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Abstract 

Autism is a neurodevelopmental condition affecting ~1% of the population. Recently, machine 

learning models have been trained to classify participants with autism using their neuroimaging 

features, though the performance of these models varies in the literature. Differences in 

experimental setup hamper the direct comparison of different machine-learning approaches. In this 

paper, five of the most widely used and best-performing machine learning models in the field were 

trained to classify participants with autism and typically developing (TD) participants, using 

functional connectivity matrices, structural volumetric measures and phenotypic information from 

the Autism Brain Imaging Data Exchange (ABIDE) dataset. Their performance was compared under 

the same evaluation standard. The models implemented included: graph convolutional networks 

(GCN), edge-variational graph convolutional networks (EV-GCN), fully connected networks (FCN), 

auto-encoder followed by a fully connected network (AE-FCN) and support vector machine (SVM). 

Our results show that all models performed similarly, achieving a classification accuracy around 

70%. Our results suggest that different inclusion criteria, data modalities and evaluation pipelines 

rather than different machine learning models may explain variations in accuracy in published 

literature. The highest accuracy in our framework was obtained by an ensemble of GCN models 

trained on combination of functional MRI and structural MRI features, reaching classification 

accuracy of 72.2% and AUC = 0.78 on the test set. The combined structural and functional 

modalities exhibited higher predictive ability compared to using single modality features alone. 

Ensemble methods were found to be helpful to improve the performance of the models. Furthermore, 

we also investigated the stability of features identified by the different machine learning models 

using the SmoothGrad interpretation method. The FCN model demonstrated the highest stability 

selecting relevant features contributing to model decision making. Code available at: 

https://github.com/YilanDong19/Machine-learning-with-ABIDE. 

 

Key words: ABIDE, machine learning, ensemble methods, structural MRI, functional MRI, 

interpretation, stability. 

1 Introduction 

Autism is a developmental condition characterized by deficits in social communication, social 

reciprocity, repetitive and stereotyped behaviors and interests (del Barrio 2004), and atypical 

responses to sensory stimuli (Green et al. 2013). Around 1% of the general population is diagnosed 

with autism (World Health Organization 2023), and symptoms such as early language delay usually 

appear when children are two to three years old (Landa 2008; Stefanatos 2008). Autism core 

symptoms and co-occurring conditions such as depression and learning disabilities (Stewart et al. 

2006) often lead to serious challenges in the physical and mental well-being of the individuals with 

autism and their family. At present, the medical diagnosis of autism is largely based on behavioral 

observations and clinical interviews, and the underlying neural mechanisms of autism are still 

unclear (Yahata, Morimoto, and Hashimoto 2016). The insights provided by human neuroimaging 

studies may contribute to the development of autism biomarkers (Ecker, Bookheimer, and Murphy 
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2015). 

 

In recent years, with the rapid development of magnetic resonance imaging (MRI) technology, we 

have gradually gained a deeper understanding of atypical brain function and structure linked to 

neurodevelopmental conditions such as autism. For instance, several structural MRI studies have 

reported differences in total brain volume (Courchesne 2002) and brain asymmetry (Postema et al. 

2019) in participants with autism. Recent studies have also shown alterations in cortical thickness 

(CT) (Moradi et al. 2017) and subcortical volume (SV) (Katuwal et al. 2015).  

 

Resting-state functional MRI (rs-fMRI) is widely used to describe long-range functional 

relationships between different brain regions in brain disorders (Du, Fu, and Calhoun 2018) and has 

been used to characterize atypical functional connectivity in autism. Widespread reductions in 

connectivity among children with autism have been reported, spanning unimodal, heteromodal, 

primary somatosensory, and limbic and paralimbic cortices, whereas those with autism had 

increased connectivity between a small set of nodes primarily in subcortical regions (di Martino et 

al. 2014). More recently, a pattern of hyperconnectivity in prefrontal and parietal cortices and 

hypoconnectivity in sensory-motor regions has been suggested to be consistent and reproducible 

across cohorts (Holiga et al. 2019). 

 

However, neuroimaging studies investigating autism often report heterogeneous or even 

contradictory findings. For example, the volumetric differences between autism and typically 

developing participants (TD) reported by Aylward et al. (2002) were not replicated by Courchesne 

(2002). Differing results can be partially explained by biological heterogeneity within the population, 

variations in the imaging protocols, scanning parameters, and the scanner manufacturers, as well as 

variations in preprocessing and model evaluation methods. To date, no effective biomarker has been 

yet developed to enable a more objective diagnosis and stratification of autism, including the 

identification of sub-groups that may benefit from therapeutic interventions.  

 

In addition to traditional statistical approaches, modern artificial intelligence techniques have 

recently been employed with the hope that they may help to uncover these differences. In the past 

ten years, classic machine learning techniques have been used to mine a wealth of information in 

structural MRI (sMRI) and rs-fMRI to conduct autism research. Table 1 lists several experiments 

that were conducted using statistical and classical machine learning approaches. For instance, 

Anderson et al. (2011) used Pearson’s correlation coefficients to construct functional connectivity 

matrices from the time series of each pair of Regions of Interest (ROIs), then applied a two-tailed t-

test to identify a subset of connections that were significantly different between the autistic and TD 

participants. They subsequently employed a linear classifier to classify individuals with autism from 

TD participants based on the selected connections, resulting in accuracy 79%. Ecker et al. (2010) 

performed one of the first studies in which autism was predicted based on structural brain measures. 

