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ABSTRACT 
 
Background: Critical illness, or acute organ failure requiring life support, threatens over five million American 
lives annually. Electronic health record (EHR) data are a source of granular information that could generate 
crucial insights into the nature and optimal treatment of critical illness. However, data management, security, 
and standardization are barriers to large-scale critical illness EHR studies. 
 
Methods: A consortium of critical care physicians and data scientists from eight US healthcare systems 
developed the Common Longitudinal Intensive Care Unit (ICU) data Format (CLIF), an open-source database 
format that harmonizes a minimum set of ICU Data Elements for use in critical illness research. We created a 
pipeline to process adult ICU EHR data at each site. After development and iteration, we conducted two proof-
of-concept studies with a federated research architecture: 1) an external validation of an in-hospital mortality 
prediction model for critically ill patients and 2) an assessment of 72-hour temperature trajectories and their 
association with mechanical ventilation and in-hospital mortality using group-based trajectory models. 
 
Results: We converted longitudinal data from 94,356 critically ill patients treated in 2020-2021 (mean age 60.6 
years [standard deviation 17.2], 30% Black, 7% Hispanic, 45% female) across 8 health systems and 33 
hospitals into the CLIF format, The in-hospital mortality prediction model performed well in the health system 
where it was derived (0.81 AUC, 0.06 Brier score). Performance across CLIF consortium sites varied (AUCs: 
0.74-0.83, Brier scores: 0.06-0.01), and demonstrated some degradation in predictive capability. Temperature 
trajectories were similar across health systems. Hypothermic and hyperthermic-slow-resolver patients 
consistently had the highest mortality.  
 
Conclusions: CLIF facilitates efficient, rigorous, and reproducible critical care research. Our federated case 
studies showcase CLIF’s potential for disease sub-phenotyping and clinical decision-support evaluation. Future 
applications include pragmatic EHR-based trials, target trial emulations, foundational multi-modal AI models of 
critical illness, and real-time critical care quality dashboards.
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INTRODUCTION 
The intensive care unit (ICU) is an optimal setting for advanced clinical artificial intelligence (AI) projects 
because of voluminous longitudinal data and comprehensively captured outcome labels, demonstrated by 
exemplar deidentified electronic health record (EHR) databases such as MIMIC.1–3 AI applications in the ICU 
range from early warning systems for patient deterioration to programs designed to optimize resource 
allocation and personalize treatment recommendations.4,5 However, real-world ICU data science is often 
inefficient and difficult to scale because of challenges in acquiring, organizing, cleaning, and harmonizing EHR 
data. ICU EHR data are complex, highly temporally correlated, and subject to degradation through data 
capture and storage procedures designed for purposes other than research.6 
 
Local EHR data repositories, or Electronic Data Warehouses (EDWs), are designed to maintain source data 
integrity and meet various institutional research and operational needs.7 EDWs often have unique 
idiosyncrasies, syntax, and data vocabularies which means extensive preprocessing is required before data 
can be analyzed for a specific use case.8–11 Established open-source common data models (CDMs), such as 
the Observational Medical Outcomes Partnership (OMOP),12 seek to address this data harmonization and 
standardization challenge for the entire EHR. However, the extract-transform-load (ETL) to a CDM is a major 
data engineering challenge, and data elements essential for the study of critical illness are not prioritized. Local 
CDM instances often completely omit granular critical illness data elements, such as ventilator settings for 
patients suffering from respiratory failure.13,14 
 
To address these challenges and to support efficient and scalable data-driven critical care research, we 
developed the Common Longitudinal ICU Data Format (CLIF), a standardized data format for multi-center 
federated studies of critical illness. Recognizing that transforming raw data into analysis-ready structures is 
inherently domain-specific, we integrated the experiences and expertise of ICU clinician-scientists and data 
scientists, encoding this knowledge into a 1) clinically-driven entity-relationship model and a 2) minimum set of 
essential Common ICU Data Elements. Our overall objective was to create a robust critical illness research 
format that fully captures the dynamic clinical state of critical illness.  
 
METHODS 
CLIF Consortium Objectives and Process 
We assembled a geographically diverse group of US-based physician-scientists and data scientists 
experienced in EHR-based clinical outcomes and AI research. Our guiding principles were: (1) efficient, 
clinically understandable data structures; (2) consistent and harmonizable data elements; (3) scalability and 
flexibility for future advancements; (4) federated analysis for collaborative research while maintaining data 
privacy and security; and (5) open-source development in line with the 2023 NIH Data Management and 
Sharing Policy and FAIR (Findable, Accessible, Interoperable, Reusable) data principles15. 
 
We began weekly virtual meetings in July 2023 to develop operating procedures, terminologies, and quality 
control methods. We identified the practical challenges of using EHR data to study critical illness locally and 
across centers (Table 1) and addressed them when developing CLIF. CLIF is specifically designed for tasks 
like cohort discovery, temporal sequencing, and creating composite representations of clinical events, such as 
sepsis onset. 
 
CLIF entity-relationship model  
CLIF’s entity-relationship (ER) model aligns with how critical care researchers organize and analyze clinical 
data in practice (Figure 1). It organizes various clinical data into 23 clinically relevant longitudinal tables linked 
by patient and hospitalization. These tables are organized by clinical information type and organ systems. 
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CLIF’s ER model features specialized critical care tables such as respiratory support, continuous medications, 
dialysis, extra-corporeal membrane oxygenation/mechanical circulatory support, position (designed to identify 
prone mechanical ventilation), and scores (containing important clinical assessments such as the Glasgow 
Coma Scale or Richmond Agitation-Sedation Scale). The ER model also contains other standard inpatient 
EDW tables (e.g. vitals, labs) and can be implemented as Structured Query Language (SQL) views or in other 
database structures, as CLIF is language agnostic. 
 
