al. A Matthew Effect for IQ but Not for Reading: Results from a Longitudinal 1151 

Study. Read. Res. Q. 30, 894–906 (1995). 1152 

65. Stanovich, K. E. Matthew Effects in Reading: Some Consequences of Individual Differences 1153 

in the Acquisition of Literacy. Journal of Education 189, 23–55 (2009). 1154 

66. Duff, D., Tomblin, J. B. & Catts, H. The Influence of Reading on Vocabulary Growth: A Case 1155 

for a Matthew Effect. J. Speech Lang. Hear. Res. 58, 853–864 (2015). 1156 

67. Tucker-Drob, E. M. & Harden, K. P. Early childhood cognitive development and parental 1157 

cognitive stimulation: evidence for reciprocal gene-environment transactions. Dev. Sci. 15, 1158 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/eFn49
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/viicM
http://paperpile.com/b/ESp1ks/NlbZb
http://paperpile.com/b/ESp1ks/NlbZb
http://paperpile.com/b/ESp1ks/NlbZb
http://paperpile.com/b/ESp1ks/NlbZb
http://paperpile.com/b/ESp1ks/NlbZb
http://paperpile.com/b/ESp1ks/NlbZb
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/JqKZh
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/loDmv
http://paperpile.com/b/ESp1ks/OIxFm
http://paperpile.com/b/ESp1ks/OIxFm
http://paperpile.com/b/ESp1ks/OIxFm
http://paperpile.com/b/ESp1ks/OIxFm
http://paperpile.com/b/ESp1ks/OIxFm
http://paperpile.com/b/ESp1ks/OIxFm
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/BqUHM
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/WOMcq
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/GsL1U
http://paperpile.com/b/ESp1ks/qqN3f
http://paperpile.com/b/ESp1ks/qqN3f
http://paperpile.com/b/ESp1ks/qqN3f
http://paperpile.com/b/ESp1ks/qqN3f
http://paperpile.com/b/ESp1ks/qqN3f
http://paperpile.com/b/ESp1ks/qqN3f
http://paperpile.com/b/ESp1ks/RT3TG
http://paperpile.com/b/ESp1ks/RT3TG
http://paperpile.com/b/ESp1ks/RT3TG
http://paperpile.com/b/ESp1ks/RT3TG
http://paperpile.com/b/ESp1ks/RT3TG
http://paperpile.com/b/ESp1ks/RT3TG
http://paperpile.com/b/ESp1ks/dOpGo
http://paperpile.com/b/ESp1ks/dOpGo
http://paperpile.com/b/ESp1ks/dOpGo
http://paperpile.com/b/ESp1ks/dOpGo
http://paperpile.com/b/ESp1ks/dOpGo
http://paperpile.com/b/ESp1ks/dOpGo
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


38 

 

250–259 (2012). 1159 

68. Schuerger, J. M. & Witt, A. C. The temporal stability of individually tested intelligence. J. Clin. 1160 

Psychol. 45, 294–302 (1989). 1161 

69. Whitaker, S. Error in the estimation of intellectual ability in the low range using the WISC-IV 1162 

and WAIS-III. Pers. Individ. Dif. 48, 517–521 (2010). 1163 

70. Mostafa, T. & Ploubidis, G. Millennium Cohort Study. 1164 

https://discovery.ucl.ac.uk/id/eprint/10060140/1/mcs6_report_on_response.pdf. 1165 

