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Abstract 

In late June 2024, the European Medicines Agency (EMA) recommended market authorization for a 

monovalent COVID-19 mRNA-vaccine based on JN.1 spike. We assessed immune responses in n=42 

health-care workers (median age 47 years, interquartile range, IQR 19·5 years, 48% male), who in 

August 2024 were vaccinated with 30 μg of the updated mRNA omicron JN.1 vaccine (bretovameran, 

BioNTech/Pfizer, Mainz, Germany). Humoral immune responses were analyzed directly prior to and 13 

days after vaccination. 

The omicron JN.1 vaccination resulted in a significant 1·2-fold increase of anti-S IgG and 1·2-fold 

increase of omicron anti-S IgG (p<0·0001). To assess plasma neutralisation capacity, we employed a 

pseudovirus particle (pp) neutralisation assay including S proteins of seven SARS-CoV-2 lineages. 

Baseline response rates were 100% for XBB.1.5pp, 90% for JN.1pp and KP.2pp, 82% for KP.2.3pp, 92% 

for KP.3pp, and 72% for LB.1pp. Before JN.1 vaccination, particles bearing KP sublineage S proteins 

were slightly less efficiently neutralised compared with JN.1pp (median change, 1·2-fold to 2·6-fold), 

while LB.1pp neutralisation was 3-fold reduced, indicating antibody evasion. After vaccination, the 

response rates increased significantly for all pseudoviruses except XBB.1.5pp and KP.3pp. Thus, we 

observed a significant increase in neutralisation of JN.1pp, KP.2pp, KP.2.3pp, and LB.1pp, showing a 

median change of 2.2-fold, 3.8-fold, 3.3-fold, and 4.9-fold, respectively.  

In summary, bretovameran increased anti-S IgG and strengthened neutralising responses against 

circulating SARS-CoV-2-variants, except for KP.3. We wish to point out that our study population 

exhibited high pre-vaccination omicron-related hybrid immunity and may not be representative of other 

populations. Our data supports the notion that the new mRNA vaccine against omicron JN.1 most likely 

increases protection against hospitalization and post-COVID sequelae caused by most current variants. 
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The constant emergence of SARS-CoV-2 variants and sublineages that evaded control by neutralising 

antibodies induced upon infection and/or vaccination required the use of adapted vaccines. A vaccine 

adapted to the XBB1.5 variant became available in autumn of 2023 and initially provided robust 

protection against hospitalization due to infection [1,2]. The omicron JN.1 lineage, which became 

dominant in 2024, is currently being replaced by JN.1 sublineages including KP.2 and KP.3. However, 

protection installed by the XBB.1.5 adapted vaccine is probably inefficient at present, due to waning 

antibody titers. Therefore, in late June 2024, the European Medicines Agency (EMA) recommended 

market authorization for a monovalent COVID-19 mRNA-vaccine based on JN.1 spike [4]. However, 

immune response data in humans or real-world evidence on vaccine-induced protection is pending. To 

generate such data, we assessed immune responses in n=42 health-care workers (median age 47 years, 

interquartile range, IQR 19·5 years, 48% male), who in August 2024 were vaccinated with 30 μg of the 

updated mRNA omicron JN.1 vaccine (bretovameran, BioNTech/Pfizer, Mainz, Germany). Humoral 

immune responses were analyzed directly prior to and 13 days after vaccination. The median number of 

previous COVID-19 vaccinations was 4·5 (IQR 1), 87·8% of vaccinees reported at least one previous 

SARS-CoV-2 infection, and 97·6 % of the participants had been exposed to omicron antigen (appendix 

p.2). We independently assessed n=14 study participants with breakthrough infections caused by 

contemporary SARS-CoV-2 variants circulating in July and August 2024 in Germany. 

First, we determined SARS-CoV-2 anti-spike (anti-S) IgG antibodies prior to and after JN.1 vaccination. 

Before JN.1 immunisation, participants showed a median of 2217 antibody-binding units per mL (IQR 

2709) of anti-S IgG antibodies and a median of 338 relative units per mL (IQR 348·5) of omicron IgG 

antibodies (figure A), which was about twice as high as compared to immune responses prior to the 

omicron-directed vaccination against XBB.1.5 we had previously observed [5]. The omicron JN.1 

vaccination resulted in a significant 1·2-fold increase of anti-S IgG and 1·2-fold increase of omicron 

anti-S IgG (p<0·0001, figure A). The absolute increase in both anti-S IgG types after JN.1 vaccination 

was comparable to that measured after vaccination with the XBB.1.5 adapted vaccine [5]. 