Segmented grey matter (GM) and white matter (WM) images comprised an input into a support 

vector machine (SVM) classifier, resulting in accuracy of 86%. Sabuncu and Konukoglu (2015) 

utilized the sMRI volumetric features from FreeSurfer software (grey matter volume, average 

thickness, etc.) to classify autistic participants, achieving 60% classification accuracy. Abraham et 

al. (2017) proposed a pipeline based on multi-subject dictionary learning (MSDL) atlas, tangent 
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embedding and support vector classifier (SVC) with L2 regularization, achieving 67% prediction 

accuracy. 

 

However, other authors have found that the heterogeneity of data from multiple collection sites has 

a significant impact on the experimental results. For example, Nielsen et al. (2013) performed a 

similar experiment as Anderson et al. (2011) with a bigger sample size but obtained very different 

results. They utilised fMRI data from 964 participants (16 sites from ABIDE dataset) rather than 80 

participants, which resulted in the classification accuracy decrease from 79% (Anderson et al. 2011) 

to 60% (Nielsen et al. 2013). Wolfers et al. (2019) summarized the results of 57 studies and observed 

a trend towards decreasing accuracy with increasing sample size in autism classification, suggesting 

that increasingly large sample sizes may result in low accuracies because of the intrinsic 

heterogeneity of autism, but may allow for the identification of more robust decision functions. 

 

Table 1. Summary of statistical and classical machine learning approaches predicting autism from 

MRI features 

Authors Approaches Datasets 
Evaluation 

methods 

Best reported 

performance 

Anderson et al 

(2011) 

Linear 

classifier 

40 Autism, 40 

TD (fMRI) 
leave-one-out 79% 

Ecker et al 

(2010) 
SVM 

22 Autism, 22 

TD (sMRI) 
leave-one-out 86% 

Sabuncu et al 

(2015) 
SVM 

325 Autism, 

325 TD 

(sMRI) 

5-fold cross-

validation 
60% 

Abraham et al 

(2017) 
SVM 

 

403 Autism, 

468 TD 

(ABIDE, 

fMRI) 

10-fold cross-

validation 
67% 

Nielsen et al 

(2013) 

Linear 

classifier 

 

477 Autism, 

517 TD 

(ABIDE, 

fMRI) 

leave-one-out 60% 

 

Deep learning models have achieved results comparable to human expert performance in many 

fields such as speech, natural language processing, and computer vision (Alasasfeh, Alomari, and 

Ibbini 2021; Ciregan, Meier, and Schmidhuber 2012). They are also widely applied in the medical 

imaging field, attempting to obtain more accurate experimental results than with classic machine 

learning approaches. Table 2 lists several experiments conducted to predict autism using deep 

learning approaches. Heinsfeld et al. (2018) used deep neural networks with two auto-encoders, 

reaching 70% classification accuracy in distinguishing autistic and TD participants. With the 

supplement of structural MRI data, Rakić et al. (2020) achieved 85% accuracy by using auto-
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encoder followed by fully connected network classifier (AE-FCN) and Ensembles of Multiple 

Models and Architectures (EMMA), combining information from functional MRI and structural 

MRI. Parisot et al. (2018) developed a graph convolutional neural network (GCN) to incorporate 

phenotypic information. The best accuracy obtained by this model was 70.4%. Based on the original 

GCN model, Huang and Chung (2020) proposed an edge-variational graph convolutional neural 

network (EV-GCN) with reported classification accuracy of 81%. 

 

Table 2. Summary of deep learning approaches predicting autism from MRI features. 

Authors Approaches Datasets 
Evaluation 

methods 

Best reported 

performance 

Heinsfeld et al 

(2018) 

stacked 

denoising auto-

encoders + FCN 

505 Autism, 

530 TD 

(ABIDE, 

fMRI) 

10-fold cross-

validation 
70% 

Rakić et al 

(2020) 

 

stacked auto-

encoders + FCN 

368 Autism, 

449 TD 

(ABIDE, fMRI 

and sMRI) 

10-fold cross-

validation 
85% 

Parisot et al 

(2018) 
GCN 

403 Autism, 

468 TD 

(ABIDE, 

fMRI) 

10-fold cross-

validation 
70.4% 

Huang et al 

(2020) 
EV-GCN 

 

403 Autism, 

468 TD 

(ABIDE, 

fMRI) 

10-fold cross-

validation 
81% 

 

The success of deep learning models stems from the combination of efficient learning algorithms 

and their large parameter spaces, which makes them considered complex black box models. This 

complexity renders machine decision-making opaque and significantly reduces the trust of doctors 

and patients in artificial intelligence (Singh, Sengupta, and Lakshminarayanan 2020). To overcome 

this weakness, intensive research on improving the interpretability of machine learning models has 

emerged, and a plethora of interpretation methods have been proposed to help researchers 

understand its inner workings mechanism (Salahuddin et al. 2022). For example, Layer-wise 

Relevance Propagation (LRP) as a gradient-based interpretation method (Montavon et al. 2017), 

was applied to a convolutional neural network (CNN) to reveal brain anatomical features associated 

with term and preterm birth (Grigorescu et al. 2019). Garg et al. (2020) utilized the Gradient-

weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al. 2016) and SmoothGrad (Smilkov 

et al. 2017) to picture the saliency images of the CNN model when classifying cancer 

histopathological images into malignant and benign categories. 