Minimum Common ICU Data Elements and Preservation of source EHR Data 
The National Institutes of Health (NIH) defines a Common Data Elements (CDE) as a "standardized, precisely 
defined question, paired with a set of allowable responses, used systematically across different sites, studies, 
or clinical trials to ensure consistent data collection.”16 For each CLIF table, we developed a minimum set of 
Common ICU Data Elements (mCIDE) denoted with the “_category” suffix. Each CIDE 1) represents a 
precisely defined clinical entity relevant to critical illness and 2) has a limited set of permissible values. 
Whenever possible, we adopted NIH-endorsed CDEs into CLIF.17 We created several novel CIDEs for CLIF, 
such as modes of mechanical ventilation (mode_category). Recognizing that our mCIDE is insufficient for all 
research purposes, we preserve source EHR data elements in “_name” fields.” For example, lab_name (e.g., 
"UCM_LAB HEMOGLOBIN - AUTOMATED") preserves the specific lab test name as used at the site, while 
lab_category (e.g., "Hemoglobin") maps this test to a specific permissible value of the lab_category CDE. This 
structure creates standardized ICU elements while preserving original data labels for quality control. 
 
CLIF open-source commitment, AI disclosure, and IRB approval 
CLIF continues to mature via our collaborative development process supported by git version control and is 
released under the Apache 2.0 license to ensure open access and broad usage rights. Our consortium website 
and code repository (clif-consortium.github.io/website/) contains data dictionaries, ETL pipeline examples, 
quality control scripts, and complete analysis code for each case study. Each of the eight CLIF consortium 
sites independently received IRB approval to conduct observational studies or to build and/or quality-check a 
research EDW (see Supplement Table E1 for IRB details). No patient-level data was shared between sites at 
any point. We used AI-assisted technologies, including large language models (LLMs), to edit the manuscript 
and code analysis scripts. The authors carefully reviewed and verified all AI-generated content to ensure 
accuracy and originality. All quoted material is properly cited. 
 
Cohort discovery and federated analytics in the CLIF consortium  
We conducted two proof-of-concept case studies: (1) development and external validation of a novel 
multivariable AI ICU mortality prediction model and (2) external validation of a previously developed 
subphenotyping algorithm for temperature trajectories in critical illness.18 We used the same cohort-discovery 
script and the CLIF admission-discharge-transfer (ADT) and patient tables to identify all adults (≥18 years) 
admitted to an ICU within 48 hours of hospitalization and staying at least 24 hours, from January 1, 2020, to 
December 31, 2021, at each site across the consortium (Figure E1). We chose these inclusion criteria to 
identify the general ICU population, excluding patients who die shortly after ICU admission or are admitted to 
the ICU for non-critical reasons (e.g., to facilitate a procedure). Using standardized outlier handling scripts and 
consortium-defined outlier ranges, we removed clear data entry errors (e.g., a heart rate of 1,000 beats per 
minute).  
 
Case Study I: Development and External Validation of an In-Hospital Mortality Model for ICU Patients 
Accurate and reliable hospital mortality predictions for critically ill patients may help clinical teams prioritize 
therapeutic interventions, facilitate more informed shared decision-making around goals of care, and optimize 
resource allocation within healthcare systems. Existing prediction models are limited by suboptimal accuracy 
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and significant performance variation across hospitals and differential performance among vulnerable 
populations may exacerbate baseline inequities in access to (and quality of) critical care. 1920–23 In this case 
study, we developed and externally validated an AI model to predict hospital mortality using clinical data from 
the first 24 hours in the ICU.  
 
We trained a light gradient boosted machine binary classifier (LightGBM)24 to predict in-hospital death on 
separate cohort of ICU admissions in CLIF format from Rush University Medical Center using data from 2019, 
2022, and 2023, performing hyperparameter tuning through a grid search with 5-fold cross validation. We 
selected LightGBM for its high discrimination and its ability to handle missing data without the need for 
imputation or exclusion of cases with high levels of missingness.24 We selected 30 candidate predictors a priori 
from hours 0-24 in the ICU (Table E2) based on literature review, our clinical experience, and expected low 
levels of missingness. We then saved the prediction model object in python and the general LGBM TXT format 
to the shared publicly available consortium repository.  
 
We then evaluated this model on the 2020-2021 cohort described above at Rush and all other CLIF sites using 
a federated approach with a common model evaluation script, the model object, and each site’s local CLIF 
database. To comprehensively assess the model's generalizability, we applied the TRIPOD-AI checklist across 
all test sites.25 Our evaluation focused on three key aspects: discrimination using the area under the receiver 
operating characteristic curve (AUC), calibration using Brier scores and calibration plots, and clinical utility 
through decision curve analysis.25,26  
 
Case Study II: Temperature Trajectory Subphenotyping 
Growing recognition of heterogeneity within critical illness syndromes has led to the emergence of algorithmic 
clinical subphenotyping as a means of generating new hypotheses for investigation, improving clinical 
prognostication, and characterizing heterogeneous treatment effects.27 Despite the potential value of these 
advances in precision medicine, subphenotyping models are rarely externally validated.28 
 
In our second case study, we externally validated a previously-developed unsupervised model to 
subphenotype infected patients in the hospital according to longitudinal temperature trajectories.18 This 
approach uses group-based trajectory modeling and patient temperature trends over 72 hours to assign patient 
encounters into one of four mutually-exclusive subphenotypes: normothermic (NT), hypothermic (HT), 
hyperthermic fast-resolver (HFR), and hyperthermic slow-resolver (HSR). In 1- and 2-hospital studies of 
patients with undifferentiated suspected infection and COVID-19 (regardless of ICU status), these 
subphenotypes have demonstrated distinct immune and inflammatory profiles and differential outcomes, 
including ICU utilization and mortality.29–31 However, the temperature trajectory model has not previously been 
evaluated within a broader critically ill population. 
 