71. Boyd, A. et al. Cohort Profile: the ‘children of the 90s’--the index offspring of the Avon 1166 

Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013). 1167 

72. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 1168 

562, 203–209 (2018). 1169 

73. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. 1170 

Nature 599, 628–634 (2021). 1171 

74. Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci 1172 

influencing general cognitive function. Nat. Commun. 9, 2098 (2018). 1173 

75. Hastie, T., Mazumder, R., Lee, J. D. & Zadeh, R. Matrix Completion and Low-Rank SVD via 1174 

Fast Alternating Least Squares. J. Mach. Learn. Res. 16, 3367–3402 (2015). 1175 

76. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. 1176 

Bioinformatics 26, 2867–2873 (2010). 1177 

77. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. 1178 

Nature 526, 68–74 (2015). 1179 

78. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 1180 

2, e190 (2006). 1181 

79. Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. Am. 1182 

J. Hum. Genet. 83, 132–5; author reply 135–9 (2008). 1183 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/dOpGo
http://paperpile.com/b/ESp1ks/cwc0
http://paperpile.com/b/ESp1ks/cwc0
http://paperpile.com/b/ESp1ks/cwc0
http://paperpile.com/b/ESp1ks/cwc0
http://paperpile.com/b/ESp1ks/cwc0
http://paperpile.com/b/ESp1ks/cwc0
http://paperpile.com/b/ESp1ks/ZhXDm
http://paperpile.com/b/ESp1ks/ZhXDm
http://paperpile.com/b/ESp1ks/ZhXDm
http://paperpile.com/b/ESp1ks/ZhXDm
http://paperpile.com/b/ESp1ks/ZhXDm
http://paperpile.com/b/ESp1ks/ZhXDm
http://paperpile.com/b/ESp1ks/iPJqV
http://paperpile.com/b/ESp1ks/iPJqV
https://discovery.ucl.ac.uk/id/eprint/10060140/1/mcs6_report_on_response.pdf
http://paperpile.com/b/ESp1ks/iPJqV
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/tA2ZA
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/gcSmP
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/cxNLS
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/AmGG
http://paperpile.com/b/ESp1ks/re3LH
http://paperpile.com/b/ESp1ks/re3LH
http://paperpile.com/b/ESp1ks/re3LH
http://paperpile.com/b/ESp1ks/re3LH
http://paperpile.com/b/ESp1ks/re3LH
http://paperpile.com/b/ESp1ks/re3LH
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/9a6bc
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/2mEd9
http://paperpile.com/b/ESp1ks/4jEwS
http://paperpile.com/b/ESp1ks/4jEwS
http://paperpile.com/b/ESp1ks/4jEwS
http://paperpile.com/b/ESp1ks/4jEwS
http://paperpile.com/b/ESp1ks/4jEwS
http://paperpile.com/b/ESp1ks/4jEwS
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
http://paperpile.com/b/ESp1ks/VvOwk
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


39 

 

80. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. 1184 

Nature 590, 290–299 (2021). 1185 

81. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1186 

1284–1287 (2016). 1187 

82. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. 1188 

Genet. 48, 1279–1283 (2016). 1189 

83. Fitzsimons, E. et al. Collection of genetic data at scale for a nationally representative 1190 

population: the UK Millennium Cohort Study. Longit. Life Course Stud. 13, 169–187 (2021). 1191 

84. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 1192 

5424–5431 (2021). 1193 

85. Vilhjálmsson, B. J. et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic 1194 

Risk Scores. Am. J. Hum. Genet. 97, 576–592 (2015). 1195 

86. Privé, F., Albiñana, C., Arbel, J., Pasaniuc, B. & Vilhjálmsson, B. J. Inferring disease 1196 

architecture and predictive ability with LDpred2-auto. Am. J. Hum. Genet. 110, 2042–2055 1197 

(2023). 1198 

87. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. 1199 

Nat. Genet. 47, 1236–1241 (2015). 1200 

88. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity 1201 

in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 1202 

89. Koko, M. et al. Exome sequencing of UK birth cohorts. Wellcome Open Research (2024). 1203 

90. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021). 1204 

91. Kersey, P. J. et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids 1205 

Res. 44, D574–80 (2016). 1206 

92. Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. CADD-Splice-improving genome-1207 