 

In this study, we aimed to evaluate the performance of five previously proposed machine and deep 
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learning models for the classification of autism under a standardised setting. We compared the 

performance of such models using a consistent repeatable framework, addressing inconsistencies in 

training datasets and evaluation frameworks reported in the literature. We proposed: 

 

1. A standardized and comprehensive cross-validated evaluation framework, which fitted the 

models to the training set, tuned parameters on validation set and evaluated the performance on 

the test set. The whole fitting process was performed multiple times, while rotating the test set, 

so that the performance was evaluated on each sample exactly once. This framework both 

avoids any overfitting and gives a robust performance independent of the selection of the test 

set.  

2. A selection of five of the most widely used or best-performing machine learning models from 

the existing literature, namely SVM (Bharadwaj, Prakash, and Kanagachidambaresan 2021), 

FCN (Rumelhart, Hinton, and Williams 2013), AE-FCN (Rakić et al. 2020), GCN (Parisot et al. 

2018) and EV-GCN (Huang and Chung 2020), were used to classify autistic and TD participants 

using the ABIDE dataset. All classifiers were trained and evaluated using our standardized 

cross-validated evaluation framework to allow fair comparison of their performance. 

3. To provide comprehensive evaluation, we trained our classifier with six different combination 

of features sets: (a) structural MRI (sMRI) features (b) sMRI + non-imaging features (c) 

functional MRI (fMRI) features (d) fMRI + non-imaging features (e) sMRI + fMRI features (f) 

sMRI + fMRI + non-imaging features 

4. We compared the performance of the individual models, as well as an ensemble of the models 

trained on different subsets of the data. 

5. We applied the SmoothGrad interpretation methods to GCN, FCN and AE-FCN to study model 

stability and understand what features contributed to model decision-making. 

2 Methodology 

2.1 ABIDE Dataset  

The Autism Brain Imaging Data Exchange (ABIDE) database has aggregated brain structure and 

functional imaging data from multiple research institutes around the world to accelerate the research 

on the neural mechanisms of autism. Up to now, the ABIDE project has formed two large data sets: 

ABIDE I and ABIDE II (di Martino et al. 2014). In this work, we utilize extracted structural and 

functional features available for ABIDE I dataset  

(https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html). 

2.1.1 Participants 

A total of 870 individuals (403 autistic and 467 TD participants) from 20 different collection sites 

were used in this study (Table 3). Our dataset was based on that used by Abraham et al. (2017), 

which comprises all ABIDE I participants, except for the ones with incomplete brain coverage and 

scanner artefacts.  Additionally, we excluded one participant due to a FreeSurfer preprocessing 

failure. 

Table 3. The 20 collection sites of ABIDE 

Collection sites N Average age Sex (male/female) Autism/TD 
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PITT 50 18.50 43 / 7 24 / 26 

OLIN 28 17.04 23 / 5 14 / 14 

OHSU 25 10.81 25 / 0 12 / 13 

NYU 172 15.33 136 / 36 74 / 98 

SBL 26 33.77 26 / 0 12 / 14 

SDSU 27 14.36 21 / 6 8 / 19 

STANDFORD 25 9.99 18 / 7 12 / 13 

TRINITY 44 17.03 44 / 0 19 / 25 

UCLA_2 21 12.47 19 / 2 11 / 10 

UM_1 86 13.77 61 / 25 34 / 52 

UM_2 34 16.01 32 / 2 13 / 21 

USM 67 22.59 67 / 0 43 / 24 

YALE 41 13.31 25 / 16 22 / 19 

CALTECH 15 26.79 10 / 5 5 / 10 

CMU 11 26.82 7 / 4 6 / 5 

KKI 33 10.31 24 / 9 12 / 21 

LEUVEN_1 28 22.43 28 / 0 14 / 14 

LEUVEN_2 28 14.17 21 / 7 12 / 16 

MAX_MUN 45 26.49 41 / 4 19 / 26 

UCLA_1 64 13.35 55 / 9 37 / 27 

 

2.1.2 Non-imaging features 

Each sample used in this paper had several phenotypic and fMRI image quality measures, including 

age, gender, collection site, full scale IQ (FIQ), the number of timepoints with motion outliers 

(NUM), percentage of timepoints with motion outliers (PEC), and quality control anatomical rate 

(RAT). We used the collection site information in the GCN model (Sec. 2.3.4) to generate the 

connections between samples in the population graph.  

2.1.3 Functional MRI features 

We downloaded the preprocessed fMRI data from ABIDE website directly (http://preprocessed-

connectomes-project.org/abide/download.html). Briefly, the preprocessing steps include skull 

striping, slice timing correction, motion correction, global mean intensity normalization, nuisance 

signal regression, and band-pass filtering (0.01-0.1Hz). The fMRI BOLD timeseries were averaged 

for each brain region of the Cameron Craddock’s 200 ROI (CC200) atlas (Craddock et al. 2012) and 

Pearson’s correlation coefficients were calculated for each pair of ROIs to construct functional 

connectivity matrices for each participant. 

 

2.1.4 Structural MRI features 

All the raw sMRI data were pre-processed by FreeSurfer software with ‘recon-all’ command, which 

includes intensity normalization, skull stripping, registration of the volumes to a common space, 

segmentation, cortical, white matter and subcortical parcellation.  