We developed analysis scripts that standardized body temperature measurements during the first 72 hours of 
ICU admission and classified each patient into the temperature trajectory subgroup with the lowest sum of the 
mean squared errors between the patient’s observed temperature and the subphenotype’s reference 
trajectory. Finally, we assessed differences in patient characteristics by subphenotype and the association of  
subphenotypes with in-hospital mortality and receipt of invasive mechanical ventilation using multivariable 
logistic regression adjusted for patient age, sex, race, and ethnicity. 
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RESULTS: 
To date, we have established CLIF databases at eight US health systems, comprising 33 unique hospitals and 
94,356 ICU admissions (Figure E2, Table 2). Health system-level populations were similar in terms of age 
(mean 60.6 years overall [standard deviation 17.2], range 56.4 [18.5] to 63.2 [17.5]) and sex (45% female 
overall, range 41-47% female). As expected, each site’s population differed substantially by race, ranging from 
7% to 66% Black. Clinical outcomes differed moderately across systems. Overall, patients received invasive 
mechanical ventilation in 35,789 encounters (38% overall, range 28-50%), and 8,920 patients died in the 
hospital (9.5% overall, range 7.4-13%). 
 
Development and External Validation of an In-Hospital Mortality Model for ICU Patients 
The separate Rush training cohort consisted of 17,139 ICU admissions with similar demographics to the Rush 
test cohort (Table E3). The final model hyperparameters of the lightGBM are described in the Supplement 
(Table E4). The most important features in the model were: minimum albumin level, maximum aspartate 
aminotransferase (AST), minimum pulse rate, minimum diastolic blood pressure (DBP), and mean aspartate 
aminotransferase (AST) (see variable importance plot Figure E3). 
 
In the hold-out test cohort of 94,356 ICU admissions (Table 1), the AUC for predicting in-hospital mortality 
varied across sites, ranging from 0.74 to 0.81. Specifically, the Chicagoland health systems of Rush, 
Northwestern, and University of Chicago exhibited the highest AUCs, with values of 0.81 [95% CI: 0.79-0.83], 
0.83 [0.81 - 0.84], and 0.81 [95% CI: 0.79-0.82], respectively. In contrast, Emory and the University of 
Minnesota reported the lowest AUCs, both at 0.74 [95% CI: 0.73-0.75] and 0.74 [95% CI: 0.72-0.75]. These 
performance metrics are summarized in Figure 2a. Calibration was assessed using Brier scores, which ranged 
from 0.059 at Oregon Health & Science University (OHSU) (indicating the best calibration) to 0.097 at the 
University of Michigan and the University of Chicago. The calibration plot (Figure 2b) demonstrates predicted 
versus observed probabilities across all sites, with most curves closely following the diagonal line at lower 
probabilities but some deviation at higher probabilities. Net benefit is a weighted average of true positives and 
false positives intended to quantify the clinical utility of a model at different treatment thresholds varied across 
sites, as shown in the decision-curve analysis in Figure 2c.26 At the high-risk threshold of a 0.3 probability of 
death determined a priori by Rush University, the model conferred the highest net benefit to the University of 
Chicago (0.025), followed by the University of Michigan (0.020), and John Hopkins (0.018). The model lead to 
the lowest net benefits at Emory and Oregon Health & Science University both at 0.006. The model had 
positive net benefit at all sites at the threshold, indicating it increased utility compared to a “treat none” strategy 
(net benefit = 0 by definition) and a “treat all” strategy (net benefit ranging from -0.24 to -0.32). 
 
Temperature Trajectory Subphenotypes 
Across the eight participating institutions, this case study analyzed 94,290 ICU admissions, excluding 66 
(0.07%) ICU admissions without any recorded temperatures (Table E4). Each subphenotype had a consistent 
observed temperature trajectory across all sites (Figure 3A). Normothermic encounters had the highest 
prevalence overall and at each site (range 43-68%), followed by hypothermic encounters (range 13-34%), 
hyperthermic slow resolvers (range 7.8-16%), and hyperthermic fast resolvers (range 6.2-7.9%). The 
distribution of patient characteristics across subphenotypes was similar across sites. Hypothermic patients 
were consistently older than other groups (range 61.4-68.9) and hyperthermic slow resolvers were the 
youngest group at all sites but one (range 47.8-60.0).  
 
Several consistent outcome patterns were observed across sites. Hyperthermic slow resolvers had the highest 
rates of invasive mechanical ventilation at all sites (range 38-79%). Mechanical ventilation rates were lowest 
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among normothermic and hypothermic patients. Mortality was lowest among normothermic patients (range 3.8-
8.2%) and highest among hypothermic (9.9-18.2%) and hyperthermic slow resolving (8.5-20.3%) patients. 
 
After adjustment for age, sex, race, and ethnicity, subphenotype membership was consistently and 
independently associated with these outcomes (Figure 3B). HSR and HFR subphenotypes were associated 
with significantly increased odds for invasive mechanical ventilation (IMV) (as compared to normothermic) at all 
sites. Additionally, HSR, HFR, and HT subphenotypes were associated with significantly increased odds for 
mortality at all sites. 
 