wide variant effect prediction using deep learning-derived splice scores. Genome Med. 13, 1208 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/DswLu
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/Cx48j
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/9MnFf
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/Os3qZ
http://paperpile.com/b/ESp1ks/8ah4F
http://paperpile.com/b/ESp1ks/8ah4F
http://paperpile.com/b/ESp1ks/8ah4F
http://paperpile.com/b/ESp1ks/8ah4F
http://paperpile.com/b/ESp1ks/8ah4F
http://paperpile.com/b/ESp1ks/8ah4F
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/rTQGt
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/F7Ddv
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/lkhZN
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/JdDNF
http://paperpile.com/b/ESp1ks/PWDA2
http://paperpile.com/b/ESp1ks/PWDA2
http://paperpile.com/b/ESp1ks/PWDA2
http://paperpile.com/b/ESp1ks/PWDA2
http://paperpile.com/b/ESp1ks/PWDA2
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/qr5H
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/XG6E2
http://paperpile.com/b/ESp1ks/Q38Zc
http://paperpile.com/b/ESp1ks/Q38Zc
http://paperpile.com/b/ESp1ks/Q38Zc
http://paperpile.com/b/ESp1ks/Q38Zc
http://paperpile.com/b/ESp1ks/Q38Zc
http://paperpile.com/b/ESp1ks/Q38Zc
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


40 

 

31 (2021). 1209 

93. Samocha, K. E. et al. Regional missense constraint improves variant deleteriousness 1210 

prediction. bioRxiv 148353 (2017) doi:10.1101/148353. 1211 

94. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with 1212 

AlphaMissense. Science 381, eadg7492 (2023). 1213 

95. Plewis, I. Millennium cohort study first survey: Technical report on sampling (3rd. Edition). 1214 

(2004). 1215 

96. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using 1216 

lme4. arXiv [stat.CO] (2014). 1217 

97. Wan, C. & Zhong, W. Estimation and Inference for Multi-Kink Quantile Regression [R 1218 

package MultiKink version 0.1.0]. (2020). 1219 

98. Koenker, R. & Bache, S. H. rqpd: Regression quantiles for panel data. R package version 0. 1220 

6/r10 (2014). 1221 

99. DDG2P (Version 3.79). https://panelapp.genomicsengland.co.uk/panels/484/. 1222 

100. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant 1223 

genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018). 1224 

  1225 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

http://paperpile.com/b/ESp1ks/Q38Zc
http://paperpile.com/b/ESp1ks/W1Yl6
http://paperpile.com/b/ESp1ks/W1Yl6
http://paperpile.com/b/ESp1ks/W1Yl6
http://paperpile.com/b/ESp1ks/W1Yl6
http://paperpile.com/b/ESp1ks/W1Yl6
http://paperpile.com/b/ESp1ks/W1Yl6
http://dx.doi.org/10.1101/148353
http://paperpile.com/b/ESp1ks/W1Yl6
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/S9Np
http://paperpile.com/b/ESp1ks/7kfay
http://paperpile.com/b/ESp1ks/7kfay
http://paperpile.com/b/ESp1ks/bCBPW
http://paperpile.com/b/ESp1ks/bCBPW
http://paperpile.com/b/ESp1ks/bCBPW
http://paperpile.com/b/ESp1ks/bCBPW
http://paperpile.com/b/ESp1ks/FtJQK
http://paperpile.com/b/ESp1ks/FtJQK
http://paperpile.com/b/ESp1ks/15fol
http://paperpile.com/b/ESp1ks/15fol
http://paperpile.com/b/ESp1ks/15fol
http://paperpile.com/b/ESp1ks/15fol
http://paperpile.com/b/ESp1ks/xywwa
https://panelapp.genomicsengland.co.uk/panels/484/
http://paperpile.com/b/ESp1ks/xywwa
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
http://paperpile.com/b/ESp1ks/AIuP4
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


41 

 

Extended Data Figures 1226 

Extended Data Figure 1 1227 

 1228 
Assessing quality of IQ imputation across ages and sets of variables in ALSPAC. A) Upset plot indicating 1229 

number of individuals with a given set of measured IQ values. B) Correlations between masked measured 1230 

and imputed values for 100 random individuals for 100 trials for three different combinations of variables 1231 

(base, expanded and auxiliary variables, as described in Methods) used in the SoftImpute imputation for 1232 

IQ measured at age 4, 8, and 16.  1233 
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Extended Data Figure 2 1253 