 

Desikan-Killiany cortical atlas with 68 regions was selected as the atlas for cortical parcellation 

(Desikan et al. 2006)), each region was assigned 9 features: number of vertices, surface area, gray 
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matter volume, average thickness, thickness standard deviation (SD), integrated rectified mean 

curvature, integrated rectified gaussian curvature, folding index and intrinsic curvature index. We 

also used metrics from 115 non-cortical regions (white matter, ventricles and sub-cortical regions) 

(Fischl et al. 2002; Salat et al. 2009). Each non-cortical region was assigned 7 features: number of 

voxels, volume, normalized intensity mean, normalized intensity SD, normalized intensity 

minimum, normalized intensity maximum, and normalized intensity range. The selection criteria of 

structural features are introduced in Sec. 2.2.2. In Table 4, statistical outputs evaluated are 

summarized. Among these, we selected statistical outputs from the cortical parcellation, subcortical 

and white matter as the structural features. 

 

Table 4. The FreeSurfer statistical outputs evaluated 

FreeSurfer outputs Measures 

Statistical outputs from cortical surface extraction (Desikan et al. 2006) 

Number of Vertices 

Surface Area 

Gray Matter Volume 

Average Thickness 

Thickness SD 

Integrated Rectified Mean 

Curvature 

Integrated Rectified Gaussian 

Curvature 

Folding Index 

Intrinsic Curvature Index 

Statistical output from Freesurfer subcortical parcellation including CSF 

and Ventricular regions (Fischl et al. 2002) 

Number of Voxels 

Volume 

Normalized Intensity Mean 

Normalized Intensity SD 

Normalized Intensity Min 

Normalized Intensity Max 

Normalized Intensity Range 

Statistical output from Freesurfer white matter parcellation (Salat et al. 

2009) 

2.2 Input Features 

Due to a large number of features, especially in functional connectivity matrices, feature selection 

is a necessary step before features are input to the model, ensuring that the model is not overfitted 

and generalizes to new data well. Inputting all connectivity features into the models would lead to 

overfitting, decreasing model performance on the test set. We performed feature selection on fMRI 

and sMRI features separately to create input for the fMRI only and sMRI only models. For the joint 

model, we concatenated the selected sMRI and fMRI features. 

2.2.1 fMRI Features 

Due to the symmetry of the functional connectivity matrices, we first extracted the upper triangle 

of the functional connectivity matrix for each sample. the selected features were standardized to 

remove the mean and scale to unit variance, making sure all the features had similar distributions. 

We then performed recursive feature elimination using a ridge classifier. This approach has been 
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previously shown to yield better results than alternative dimensionality reduction methods like auto-

encoders and principal component analysis (PCA) (Parisot et al. 2018).  

 

To determine an appropriate number of functional features for training of the machine learning 

models, we evaluated performance of baseline kernel SVM classifier (gamma=’scale’) using the 

grid search of different numbers of selected input features (1000, 2000,…, 19900) produced by 

recursive feature elimination. We found that selecting 4000 features with a regularization parameter 

of C =1 resulted in optimal cross-validated accuracy in prediction of autism and TD classes. 

Therefore, we select 4000 functional connectivity features, flattened into a 1-D array, as the fMRI 

input for the machine learning models.  

2.2.2 sMRI Features 

We selected statistical outputs from cortical surface extraction, and subcortical and white matter 

parcellations as structural features (Table 4). From the three cortical parcellation atlases provided 

by FreeSurfer, we chose Desikan-Killiany Atlas, considering it is widely used in the literature 

(Mizuno et al. 2019; Zabihi et al. 2019). 

 

To create the sMRI input features, we concatenated the cortical surface extraction output features 

for the Desikan-Killiany atlas, and subcortical and white matter parcellation outputs. This resulted 

in 1417 structural features flattened into a 1-D array. Due to the variation in feature distribution, 

standardization is applied to all the features to set the mean to zero and scale to unit variance. We 

then applied the SVM classifier using the grid search of different numbers of selected input features (100, 

200, …, 1400, 1417) produced by RFE. We selected 800 structural features flattened into a 1-D array as 

the optimal number of sMRI features to input in further machine learning models. 

 

2.2.3 Non-imaging features  

Considering each participant has only 6 non-imaging measures: age, gender, FIQ, NUM, PEC, RAT, 

we simply concatenated them together without employing feature selection when preparing the 

input features for the following three scenarios: (a) sMRI + non-imaging features (b) fMRI + non-

imaging features (c) sMRI + fMRI + non-imaging features. 

2.3 Machine learning models 

In this paper, we investigated five machine learning models to train classifiers to predict Autism and 

TD classes: support vector machine (SVM) (Bharadwaj et al. 2021), fully connected network (FCN) 

(Rumelhart et al. 2013), auto-encoder followed by the fully connected network (AE-FCN) (Rakić 

et al. 2020), graph convolutional network (GCN) (Parisot et al. 2018) and edge-variational graph 

convolutional network (EV-GCN) (Huang and Chung 2020). 

2.3.1 Kernel SVM 

We chose a Kernel SVM model with Gaussian kernel (‘rbf’) to create a benchmark classifier to 

compare with neural network-based models, as shown in Fig. 1. It is a fast and flexible non-linear 

classifier with tunable kernel size and regularization (Bharadwaj et al. 2021).  
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Fig. 1. A support vector machine (SVM) for two-group classification problems. 

The kernel SVM is implemented in scikit-learn. We select the Gaussian kernel with kernel size set 

to ‘scale’. The regularization parameter ‘C’ is selected using the grid search algorithm through cross-

validation, and is adapted separately for each fold.  

2.3.2 FCN 

The first deep neural network applied was a fully connected neural network (FCN) (Rumelhart et 

al. 2013). Its architecture is shown in Fig. 2 

 

 

Fig. 2. The structure of FCN. Linear layers are fully connected with each other. The white arrow 

on the right is the softmax layer, its output will be used to calculate cross entropy loss with labels. 