To assess plasma neutralisation capacity, we employed a pseudovirus particle (pp) neutralisation assay 

(ie, pseudovirus neutralisation test), including S proteins of seven SARS-CoV-2 lineages (figure B, 

appendix pp 8). Baseline response rates were 100% for XBB.1.5pp, 90% for JN.1pp and KP.2pp, 82% for 

KP.2.3pp, 92% for KP.3pp, and 72% for LB.1pp (figure B). Before JN.1 vaccination, particles bearing KP 

sublineage S proteins were slightly less efficiently neutralised compared with JN.1pp (median change, 

1·2-fold to 2·6-fold), while LB.1pp neutralisation was 3-fold reduced, indicating antibody evasion; figure 

C). After vaccination, the response rates increased significantly for all pseudoviruses except XBB.1.5pp 

and KP.3pp (figure C, appendix p10). Thus, we observed a significant increase in neutralisation of JN.1pp, 

KP.2pp, KP.2.3pp, and LB.1pp, showing a median change of 2.2-fold, 3.8-fold, 3.3-fold, and 4.9-fold, 

respectively. Postvaccination neutralisation titers were within comparable ranges to individuals with 

recent breakthrough infections caused by contemporary variants (appendix p11). 

In summary, bretovameran, an mRNA vaccine adapted to the spike protein of the omicron JN.1 variant, 

increased anti-S IgG in all vaccinated persons at 13 days post vaccination and strengthened neutralising 

responses against circulating SARS-CoV-2-variants, except for KP.3. Our data are in concordance with 

preclinical findings with fourfold vaccinated mice [6] and expand our knowledge on JN.1-associated 

immunity. We wish to point out that our study population exhibited high pre-vaccination omicron-related 

hybrid immunity, which could impact the magnitude and quality of humoral immunity induced by the 

JN.1-adpated vaccine and may not be representative of other populations. Despite this and some 

limitations listed in detail in the appendix (p 5), our data supports the notion that the new mRNA vaccine 

against omicron JN.1 most likely increases protection against hospitalization and post-COVID sequelae 

caused by most current variants. 
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Figure: Humoral immune responses following mRNA omicron JN.1 vaccination  

(A) Concentrations of Wuhan-Hu-1 S-specific IgG and omicron S-specific IgG in plasma obtained 

before or after vaccination with the mRNA omicron JN.1 vaccine. (B) Neutralisation of pseudovirus 

particles bearing the indicated S proteins by donor-matched plasma (n=39) taken before or after 

vaccination with the mRNA omicron JN.1 vaccine. Data represent GMT (colored columns) from a single 

experiment, performed with four technical replicates. The lowest plasma dilution tested (dashed lines) 

and the threshold (lower limit of detection; grey shaded areas) are indicated. Information on response 

rates and median fold change in neutralisation after vaccination are indicated above the graphs. Of note, 

for graphical reasons, plasma samples yielding an NT50 value below 6·25 (limit of detection) were 

manually set at bottom of the axis. (C) The data presented in panel C were regrouped to compare 

differences in SARS-CoV-2 lineage-specific neutralisation before and after vaccination. Information on 

GMT (also indicated by horizontal lines) response rates, and median fold change in neutralisation 

compared with JN.1 pseudovirus particles are indicated above the graphs. Individual neutralisation data 

are available in the appendix (pp 14–15). NA=not applicable. S=spike. GMT=geometric mean titres. 
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Table S1.  Demographics, and infection and vaccination history 

Variable 

 

Vaccinees 

 

Breakthrough 

infections 

Study participants (n=) 

 

42 

 

14 

 

Age, Median [IQR] (years) 

 

47 [20] 

 

45 [28] 

 

Sex, male (%) 

 

48 

 

21 

 

Median time post last vaccination [IQR] (months) 

 

11 [9·5] 

 

28 [22] 

 

Median number of prior vaccinations [IQR] 

 

4·5 [1] 

 

4 [2] 

 

Prior SARS-CoV-2 omicron vaccination (%) 

 

85·7 

 

69·2 

 

Prior SARS-CoV-2 infection (%) 

 

87·8 

 

100 

 

Prior SARS-CoV-2 omicron infection (%) 

 

87·2 

 

100 

 

Prior SARS-CoV-2 omicron antigen contact (%) 

 

97·6 

 

100 
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Methods 

 

Participants 

For this study, we recruited n=46 individuals from the COVID-19 Contact (CoCo) Study (German 

Clinical Trial Registry, DRKS00021152) that were vaccinated with Comirnaty® omicron 

JN.1/bretovameran and analysed n=42 individuals for which 13-day follow-up data was available and 

no SARS-CoV-2 infection between vaccination and day 13 was reported. The CoCo study is an ongoing, 

prospective, observational study monitoring anti-SARS-CoV-2 immunoglobulin G and immune 

responses in healthcare professionals at Hannover Medical School [1]. In August 2024, CoCo study 

participants that decided to receive a COVID-19 vaccination with bretovameran as part of the German 

vaccination campaign, were asked to donate blood before and after vaccination. In addition, we included 

n=14 participants with recent COVID-19 in July or August 2024 confirmed by quick test for comparison 

(all anti-nucleocapsid protein (NCP) IgG positive). According to the German wastewater-based 

surveillance on SARS-CoV-2, KP.3.1.1, LB.1, KP.3, KP.2 and JN.1 were among the most detected 

variants [2]. 