 1254 
Association between PGIs and academic performance in ALSPAC. The points show the effect at age 11 1255 

(main effect, left panel) and the difference in effects between age 14 and 11 (PGI x age interaction, right 1256 

panel) and error bars show 95% confidence intervals. Results are shown for the children’s PGIs not 1257 

controlling (i.e. ‘population model’) and controlling (right) for parental PGIs. Population effect sizes are 1258 

shown estimated in the full sample. 1259 

 1260 
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Extended Data Figure 3 1262 

 1263 

Association between unstandardized rare variant burden (RVB) and IQ across ages in ALSPAC, estimated 1264 

with a mixed-effects linear model. (i.e. as for Figure 2 but with unstandardized rather than standardized 1265 

RVB scores.) Absolute effects and 95% confidence intervals estimated for the main effects and RVB-by-1266 

age-interaction effects for RVB calculated with three different consequence classes (pLoF, missense or 1267 

synonymous), either pre- (top) and post-imputation (bottom). Results for the children’s RVBs not controlling 1268 

(i.e. ‘population model’) and controlling (right) for parental RVBs (i.e. trio model). Population effect sizes 1269 

are shown estimated in the full sample (opaque) and in the subset of children with parental RVBs 1270 

(translucent). The square brackets indicate significant comparisons highlighted in the text (z tests).  1271 
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Extended Data Figure 4 1274 

 1275 
Association between RVBs and academic performance in ALSPAC. The points show the effect at age 11 1276 

(main effect, left panel) and the difference in effects between age 14 and 11 (RVB x age interaction, right 1277 

panel) and error bars show 95% confidence intervals. Results are shown for the children’s RVB not 1278 

controlling (i.e. ‘population model’) and controlling (right) for parental RVB. Population effect sizes are 1279 

shown estimated in the full sample. 1280 
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Extended Data Figure 5 1301 

 1302 
Associations and enrichment of gene set-specific RVB across development. A) Standardized effects and 1303 

95% confidence intervals estimated for main effects and RVB-by-age-interaction effects for each RVB in 1304 

three mutually exclusive gene sets from Li et al46. These comprise genes in co-expressed clusters that are 1305 
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more highly expressed in prenatal or postnatal brain or that are not detected in the study (non-brain). B)  1306 

Main effects of RVBpLoF on IQ (post-imputation) stratified by gene set, divided by the number of genes in 1307 

the given gene set, with 95% confidence intervals. Red horizontal line indicates the average effect for 1308 

RVBpLoF across all genes. Asterisks indicate the p value for difference in per-gene effects between a given 1309 

gene set and all genes using a z test, with * indication nominal significance and ** indicating bonferroni 1310 

significance for 8 tests. C) Boxplots of the distribution of shet (selection coefficient against heterozygous 1311 

pLoFs in that gene44) per gene set, where a coefficient of 0 indicates no selection against heterozygous 1312 

pLoFs in a given gene and 1 indicates a 100% reduction in fitness for heterozygous pLoF carriers relative 1313 

to non-carriers. D) Ratio of the main effect for RVBpLoF for the indicated gene set relative to randomly 1314 

sampled gene sets with matching underlying shet distributions (enrichment). E) As in (B) for gene sets 1315 

defined using different FDR threshold cutoffs based on gene prioritization in 45 (5%, 1%, 0.1%) and by 1316 

restricting to prioritized genes at a given cutoff that are also the closest genes to the prioritizing SNP in the 1317 

Lee et al. GWAS. Results are shown before (black) or after (grey) excluding overlapping genes from the 1318 

set of autosomal dominant neurodevelopmental condition genes with a loss-of-function mechanism from 1319 

DDG2P (AD NDC).  AD/AR NDC: Autosomal dominant/recessive neurodevelopmental disorder genes with 1320 

loss-of-function mechanism from DDG2P99, EA: educational attainment GWAS prioritized genes by Lee et 1321 

al.45 at 5% FDR threshold,  Intelligence: intelligence GWAS prioritized genes from Savage et al.12, SCZ: 1322 

schizophrenia GWAS prioritized genes from Pardiñas et al.100   1323 
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Extended Data Figure 6 1324 