The number of nodes in each layer: 5000 (input), 500 (hidden 1), 30 (hidden 2), 2 (output). 

 

The network consisted of three linear (fully connected) layers. To prevent this model from 

overfitting, the dropout layers (dropout rate = 0.5) were added after the first and second linear layers. 

2.3.3 Auto-encoder + FCN 

Rakić et al. (2020) applied an auto-encoder followed by the fully connected network (AE-FCN) to 

the autism classification problem. This architecture aims to reduce the dimension of the input 

features by creating a bottleneck. The performance was further improved by using Ensembles of 

Multiple Models and Architectures (EMMA) (Kamnitsas et al. 2017).  
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We have implemented AE-FCN based on the description provided by Rakić et al. (2020). We 

optimized the parameters of the network ourselves as they were not detailed in the original study. 

The structure of our optimized model is shown in Fig. 3. 

 
Fig. 3. The structure of AE-FCN. The number of nodes in hidden layers 1 and 3 are the same, and 

hidden layers 2 and 5 have the same number of nodes. Mean squared error (MSE) loss is applied 

to train the auto-encoder to produce output similar to input, while cross-entropy loss is applied to 

give the correct prediction for each individual. The total loss is equal to MSE loss plus cross-

entropy loss. The number of nodes in each layer: 5000 (input), 300 (hidden 1), 150 (hidden 2), 300 

(hidden 3), 5000 (output layer of auto-encoder and input layer of FCN), 300 (hidden 4), 16 

(hidden 5), 2 (output). 

 

2.3.4 GCN  

Graph convolutional network (GCN) was proposed for autism classification by Parisot et al. (2018). 

This network allows to process the samples based on their similarity, which can be calculated from 

imaging, phenotypic and acquisition related information, to reduce the dimensionality of the feature 

space. 

 

The structure of the GCN model used in this paper is shown in Fig. 4. First, a population graph that 

reflects the similarity of individual samples needs to be calculated. The goal is to leverage the 

complementary non-imaging information to calculate similarities between participants to create a 

graph structure and thus exploit the power of graph convolutions (Parisot et al. 2018). In our 

implementation, the subject-to-subject similarity, which are used as the weights of the edges of the 

graph, were calculated to indicate whether the participants were imaged in the same (weight=1) or 

different (weight=0) collection site. We experimented with other designs of the population graph 

that included other phenotypic and image quality information; however, we did not find any benefit 

in performance compared to only including site information. 
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Fig. 4. The structure of 3 layers GCN model. In the population graph, only the nodes with the 

same color have a connection between them (black line). Features of each sample are the white 

squares on the node. Cross entropy loss is applied at the end. The feature channels in each layer: 

5000 (input), 128 (hidden 1), 128 (hidden 2), 2 (output). 

2.3.5 EV-GCN 

Edge-variational graph convolutional network (Huang and Chung 2020) has been shown to 

significantly outperform GCN (Parisot et al. 2018) see Table 2. Fig. 5 presents the structure of EV-

GCN. It consisted of a pairwise association encoder (PAE), edge dropout layer (ED), four 

Chebyshev graph convolution layers, and one fusion block followed by two fully connected layers. 

The pairwise association encoder (PAE) generates an adaptive population graph, therefore 

connections change during the training process. The fusion block fuses the hidden features in each 

depth to alleviate the over-smoothing problem in deep GCN models.  

 

We have adapted publicly available EV-GCN code (https://github.com/SamitHuang/EV_GCN) and 

applied it to the ABIDE dataset in our evaluation framework (see Sec. 2.5). EV-GCN constructs the 

adaptive population graph by inputting ‘gender’ and ‘site’ phenotypic information to PAE. In 

contrast to Huang and Chung’s approach of taking only the upper triangular of the population graph 

as the graph input, we take a different approach in EV-GCN by inputting the entire population graph. 

 

 

 

Fig. 5. The structure of EV-GCN (Huang and Chung 2020). The connections in the Adaptive 

Population Graph are constructed by PAE block with only non-images (phenotypic) information, 

and they will be changed in the training process by the backpropagation of the cross-entropy loss 

function. ED: edge dropout layer. GC: graph convolution layer. The parameters in each GC layers 

are: 5000(input), 16 (hidden 1), 16 (hidden 2), 16 (hidden 3), 16 (output). Fusion block: 

concatenate the 4 outputs from previous GC layers. MLP: multilayer perceptron, with parameters: 
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64(input, 64 = 16*4), 256 (hidden 1), 2 (output). 

2.4 Ensemble methods 

The ensemble methods combine multiple machine learning models to improve classification 

performance. We investigated two types of ensembles: max voting and Ensembles of Multiple 

Models and Architectures (EMMA).  

 

In max voting, multiple classification models are used to make predictions for each data point, and 

the prediction of each model is considered a "vote." The final predictions are the labels that obtained 

the majority of the votes (Thomas G. Dietterich 2000). We applied max voting to aggregate 

responses from the five models of the same architecture trained during cross-validation (See sec. 

2.5) 

 

The purpose of EMMA is to obtain robust performance by aggregating the predictions from   

models with different architectures (Kamnitsas et al. 2017). In our experiments we used EMMA to 

combine the outputs of all five models considered in this paper (SVM, FCN, AE-FCN, GCN, EV-

GCN) by majority voting. 