 

We estimated that a sample size of n=42 would be sufficient to detect a clinically meaningful difference 

within the group, assuming that S protein-specific IgG levels double from pre-vaccination (mean 822 

(SD 747) RU/mL, after: mean 1644 RU/mL (SD 1,494). This estimation was based on anti-S IgG 

measurements in a convenience sample of 24 persons from the CoCo cohort in August 2023, which is 

our best estimate of pre-vaccination levels, correlation between groups 0·5. This estimate is based on a 

one-tailed paired t-test of differences between means, with 95% power and 1% level of significance. 

From our previous experiences, we estimated a loss-to follow-up rate of 10%. Therefore, a sample size 

of 46 vaccinated persons has been aimed at. The power calculation was performed using G*Power, 

Version 3.1.9.6. 

 

Participants that were vaccinated with bretovameran were invited to donate blood before and 13 days 

after vaccination at which time robust antibody responses are detectable [3]. The CoCo Study cohort 

comprises a general population of health-care professionals, without specific pre-existing conditions. 

Twenty-seven percent of the bretovameran vaccinees reported underlying conditions (such as e.g. 

asthma), and three participants reported treatment with either methotrexate, ixekizumab plus 

sulfasalazin, or upadacitinib. No individual developed positive anti-NCP IgG after vaccination. 

Demographics (sex and age), infection, and vaccination history, respectively, are depicted in Table S1.  

 

Serology 

Serology was performed essentially as described before [3]. We separated plasma from lithium heparin 

blood (S-Monovette, Sarstedt) and stored it at 4 °C for immediate use or at -20 °C until use. We measured 

SARS-CoV-2 IgG by quantitative ELISA (anti-SARS-CoV-2 S1 Spike protein domain/receptor binding 

domain IgG SARS-CoV-2-QuantiVac, EI 2606-9601-10G, and S1 Spike protein domain/receptor 

binding domain IgG SARS-CoV-2 of omicron, EI 2606-9601-30 G, both EUROIMMUN, Lübeck, 

Germany) according to manufacturer’s instructions (dilution up to 1:4,000). We used anti-S1 

concentrations expressed as RU/mL as assessed from a calibration curve with values above 11 RU/mL 

defined as positive [1] and provide results in binding antibody units (BAU/mL). We performed anti-

NCP IgG measurements according to the manufacturer’s instructions (EUROIMMUN, Lübeck, 

Germany) and used an AESKU.READER (AESKU.GROUP, Wendelsheim, Germany) and the Gen5 

2.01 Software for analysis. 

 

 

Production of pseudovirus particles and pseudovirus neutralisation test (pVNT) 

pVNTs were conducted at the Infection Biology Unit of the German Primate Centre in Göttingen 

according to a previously published protocol2 with minor modifications. The following S protein 

expression plasmids were used: pCG1_SARS-2-SΔ18 XBB.1.5 (EPI_ISL_16239158; codon-optimised, 

deletion of last 18 aa residues at the C-terminus) [4], pCG1_SARS-2-SΔ18 JN.1 (EPI_ISL_18530042; 

codon-optimised, deletion of the last 18 aa residues at the C-terminus) [5], pCG1_SARS-2-SΔ18 KP.2 

(EPI_ISL_19197864; codon-optimised, deletion of the last 18 aa residues at the C-terminus), 

pCG1_SARS-2-SΔ18 KP.2.3 (EPI_ISL_19197559; codon-optimised, deletion of the last 18 aa residues 
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at the C-terminus), pCG1_SARS-2-SΔ18 KP.3 (EPI_ISL_19203001; codon-optimised, deletion of last 

18 aa residues at the C-terminus), pCG1_SARS-2-SΔ18 LB.1 (EPI_ISL_19067004; codon-optimised, 

deletion of the last 18 aa residues at the C-terminus). Expression plasmids for KP.2, KP.2.3, KP.3, and 

LB.1 S proteins were generated by introduction of the respective mutations into plasmid pCG1_SARS-

2-SΔ18 JN.1 through overlap-extension PCR with overlapping primers harbouring the desired 

mutations. 