DISCUSSION 
We developed CLIF to standardize complex ICU data into a consistent, longitudinal format necessary for 
transparent and reproducible critical care research. In two proof-of-concept studies involving nearly 100,000 
diverse critically ill patients, we demonstrated the potential of CLIF and a federated consortium research 
approach.  
 
In our first case study, the mortality model demonstrated good discrimination and calibration in the internal 
RUSH validation cohort. However, its performance varied across seven other CLIF consortium sites. Decision 
curve analysis revealed positive but varying clinical utility across sites, highlighting the model’s sensitivity to 
local clinical and operational differences. For example, significant calibration slope errors (overestimating 
mortality) in the OHSU and Emory test sets led to lower net benefit and less clinical utility at the specified 
clinical decision threshold. These findings underscore the challenge of generalizing prognostic models across 
diverse healthcare settings in a one-size-fits-all fashion.19 This case study demonstrates CLIF's value in 
facilitating rigorous, multi-site evaluations of predictive models. The natural next step is the development and 
validation of a set of generalizable ICU prediction models trained across the entire CLIF consortium using 
decentralized federated learning.32 
 
Our second case study expands Bhavani et al.’s temperature trajectory subphenotyping model to a larger, 
broader, and more diverse cohort using the CLIF framework.18 While Bhavani et al. identified four 
subphenotypes in a sepsis-specific cohort—hyperthermic slow resolvers, hyperthermic fast resolvers, 
normothermic, and hypothermic—we applied this model to undifferentiated patients with critical illness.18 
Mirroring prior findings in sepsis, we observed the highest mortality rates in the hypothermic group, suggesting 
this subphenotype robustly predicts outcomes in a general critical illness population. The consistent 
association of temperature trajectories with mortality and mechanical ventilation across health systems 
highlights the potential of longitudinal data analysis for critical illness phenotyping and personalizing ICU 
treatment.33  

Limitations and areas for improvement  

The CLIF format has limitations and we are actively seeking feedback on the project. First, CLIF required 
substantial data science and critical care expertise to implement at each consortium site. The consortium is 
developing open-source tools to help diverse healthcare institutions adopt CLIF in an automated, scalable, and 
flexible manner. These ETL tools must be sensitive to the evolving landscape of healthcare data storage as 
institutions shift from traditional warehouses to flexible, scalable data lakes. This change allows CLIF to play a 
key role in improving healthcare data representation. CLIF helps transform often hard-to-interpret raw data in 
the ICU into more valuable, integrated information ready for advanced analysis. Second, CLIF is currently not 
linked to established interoperability standards like Health Level Seven (HL7) Fast Healthcare Interoperability 
Resources (FHIR). Future data engineering directions include the development of HL7 FHIR queries to 
generate real-time CLIF tables.  
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Third, the case studies presented in this manuscript used ADT data to define the critical illness population. This 
approach is susceptible to selection bias and left-censoring. However, a key strength of the CLIF framework is 
it is designed to represent critical illness wherever it occurs in the hospital.34 This means that future CLIF 
analyses do not have to rely on a patient’s physical location or ADT data to define a disease state. Fourth, 
while CLIF’s diverse data elements are not a substitute for proper longitudinal study design. Limitations like 
incomplete data or collider bias can still confound CLIF studies, especially when hospitalization patterns vary 
among vulnerable groups.35 Fortunately, advances in causal inference, such as target trial emulation, provide a 
clear roadmap for the CLIF consortium. 

Finally, while our work demonstrates the benefits of federated analysis, ideally, we would release de-identified 
versions of our CLIF databases for public use. Once CLIF’s utility as a format is firmly established, we hope to 
make the case to our health systems leadership to make the large investment required to follow the 
inspirational example of MIMIC.36 

Conclusions and future directions 

We developed and implemented a Common Longitudinal ICU data Format (CLIF) across 8 diverse health 
systems and demonstrated its value in two proof-of-concept case studies. We believe our open-source 
approach will make CLIF a broadly appealing target format for representing critical illness. Aspirational future 
directions for CLIF include 1) data format for pragmatic EHR-based trials, 2) rigorous target trial emulation 
framework for causal inference, 3) real-time critical care quality dashboards, and 4) foundational multi-modal AI 
models of critical illness. 
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FIGURES  
 
Figure 1. CLIF Entity Relationship Diagram.  
 

This diagram depicts the relationships between various tables in the Common Longitudinal ICU Data Format 
(CLIF) schema. The diagram includes the following 23 tables: 

1. Patient  
2. Hospitalization 
3. Admission Diagnosis 
4. Provider 
5. ADT (Admission, Discharge, Transfer) 
6. Vitals 
7. Scores 
8. Dialysis 
9. Intake/Output 
10. Procedures 
11. Therapy session 
12. Therapy Details 
13. Respiratory Support 
14. Position 
15. ECMO (Extracorporeal Membrane Oxygenation) and Mechanical Circulatory Support (MCS) 
16. Labs 
17. Microbiology culture 
18. Sensitivity 
19. Microbiology non-culture 
20. Respiratory Support 
21. Medication Orders 
22. Medication Admin Intermittent 
23. Medication Admin Continuous 

Each table represents a specific aspect of ICU data, and lines between tables indicate how they are related 
through shared identifiers, primarily encounter_id. The depicted entity-relationship model was version 1.0, used 
for the case studies in this manuscript. The CLIF format is maintained with the git version control system, 
release 2.0.0 is available at https://clif-consortium.github.io/website/ 

Figure 2. Mortality model performance validation via receiver-operator characteristic curves (A), 
calibration curves (B), and decision curves (C).  
 