 

In addition to the predictions using ensemble methods, we also measured the performance of the 

individual models, denoted as ‘no ensemble’ in our results. 

2.5 Evaluation pipeline 

The evaluation pipeline can have important effects on the measured performance of the machine 

learning models. We propose a robust evaluation framework based on two principles. Firstly, it is 

important to have a training set for model fitting, a validation set for hyper-parameter tuning and a 

test set for the performance measurement to avoid model overfitting and consequently artificially 

increasing the performance that cannot be repeated on unseen datasets. Secondly, the performance 

should be calculated using all samples in the dataset to avoid performance variation caused by 

variability in sample set selection on which the method is evaluated. We propose two different 

evaluation frameworks, one for the individual machine learning models, and the second one for the 

ensembles. These frameworks are illustrated in Fig. 6. 

2.5.1 Creation of test sets 

Our cross-validation approach started by splitting the whole dataset into 5 groups (Fig. 6a). Each of 

these groups will act as the test set exactly once, while we train the models using the remaining 4 

groups. Therefore, the training process will be performed 5 times. This way performance can be 

evaluated on all the samples, while also keeping the model training and tuning completely 

independent of the test set.  

 

While this is commonly done randomly, we instead opt for a fixed setup where we stratify the groups 

to have the same proportions of samples of Autism and TD labels and collection sites (Fig. 6a). This 

robust set up ensures consistency in performance measurements across our experiments. We have 

opted for 5 folds, because it provides a good compromise between robustness and the number of 

models that need to be trained. Additionally, it would be difficult to properly stratify the data into 
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more folds according to all our variables due to the reduced sample size available from some 

collection sites. 

2.5.2 Cross-validation  

For evaluation of each of the five individual models listed in Sec. 2.3 (‘no ensemble’), we used a 5-

fold cross-validation approach presented in (Fig. 6b). In this set-up the model was tuned five times. 

In each fold, we have one test set to measure performance, one validation set that was used to select 

the optimal hyper-parameters, and the remaining three groups were used for training. The model 

was fitted to the training data multiple times with different hyper-parameter values, and hyper-

parameters were selected according to the highest performance on the validation set in each fold. 

After the hyper-parameters had been tuned, the performance of the selected model in each fold was 

evaluated on the test set. The final performance was calculated by averaging performance on the 

test sets over all five folds. We calculated the accuracy and area under ROC curve (AUC) for each 

machine learning model, and applied two-sample paired T-test to compare the performance of 

different models, feature sets and ensemble methods. 

 

For the kernel support vector classifier, we tuned the kernel size and the regularization parameter ’C’. 

For the deep learning models, we selected the number of iterations in each fold according to the 

performance on the validation set.  

 

To predict the results using EMMA algorithm, we aggregated the predictions from SVM, FCN, AE-

FCN, GCN and EV-GCN from all five folds, and obtained the final prediction by majority voting. 
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Fig. 6 Diagrams of our evaluation pipelines. We used the same 5 test set groups (a) for all three 

types of models (‘no ensemble’, max-voting and Emma). The cross-validation approach (b) was 

applied to individual models and EMMA, while nested cross-validation (c) is designed to enable 

the max voting of five models of the same type. 

 

2.5.3 Nested Cross-validation 

In the case of max voting ensemble technique, we applied a nested cross-validation approach 

(Cawley and Talbot 2010) presented in Fig. 6c. In each outer fold, we selected the test set as detailed 

in Sec. 2.5.1 and Fig. 6a, and the remaining 4 groups were further divided into 5 new groups in the 

inner loop (using the same stratification strategy as before) for training and tuning of the model 

using 5-fold cross-validation. This resulted in training 25 different models for each architecture. We 

selected the hyper-parameters (kernel size and regularization for SVM, iteration number for DL 
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models) based on the best average performance during 5-fold cross-validation, separately within 

each outer fold. Once the hyper-parameters were chosen for each outer fold, the 5 models trained 

during the inner cross-validation loop with the selected hyper-parameters voted on the predicted 

labels on the test set.  

2.6 The SmoothGrad interpretation method 

The gradients of machine learning models play an important role in interpretability analysis. 

Analyzing the gradients of the model's output with respect to input features allows estimation of the 

relative importance of different features (Linardatos, Papastefanopoulos, and Kotsiantis 2021). 

Several gradient-based interpretation methods, including LRP, SmoothGrad, and Grad-CAM 

(Montavon et al. 2017; Selvaraju et al. 2016; Smilkov et al. 2017), have been proposed previously. 

However, considering the application conditions of each method, we ultimately opted for 

SmoothGrad as the interpretability method in this paper for investigating model stability and 

explaining the models’ decision, given that SmoothGrad is applicable to various architectures of 

deep learning models, and its mechanism is straightforward, relying solely on the gradient of the 

model. Applying SmoothGrad to the machine learning model yields a saliency map that indicates 

the importance of each input feature in the model's decision-making process. 

 

Due to the sensitivity of raw gradients to minor perturbations (noise) in the input, which results in 

unstable interpretation outcomes, the visualization of raw gradients extracted from machine learning 

models typically exhibits a high degree of noise (Smilkov et al. 2017). To mitigate this sensitivity 

to noise, SmoothGrad introduces random noise into the model's inputs, creating multiple noisy 

inputs for each participant. The gradients from these noisy inputs are averaged to reduce the 

sensitivity to noise, yielding a smoother and more stable interpretation result (Smilkov et al. 2017). 

In this paper, we generated 10 noisy inputs for each participant to compute the average SmoothGrad 

saliency maps, resulting in stable interpretation results. 