 1325 
Association between inherited and de novo pLoF variant counts in constrained genes and IQ in ALSPAC. 1326 

A) Standardized effects and 95% confidence intervals of RVBpLoF and constrained pLoF count (see 1327 

Supplementary Methods) on IQ across ages post-imputation. Black line indicates the y=x line. B) 1328 

Standardized effects for the main and RVB-by-age interaction effect from a longitudinal mixed-effects model 1329 

of constrained pLoF counts on standardized IQ when considering all variants or de novo mutations and 1330 

inherited variants separately, both pre- and post-imputation. C) Variance explained by constrained pLoF 1331 

counts on standardized IQ when considering all variants or de novo and inherited separately, both pre- and 1332 

post-imputation. See Figure S1 for results from a similar analysis of cognitive performance in MCS. 1333 

 1334 

1335 
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Extended Data Figure 7 1336 

 1337 

 1338 
Influence of genetic measures on the tails of the phenotypic distribution using academic performance in 1339 

ALSPAC and cognitive performance measures in MCS and UK Biobank. A) Standardized effects and 95% 1340 

confidence intervals for quantile regression of the 5th (red), 50th (green), and 95th (blue) percentiles of 1341 
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genetic measures on academic performance in Year 6 and Year 9 in the full ALSPAC cohort showing 1342 

population effects. The square brackets with asterisks indicate significant age interactions. B) Standardized 1343 

effects and 95% confidence intervals for quantile regression of the 5th (red), 50th (green), and 95th (blue) 1344 

percentiles and linear regression (OLS; gray) estimated from cross-sectional associations with cognitive 1345 

performance measures in MCS and UK Biobank. The PGIEA used in UK Biobank was constructed from an 1346 

EA GWAS in 23andMe only 16, as the GWAS excluding 23andMe includes UK Biobank. We only considered 1347 

PGIEA as we could not construct PGICog to apply in UK Biobank since we did not have an independent 1348 

GWAS for cognitive ability in adults that excluded this cohort. The square brackets indicate significant 1349 

comparisons highlighted in the text (z tests).  1350 

 1351 
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 1355 

  1356 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313061doi: medRxiv preprint 

https://paperpile.com/c/ESp1ks/mPMYD
https://doi.org/10.1101/2024.09.04.24313061
http://creativecommons.org/licenses/by/4.0/


50 

 

Extended Data Figure 8 1357 

 1358 

Influence of parental common and rare variants on different quantiles of the IQ distribution post-imputation. 1359 

Standardized effects and 95% confidence intervals for quantile regression of the 5th, 50th, and 95th 1360 

percentiles estimated from mixed-effects modeling with post-imputation IQ at ages 4, 8, and 16 for parental 1361 

PGIEA, PGICog, RVBpLoF and RVBMissense estimated in a trio model. 1362 

 1363 

 1364 

  1365 
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Extended Data Figure 9 1366 

 1367 
Summary of genetic trajectories across development, as inferred in this work. Mean PGIEA (left) and RVBpLoF 1368 

(right) for individuals in the top (light blue) or bottom (brown) 5% percentile of IQ at a given age (inferred 1369 

post-imputation of IQ). Note that the individuals in the top and bottom 5th percentile groups vary across 1370 

development. Children at the top 5th percentile of IQ at age 16 have a higher mean PGIEA than those at the 1371 

top of the distribution at age 4, while those at the bottom 5th percentile have a relatively steady mean PGIEA. 1372 

In contrast, the quantile-specific age interactions for RVBpLoF suggest that children in the bottom 5th 1373 

percentile of IQ at age 4 have a much higher burden of damaging rare variants than those at age 16, while 1374 

those at the top 5th percentile have a stable and low rare variant burden. 1375 

 1376 

Supplementary Figures 1377 

Supplementary Tables 1-9 1378 

Supplementary Notes 1379 

Supplementary note 1: IQ imputation in ALSPAC 1380 

Supplementary note 2: Differential effects of rare variants in different gene sets on IQ 1381 

Supplementary note 3: Relative contributions of deleterious pLoF de novo and inherited variants 1382 

to IQ 1383 

Supplementary note 4: Results of quantile regressions pre- versus post-imputation of IQ 1384 
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