Figure 3. Temperature trends (A) and adjusted odds for ICU outcomes (B) across temperature 
trajectory subphenotypes at all sites. 
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Figure 1. CLIF Entity Relationship Model.  
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Figure 2. Mortality model performance validation via receiver-operator characteristic curves (A), 
calibration curves (B), and decision curves (C). 
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Figure 3. Temperature trends (A) and adjusted odds for ICU outcomes (B) across temperature 
trajectory subphenotypes at all sites. 

A  

B  
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Table 1. Practical Challenges to EHR Data Science in the Hospital 

Challenge Description Example 

Complex longitudinal data 
with differing frequencies 
drawn from multiple 
sources  

Diverse domains such as vital signs, 
laboratory measurements, 
medications, and respiratory support 
require different data structures for 
representation and analysis. 

Vital signs are frequently recorded 
during hospitalization (e.g. hourly) 
while laboratory results occur 
much less frequently and can be 
distributed across different record 
id numbers for the same patient 
(e.g., tests obtained in a clinic 
before the patient is referred to the 
emergency department or 
admitted). Microbiology tests are 
similarly recorded but are further 
complicated by the possibility of 
multiple observations per test 
(e.g., blood culture positive for 
multiple organisms) and nested 
antimicrobial susceptibility testing. 

Interdependent data Complex care processes are implicitly 
embedded in the presence, absence, 
frequency, and content of structured 
data. 

Continuous neuromuscular 
blockade (recorded in the 
medication administration table) 
requires invasive mechanical 
ventilation (recorded in the 
respiratory flowsheet tables). 

Temporally-dependent data Sepsis onset is defined by 
complex temporal heuristics 
involving the sequencing and 
timing of antimicrobials, infectious 
tests, and abnormal physiology. 
 
 

Inefficient and inaccurate 
data capture 

Many bedside measurements (e.g., 
vital signs, respiratory parameters) 
require manual recording or human 
validation of automatically recorded 
data before they are available in the 
EHR. 

Respiratory flowsheets often 
contain carryforward and 
copy/paste observations, leading 
to internal inconsistencies (e.g., 
patients recorded as receiving low-
flow nasal oxygen and invasive 
ventilation simultaneously). 

Complex data storage ICU data storage is fragmented across 
different systems (e.g., ventilator data, 
laboratory systems, vital signs), 
making comprehensive data analysis 
challenging without sophisticated 
integration efforts. Diverse end-user 
needs and goals (e.g., operational 
quality reporting vs. clinical research) 

ICU data on ventilator settings 
may be stored separately from 
laboratory results or vital signs, 
requiring complex data integration 
for analysis. Additionally, the "one 
size fits all" approach in data 
warehouses can result in data 
formats that are not ideal for 
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lead enterprise and research data 
warehouses to adopt a “one size fits 
all” content and format approach for 
EHR data, which may not be optimal 
for specific research or operational 
needs. 

specific research tasks, such as 
temporal analyses or patient-
specific interventions. 

Local idiosyncrasies ICU practices and data recording can 
vary significantly between institutions, 
with local protocols influencing how 
data is recorded and stored, leading to 
variability that complicates multicenter 
studies. 

ICU triage decisions, such as 
when to escalate care to invasive 
ventilation, are often based on 
local protocols, which can differ 
significantly between hospitals, 
leading to challenges in 
generalizing study findings across 
different settings. 
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Table 2. Characteristics and outcomes of ICU patient encounters in 2020-2021 across CLIF sites. 
 

Site 
Emory 

University  JHHS 

University 
of 

Minnesota  
University 

of Michigan 
Northwestern 

Medicine OHSU 
Rush 

University  
University 
of Chicago 

CLIF 
Consortium 
(Combined)  

Encounters, n 19,923 18,325 11,576 6,877 10,625* 9,046 9,905 8,079 94,356 
Hospitals, n 4 5 11 1 8 2 1 1 33 
Age (years), 
mean (SD) 61.2 (16.5) 60.6 (17.4) 61.8 (17.3) 59.0 (16.2) 63.2 (17.5) 59.9 (17.3) 59.6 (16.9) 56.4 (18.5) 60.6 (17.2) 

Female n (%) 9406 (47%) 8428 (46%) 5128 (44%) 2834 (41%) 4840 (46%) 3814 
(42%) 4687 (47%) 3422 (42%) 42559 (45%) 

Race n (%)   

 Asian 671 (3.4%) 765 (4.2%) 756 (6.5%) 135 (2.0%) 352 (3.3%) 276 (3.0%) 329 (3.3%) 150 (1.9%) 3434 (3.6%) 

 Black 9019 (45%) 5881 (32%) 824 (7.1%) 826 (12%) 1272 (12.0%) 775 (8.6%) 4012 (41%) 5307 (66%) 27916 (30%) 

 White 9048 (45%) 10128 (55%) 9503 (82%) 5429 (79%) 8005 (75.3%) 7525 
(83%) 3717 (38%) 2015 (25%) 55370 (59%) 

 Others 1185 (5.9%) 1551 (8.5%) 493 (4.3%) 487 (7.1%) 996 (9.4%) 470 (5.2%) 1847 (19%) 607 (7.5%) 7636 (8%) 

Ethnicity n 
(%)   

 Hispanic or 
Latino 761 (3.8%) 1208 (6.6%) 224 (1.9%) 201 (2.9%) 1004 (9.4%) 788 (8.7%) 1983 (20%) 497 (6.2%) 6666 (7.0%) 