 

To obtain reliable important features from SmoothGrad, it is essential to consider the stability of the 

machine learning model. We expect the stable model to maintain consistent performance or output 

results when faced with data variations and assign high saliency values to features consistently. In 

the 5-fold nested cross-validation pipeline (Fig. 6c), we have 25 models (with the same model 

architecture) trained on different training sets, a stable machine learning model should provide us 

with consistent saliency maps for all these models. These consistent maps indicate the focus of the 

model on the same group of important features that contribute to the model’s decisions, even across 

varying training sets. In order to compare model stability, we have developed a measure of saliency 

stability akin to a “signal-to-noise ratio" (SNR) (Fig. 7) of saliency maps for each machine learning 

model (to compare between GCN, FCN and AE-FCN).  
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Fig. 7 Stability assessment diagram of machine learning models. 

 

The detailed model stability evaluation pipeline is shown in Fig. 7. For each test participant, we 

employ SmoothGrad to generate 5 saliency maps from its corresponding 5 models, and subsequently 

compute the feature-wise mean, standard deviation (std) and SNR from these 5 saliency maps. We 

then calculate the average SNR value (mean/std) for each participant and compare the average SNR 

histogram across different machine learning models. To minimize the bias caused by the model 

initialization, we repeat the 5-fold nested cross-validation pipeline 3 times for GCN, FCN and AE-

FCN to calculate the average SNR maps. The most important features contributing to the model’s 

decision were extracted from the saliency maps of the most stable model. 

 

In the stability experiment, we excluded the SVM and EV-GCN models for the following reasons: 

SmoothGrad cannot be applied to the SVM model; EV-GCN shares the same model type with GCN 

but with lower performance. 
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3 Results 

We have performed a comprehensive evaluation of machine learning models performances using 

consistent evaluation framework presented in section 2.5. In section 3.1, we aimed to compare 

performance of: 

• Five machine learning models detailed in section 2.3 (SVM, FCN, AE-FCN, GCN, EV-

GCN) 

• Three label fusion strategies detailed in section 2.4 (‘no ensemble’, max-voting, EMMA) 

• Six different feature sets (a) structural MRI (sMRI) features (b) sMRI + non-imaging 

features (c) functional MRI (fMRI) features (d) fMRI + non-imaging features (e) sMRI + 

fMRI features (f) sMRI + fMRI + non-imaging features 

In section 3.2, we assessed the stability (“SNR” values) of different machine learning models using 

SmoothGrad. Upon determining the most stable machine learning model, we extracted the most 

important features from the model’s saliency map in section 3.3. 

3.1 Classification task 

The performances of all models in terms of prediction accuracy and area under ROC curve (AUC) 

are presented in Table 5. We present average performance on validation set and test set. Note that 

the performance is aggregated from all cross-validation folds, therefore each sample contributed to 

the final performance exactly once. The model performances are further visualised in Fig. 8. 

3.1.1 The overall performance of the models 

Results presented in Table 5 and Fig. 8 show that the models achieved prediction accuracies on test 

set between 58% and 72%, and AUC between 0.64 and 0.78. The best performing model according 

to the test accuracy was the GCN with max-voting, trained on combined fMRI and sMRI features, 

achieving test accuracy 72.2% with the highest AUC value of 0.78 (see Table 5e).  

 

Table 5. The experiment results of five machine learning models from (a) structural MRI (sMRI) 

features (b) sMRI + non-imaging features (c) functional MRI (fMRI) features (d) fMRI + non-

imaging features (e) sMRI + fMRI features (f) sMRI + fMRI + non-imaging features. When ‘no 

ensemble’ is used, ‘validation’ is the best validation accuracy, ‘test’ is the corresponding test 

accuracy. AUC measures the area under the ROC curve of the predicted probability of the test set. 

(a) sMRI 

CC200 
No ensemble  Max voting  EMMA 

Validation Test AUC  Test AUC  Test AUC 

SVM 64.40% 61.50% 0.65  63.30% 0.674  

60.8% 0.649 

FCN  65.60% 62.60% 0.646  64.40% 0.682  

AE-FCN  66.00% 62.10% 0.637  63.60% 0.667  

GCN  64.00% 58.70% 0.625  63.20% 0.695  

EV-GCN  65.70% 59.10% 0.639  62.10% 0.665  

(b) sMRI + non-imaging 

sMRI 
No ensemble  Max voting  EMMA 

Validation Test AUC  Test AUC  Test AUC 
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SVM 66.10% 63.70% 0.672  64.40% 0.702  