 

For the production of pseudovirus particles harbouring S proteins of the SARS-CoV-2 lineages under 

study, 293T cells expressing the respective S protein following transfection were inoculated with 

VSV*DG-FLuc, 9 a replication-deficient VSV vector that lacks the genetic information for the VSV 

glycoprotein and instead encodes for an enhanced green fluorescent protein and a firefly luciferase 

(FLuc) (kindly provided by Gert Zimmer, Institute of Virology and Immunology, Mittelhäusern, 

Switzerland). After an incubation period of 1 h at 37 °C, cells were washed with PBS and further 

incubated with medium containing anti-VSV-G antibody (culture supernatant from I1-hybridoma cells; 

ATCC no. CRL-2700) to neutralise residual input virus. At 16-18 h post inoculation, pseudovirus 

particles were harvested. For this, the culture medium was centrifuged (4,000 x g, 10 min) and clarified 

supernatants were aliquoted and stored at -80 °C until further use.  

 

pVNTs were performed using Vero76 cells (kindly provided by Andrea Maisner, Institute for Virology, 

Phillips University Marburg) that were seeded in 96-well plates. Before analysis, all plasma samples 

were heat-inactivated (56 °C, 30 min) and serially diluted in culture medium. Next, equal volumes of 

the serially diluted plasma samples (final dilution range 1:25 to 1:6,400) and pseudovirus particles were 

mixed and incubated for 30 min at 37 °C, before the mixtures were inoculated onto confluent Vero76 

monolayers. Of note, pseudovirus particles incubated with medium alone instead of plasma sample 

served as reference. Pseudovirus infection was analysed at 16-18 h post inoculation by measuring FLuc 

activity in cell lysates. For this, the cell culture supernatant was aspirated before the cells were lysed 

with PBS containing 0·5 % Tergitol (Carl Roth; 30 min at room temperature). Subsequently, cell lysates 

were transferred into white 96-well plates and mixed with FLuc substrate (Beetle-Juice, PJK), before 

luminescence was recorded using a Hidex Sense Microplate Reader Software (version 0.5.41.0). 

 

Neutralisation efficiency was determined based on the relative inhibition of pseudovirus entry, with 

signals obtained from pseudovirus particles incubated in the absence of plasma serving as reference (= 

0% inhibition). In addition, we used a non-linear regression model to calculate the neutralising titre 50 

(NT50), indicating the plasma dilution required for half-maximal inhibition of pseudovirus infection. 

Of note, plasma samples that yielded NT50 values below 25 were considered as non-responders. Further, 

plasma samples that yielded NT50 values below 6·25 (limit of detection, LOD) were assigned an NT50 

value of 3·125 (0.5 of LOD). Two samples that yielded NT50 values above 6400 before vaccination 

were excluded from the analysis, as they were out of the quantifiable range of this assay and one sample 

was missing for pairwise pVNT analysis. 

 

Statistics 

Statistical analysis was conducted using GraphPad Prism 8.4 or 9.0 (GraphPad Software, USA) and 

SPSS 20.0.0 (IBM SPSS Statistics, USA). Outliers were included in the analysis, and missing values 

were excluded pairwise. Mean (SD) was used for normally distributed data, while median (IQR) was 

used for non-normally distributed data. In non-normally distributed data, Wilcoxon-Mann-Whitney-tests 

were used. Neutralisation titres were transformed to geometric mean titres.  
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Limitations of the study 

  

Our study has some limitations. Although our previous analysis [3] confirmed that anti-S IgG and 

neutralising antibodies plateaued at day eight to ten post omicron XBB.1.5 vaccination, which is in 

keeping with antibody kinetics described after the second BNT162b2 vaccination [6] or after other 

COVID-19 vaccinations [7], our data are preliminary and humoral and cellular immunity could further 

strengthen over time. Furthermore, this data can only provide first insights into the initial immune 

response to the updated JN.1 vaccine. Longitudinal data will be necessary to assess immune trends and 

durability. In addition, most of our vaccinees had previous SARS-CoV-2 Omicron infections and/or 

multiple vaccinations, likely contributing to the considerable anti-S IgG response present already before 

mRNA omicron JN.1 vaccination. Finally, neutralisation of SARS-CoV-2 lineages was assessed by 

pVNT, which has been shown to serve as an adequate surrogate model for this purpose [8]. Nevertheless, 

our data formally await confirmation with clinical isolates and eventually validation in studies with 

clinical endpoints. 
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Fig. S1 | Overview of SARS-CoV-2 lineage-specific spike protein mutations.  
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Fig. S2 | Individual neutralisation data for pre-vaccination plasma.  
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Fig. S3 | Individual neutralisation data for post-vaccination plasma. 
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Fig. S4 | Neutralisation data for individuals with SARS-CoV-2 breakthrough infections in July 

and August 2024. 
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