 Not Hispanic 19162 (96%) 17117 (93%) 11352 (98%) 6676 (97%) 9851 (90.2%) 8258 
(91%) 7922 (80%) 7582 (94%) 87920 (93%) 

 Mechanical 
Ventilation, n 
(%) 

9852 (50%) 6595 (36%) 4059 (35%) 3358 (49%) 3034 (29%) 2563 
(28%) 2862 (29%) 3466 (49%) 35789 (38%) 

 Hospital 
mortality, n 
(%) 

1529 (7.7%) 1851 (10%) 1193 (10%) 817 (12%) 809 (7.9%) 983 (11%) 730 (7.4%) 1008 (13%) 8920 (9.5%) 

OHSU, Oregon Health & Science University; JHHS, The Johns Hopkins Health System Corporation CLIF, Common Longitudinal ICU data Format; SD, standard deviation 
*Subset of approximately 50% of Northwestern ICU encounters; only encounters that had vitals data currently available in the NU-CRITICAL database37 were included in this 
analysis 
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Supplementary Tables and Figures: 

Title: A Common Longitudinal Intensive Care Unit data Format (CLIF) to enable multi-institutional federated 
critical illness research 
 
Running Title: CLIF: Standardizing ICU Data for Federated Research 
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Table E1: IRB Details for CLIF Consortium Sites 

This supplement provides IRB approval numbers for observational studies of critically ill patients and EDW 
building/quality-checking activities conducted at CLIF consortium sites. 

CLIF Consortium Site IRB Number 

Oregon Health & Science University 00025188 

University of Minnesota STUDY00014815 

University of Michigan HUM00144238 

Northwestern Medicine STU00202840 

University of Chicago IRB20-1823 

Rush University 20082408-IRB01 

The Johns Hopkins Health System 
Corporation 

IRB00421735 

Emory University Study 1815 
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Table E2: Features of the Machine Learning Model Predicting ICU Mortality During the First 24 Hours 

Category Feature Description 
Demographics isfemale Gender (1 for female, 0 for male) 
 age Age of the patient at encounter 
Vital Signs min_pulse Minimum pulse rate 
 max_pulse Maximum pulse rate 
 avg_pulse Average pulse rate 
 min_sbp Minimum systolic blood pressure 
 max_sbp Maximum systolic blood 

pressure 
 avg_sbp Average systolic blood pressure 
 min_dbp Minimum diastolic blood 

pressure 
 max_dbp Maximum diastolic blood 

pressure 
 avg_dbp Average diastolic blood pressure 
 min_temp_c Minimum temperature in °C 
 max_temp_c Maximum temperature in °C 
 avg_temp_c Average temperature in °C 
Body Mass Index & 
Weight 

min_bmi Minimum BMI 

 max_bmi Maximum BMI 
 avg_bmi Average BMI 
 min_weight_kg Minimum weight in kg 
 max_weight_kg Maximum weight in kg 
 avg_weight_kg Average weight in kg 
Laboratory Results albumin_min Minimum albumin level 
 albumin_max Maximum albumin level 
 albumin_mean Mean albumin level 
 alkaline_phosphatase_min Minimum alkaline phosphatase 

level 
 alkaline_phosphatase_max Maximum alkaline phosphatase 

level 
 alkaline_phosphatase_mean Mean alkaline phosphatase level 
 ast_min Minimum AST (aspartate 

aminotransferase) level 
 ast_max Maximum AST (aspartate 

aminotransferase) level 
 ast_mean Mean AST (aspartate 

aminotransferase) level 
 bilirubin_conjugated_min Minimum conjugated bilirubin 

level 
 bilirubin_conjugated_max Maximum conjugated bilirubin 

level 
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 bilirubin_conjugated_mean Mean conjugated bilirubin level 
 bilirubin_total_min Minimum total bilirubin level 
 bilirubin_total_max Maximum total bilirubin level 
 bilirubin_total_mean Mean total bilirubin level 
 calcium_min Minimum calcium level 
 calcium_max Maximum calcium level 
 calcium_mean Mean calcium level 
 chloride_min Minimum chloride level 
 chloride_max Maximum chloride level 
 chloride_mean Mean chloride level 
 glucose_serum_min Minimum serum glucose level 
 glucose_serum_max Maximum serum glucose level 
 glucose_serum_mean Mean serum glucose level 
 hemoglobin_min Minimum hemoglobin level 
 hemoglobin_max Maximum hemoglobin level 
 hemoglobin_mean Mean hemoglobin level 
 lymphocyte_min Minimum lymphocyte count 
 lymphocyte_max Maximum lymphocyte count 
 lymphocyte_mean Mean lymphocyte count 
 monocyte_min Minimum monocyte count 
 monocyte_max Maximum monocyte count 
 monocyte_mean Mean monocyte count 
 neutrophil_min Minimum neutrophil count 
 neutrophil_max Maximum neutrophil count 
 neutrophil_mean Mean neutrophil count 
 platelet count_min Minimum platelet count 
 platelet count_max Maximum platelet count 
 platelet count_mean Mean platelet count 
 potassium_min Minimum potassium level 
 potassium_max Maximum potassium level 
 potassium_mean Mean potassium level 
 sodium_min Minimum sodium level 
 sodium_max Maximum sodium level 
 sodium_mean Mean sodium level 
 total_protein_min Minimum total protein level 
 total_protein_max Maximum total protein level 
 total_protein_mean Mean total protein level 
 wbc_min Minimum white blood cell count 
 wbc_max Maximum white blood cell count 
 wbc_mean Mean white blood cell count 

 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313058doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313058
http://creativecommons.org/licenses/by/4.0/


23 

 

Table E3: Derivation Cohort Characteristics for Inpatient Mortality Model at Rush University 
 

Site  RUSH 
Encounters, n 17,139 
Hospitals, n 1 

Age (years), mean 
(SD) 60.3 (17.0) 

Female n (%) 8140 (47.5%) 

Race n (%)  

 Asian 543 (3.2%) 

 Black 6458 (37.7%) 

 White 6932 (40.4%) 

 Others 3206 (18.7%) 

Ethnicity n (%)  
 Hispanic or 

Latino 3135 (18.3%) 

 Not Hispanic 14004 
(81.7%) 

 Mechanical 
Ventilation, n (%) 4495 (26.2%) 

 Hospital 
mortality, n (%) 1059 (6.2%) 
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Table E4: Hyperparameters for Inpatient Mortality LightGBM Model Derived at Rush 
 

Parameter Value 

boosting gbdt 

objective binary 

metric ['binary_logloss'] 

tree_learner serial 

device_type gpu 

data_sample_strategy bagging 

num_iterations 50 

learning_rate 0.1 

num_leaves 31 

num_threads 4 

seed 0 

deterministic FALSE 

force_col_wise TRUE 

force_row_wise FALSE 

histogram_pool_size -1 

max_depth 10 

min_data_in_leaf 20 
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min_sum_hessian_in_leaf 0.001 

bagging_fraction 1 

pos_bagging_fraction 1 

neg_bagging_fraction 1 

bagging_freq 0 

bagging_seed 3 

feature_fraction 1 

feature_fraction_bynode 1 

feature_fraction_seed 2 

extra_trees FALSE 

extra_seed 6 

early_stopping_round 0 

first_metric_only FALSE 

max_delta_step 0 

lambda_l1 0 

lambda_l2 0 

linear_lambda 0 

min_gain_to_split 0 

drop_rate 0.1 
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max_drop 50 

skip_drop 0.5 

xgboost_dart_mode FALSE 

uniform_drop FALSE 

drop_seed 4 

top_rate 0.2 

other_rate 0.1 

min_data_per_group 100 

max_cat_threshold 32 

cat_l2 10 

cat_smooth 10 

max_cat_to_onehot 4 

top_k 20 

monotone_constraints_method basic 

monotone_penalty 0 

refit_decay_rate 0.9 

cegb_tradeoff 1 

cegb_penalty_split 0 

path_smooth 0 
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verbosity 1 

saved_feature_importance_type 0 

use_quantized_grad FALSE 

num_grad_quant_bins 4 

quant_train_renew_leaf FALSE 

stochastic_rounding TRUE 

linear_tree FALSE 

max_bin 255 

min_data_in_bin 3 

bin_construct_sample_cnt 200000 

data_random_seed 1 

is_enable_sparse TRUE 

enable_bundle TRUE 

use_missing TRUE 

zero_as_missing FALSE 

feature_pre_filter TRUE 

pre_partition FALSE 

two_round FALSE 

header FALSE 
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precise_float_parser FALSE 

objective_seed 5 

num_class 1 

is_unbalance FALSE 

scale_pos_weight 1 

sigmoid 1 

boost_from_average TRUE 

reg_sqrt FALSE 

alpha 0.9 

fair_c 1 

poisson_max_delta_step 0.7 

tweedie_variance_power 1.5 

lambdarank_truncation_level 30 

lambdarank_norm TRUE 

lambdarank_position_bias_regularizatio
n 

0 

multi_error_top_k 1 

num_machines 1 

local_listen_port 12400 

time_out 120 
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gpu_platform_id -1 

gpu_device_id -1 

gpu_use_dp FALSE 

num_gpu 1 
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Table E5. Temperature Trajectory Data by CLIF Site 
 

Institution _ HSR HFR Normothermic Hypothermic P-value 

Emory 
University 

Encounters, n 2441 1487 11186 4805 - 

Age (years), 
mean (SD) 

56.7 (15.9) 58.7 (16.7) 61.5 (16.4) 63.7 (16.4) <0.001 

Male n (%) 1496 (61.3%) 809 (54.4%) 5772 (51.6%) 2437 (50.7%) <0.001 

Mechanical 
Ventilation, n 
(%) 

1568 (64.2%) 756 (50.8%) 4923 (44%) 2603 (54.2%) <0.001 

Hospital 
mortality, n (%) 

233 (9.5%) 134 (9%) 521 (4.7%) 640 (13.3%) <0.001 

Johns Hopkins 
Health System 
Corporation 

Encounters, n 1869 1143 10896 4417 - 

Age (years), 
mean (SD) 

55.5 (17.6) 58.4 (18.2) 60.6 (17.2) 63.3 (16.9) <0.001 

Male n (%) 1172 (62.7%) 610 (53.4%) 5822 (53.4%) 2293 (51.9%) <0.001 

Mechanical 
Ventilation, n 
(%) 

1350 (72.2%) 554 (48.5%) 3371 (30.9%) 1320 (29.9%) <0.001 

Hospital 
mortality, n (%) 

268 (14.3%) 167 (14.6%) 697 (6.4%) 719 (16.3%) <0.001 

Northwestern 
University 

Encounters, n 1106 834 7262 1423 - 

Age (years), 
mean (SD) 

60 (17) 61.6 (17.1) 62.8 (17.5) 68.9 (16.5) <0.001 

Male n (%) 661 (59.8%) 504 (60.4%) 3889 (53.6%) 731 (51.4%) <0.001 

Mechanical 
Ventilation, n 
(%) 

723 (65.4%) 393 (47.1%) 1575 (21.7%) 343 (24.1%) <0.001 

Hospital 
mortality, n (%) 

167 (15.1) 55(6.6) 330 (4.5) 257 (18.1) <0.001 

Oregon 
Health & 
Science 
University 

Encounters, n 871 561 5154 2460 - 

Age (years), 
mean (SD) 

54.8 (17.3) 56.4 (17.8) 59 (17.1) 64.6 (16.4) <0.001 

Male n (%) 552 (63.4%) 334 (59.5%) 2936 (57%) 1410 (57.3%) 0.004 

Mechanical 
Ventilation, n 
(%) 

667 (76.6%) 244 (43.5%) 1693 (32.8%) 712 (28.9%) <0.001 

Hospital 
mortality, n 
(%) 

102 (11.7%) 45 (8%) 197 (3.8%) 263 (10.7%) <0.001 

Rush Encounters, n 1562 707 4291 3328 - 
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University  Age (years), 
mean (SD) 

55.6 (17) 55.8 (17.5) 59.3 (16.8) 62.6 (16.2) <0.001 

Male n (%) 902 (57.7%) 376 (53.2%) 2234 (52.1%) 1699 (51.1%) <0.001 

Mechanical 
Ventilation, n 
(%) 

597 (38.2%) 203 (28.7%) 1109 (25.8%) 942 (28.3%) <0.001 

Hospital 
mortality, n 
(%) 

133 (8.5%) 55 (7.8%) 198 (4.6%) 330 (9.9%) <0.001 

University of 
Chicago 

Encounters, n 982 564 3982 2522 - 

Age (years), 
mean (SD) 

47.7 (18.2) 52.1 (18.4) 55.6 (18.3) 61.5 (17.3) <0.001 

Male n (%) 690 (70.3%) 327 (58%) 2274 (57.1%) 1344 (53.3%) <0.001 

Mechanical 
Ventilation, n 
(%) 

682 (69.5%) 281 (49.8%) 1551 (39%) 937 (37.2) <0.001 

Hospital 
mortality, n 
(%) 

130 (13.2%) 85 (15.1%) 85 (15.1%) 464 (18.4) <0.001 

University of 
Michigan 

Encounters, n 590 449 3955 1867 - 

Age (years), 
mean (SD) 

53.8 (17.5) 57.7 (15.8) 58.2 (16) 62.6 (15.4) <0.001 

Male n (%) 359 (60.8%) 279 (62.1%) 2272 (57.4%) 1128 (60.4%) 0.04 

Mechanical 
Ventilation, n 
(%) 

467 (79.2%) 267 (59.5%) 1825 (46.1%) 793 (42.5%) <0.001 

Hospital 
mortality, n 
(%) 

120 (20.3%) 65 (14.5%) 289 (7.3%) 330 (17.7%) <0.001 

University of 
Minnesota  

Encounters, n 908 820 7355 2493 - 

Age (years), 
mean (SD) 

58.4 (17.3) 60.9 (17.5) 61 (17.4) 65.7 (16.6) <0.001 

Male n (%) 553 (60.9%) 454 (55.4%) 4038 (54.9%) 1403 (56.3%) 0.007 

Mechanical 
Ventilation, n 
(%) 

634 (69.8%) 344 (42%) 2211 (30.1%) 870 (34.9%) <0.001 

Hospital 
mortality, n 
(%) 

144 (15.9%) 114 (13.9%) 504 (6.9%) 431 (17.3%) <0.001 

Abbreviations: (HSR) = hyperthermic, slow resolvers; (HFR)= hyperthermic, fast resolvers 
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Supplement Figure Legend: 
 
Figure E1: Inclusion and Exclusion Criteria for ICU CLIF Case Studies 
This figure illustrates the detailed criteria used for including and excluding cases in the ICU CLIF case studies.  
 
Figure E2: US States Represented by CLIF 
This map highlights the US states represented in the CLIF study, with participating institutions listed alongside 
their respective states. The institutions include: 
Oregon Health & Science University (Oregon) 
University of Minnesota (Minnesota) 
University of Michigan (Michigan) 
Northwestern Medicine (Illinois) 
UChicago Medicine (Illinois) 
Rush University (Illinois) 
Johns Hopkins Medicine (Maryland) 
Emory University (Georgia) 
 
Figure E3: Variable Importance Plot for Inpatient Mortality Prediction Model 
Feature Importance (Gain): This plot ranks the features (variables) in the model based on their significance in 
predicting inpatient mortality. The importance of each feature is measured using a metric called "Gain," which 
reflects how much each feature improves the model's accuracy in predicting the likelihood of a patient's 
survival during hospitalization. 
Gain: The higher the Gain for a feature, the more it contributes to the model's ability to predict the target 
outcome, which in this case is inpatient mortality. Gain measures the impact of each feature on the decision-
making process of the model, with higher Gain values indicating a greater influence on predicting whether a 
patient will survive or not. 
For example, if "Minimum Albumin" has the highest Gain value in the plot, it means that this feature is the most 
important for the model's predictions of inpatient mortality. This implies that lower levels of albuminare strongly 
associated with a higher risk of mortality in hospitalized patients, more so than other measured variables. 
 
Legend: 
WBC: White Blood Cell count 
AST: Aspartate Aminotransferase, an enzyme found in the liver and other tissues 
BP: Blood Pressure 
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Figure E1: Inclusion and Exclusion Criteria for ICU CLIF Case Studies 
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Figure E2. US States represented by CLIF 
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Figure E3: Variable Importance Plot for Inpatient Mortality Prediction Model 
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