64.0% 0.663 

FCN  66.10% 63.80% 0.649  66.20% 0.696  

AE-FCN  67.40% 61.00% 0.645  64.70% 0.677  

GCN  64.60% 62.50% 0.658  62.80% 0.688  

EV-GCN  67.00% 61.80% 0.661  64.50% 0.701  

(c) fMRI 

sMRI 
No ensemble  Max voting  EMMA 

Validation Test AUC  Test AUC  Test AUC 

SVM 68.40% 66.20% 0.732  68.70% 0.748  

66.4% 0.705 

FCN  70.00% 64.70% 0.689  68.90% 0.74  

AE-FCN  70.80% 66.60% 0.69  69.00% 0.732  

GCN  70.80% 67.00% 0.711  69.30% 0.76  

EV-GCN  68.70% 65.20% 0.698  67.80% 0.741  

(d) fMRI + non-imaging 

sMRI 
No ensemble  Max voting  EMMA 

Validation Test AUC  Test AUC  Test AUC 

SVM 68.60% 66.20% 0.733  68.60% 0.75  

65.4% 0.693 

FCN  70.60% 65.20% 0.709  69.00% 0.737  

AE-FCN  70.70% 64.50% 0.674  69.70% 0.733  

GCN  71.30% 64.70% 0.716  70.30% 0.764  

EV-GCN  70.20% 63.80% 0.691  67.70% 0.736  

(e) sMRI + fMRI 

sMRI 
No ensemble  Max voting  EMMA 

Validation Test AUC  Test AUC  Test AUC 

SVM 69.90% 67.90% 0.752  70.10% 0.767  

66.8% 0.717 

FCN  71.30% 66.70% 0.726  70.60% 0.765  

AE-FCN  70.90% 64.50% 0.703  69.80% 0.741  

GCN  73.10% 67.50% 0.738  72.20% 0.774  

EV-GCN  69.90% 66.20% 0.712  69.20% 0.76  

(f) sMRI + fMRI + non-imaging 

sMRI 
No ensemble  Max voting  EMMA 

Validation Test AUC  Test AUC  Test AUC 

SVM 70.10% 68.00% 0.754  70.60% 0.768  

68.0% 0.715 

FCN  72.41% 66.00% 0.714  69.70% 0.753  

AE-FCN  72.60% 66.80% 0.689  67.60% 0.74  

GCN  72.30% 68.60% 0.742  71.30% 0.78  

EV-GCN  70.10% 66.90% 0.709  71.30% 0.769  

 

3.1.2 Predictive accuracy of different feature sets 

To compare predictive ability of different feature sets, we present a boxplot of accuracies and AUC 

(Fig. 8a) for all models. We can observe a clear trend, where models trained on sMRI features have 

the lowest performance with an average accuracy of 62% and AUC of 0.65, while models trained 
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on fMRI features achieved an average accuracy of 67% and AUC of 0.72. This was statistically 

significant (T-test, p =1.7e-6). Combining fMRI and sMRI features further improves the 

performance (average accuracy 68% and AUC 0.74), though this was not statistically significant 

(p=0.2). Adding non-imaging features did not result in a significant improvement in any of the 

feature sets. This suggests that functional connectivity plays a more prominent role in the prediction 

of autism diagnosis than structural features, as previously reported in the literature (Traut et al. 2022).  

 

 

Fig. 8 (a)The accuracies and AUC of different feature sets. (b) The accuracies and AUC of 

different machine learning models. (c) The accuracies and AUC of different ensemble situations. 

 

3.1.3 Comparison of five machine learning models 

The results presented in Fig. 8b demonstrate that all tested models performed similarly to classify 

Autism and TD on ABIDE dataset with P>0.05 when comparing each pair of models with T-test, 

indicating no significant improvement. Additionally, a Chi-squared test was conducted between the 

best performing model of each machine learning model, revealing no significant differences 
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(P>0.05). This suggests that different inclusion criteria, data modalities and evaluation pipelines 

rather than different machine learning models cause the variation in accuracy in the published 

literature (Abraham et al. 2017; Heinsfeld et al. 2018; Huang and Chung 2020; Parisot et al. 2018; 

Rakić et al. 2020). High heterogeneity in term of collection site, image quality and biological 

heterogeneity of autism may limit the model performance.  

 

Results in Table 5 show that SVM, the only classical machine learning model tested as our baseline, 

achieved test accuracy 70.6% when used with sMRI+fMRI+non-imaging feature set and max voting. 

The performance is similar to best performing GCN, but the model is much faster and requires less 

computational resources than deep learning models. The performances of AE-FCN and EV-GCN 

are similar to other models, but are lower than the accuracies obtained by Huang and Chung (2020) 

and Rakić et al. (2020), which are 81% and 85% respectively. This difference in accuracy is most 

likely due to different inclusion criteria or evaluation strategies. 

 

3.1.4 Ensembles 

Ensemble test accuracy using max voting (Table 5 and Fig. 8c) enables the models to achieve better 

performance on the unseen dataset (test set), resulting in an average accuracy improvement of 3.8%, 

and this was significant over all models (p=0.0001). However, the results obtained with EMMA 

tended to outperform the average scores of the five models only slightly and, in some cases, even 

performed worse, with overall no significant difference with the individual models. 

 

3.2 Characterisation of model stability using SmoothGrad saliency maps 

The SNR value indicates whether a model assigns similar importance to the same features across 

various training sets. A high SNR value suggests that the model consistently relies on the same 

important features to classify participants into Autism or TD groups, regardless of the training set 

variability. 

 

To compare the stability of GCN, FCN and AE-FCN models, we followed the diagram in Fig. 7 to 

calculate the average SNR per participant of these 3 models and plotted the histogram in Fig. 9. The 

results illustrate that FCN model has the highest SNR values and therefore the most stable saliency 

maps across different training sets compared with GCN and AE-FCN. For this reason, we select the 

FCN model to extract important features from its average saliency map in section 3.3. Considering 

the best classification performance of FCN model is achieved on the sMRI + fMRI feature set, we 

will extract the most important features from this particular feature set. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313055doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313055
http://creativecommons.org/licenses/by/4.0/


22 

 

 

Fig. 9 The SNR histograms of GCN, FCN and AE-FCN 

3.3 Important features extracted from SmoothGrad saliency maps 

We identified the significant fMRI and sMRI features from the FCN average saliency map based on 

saliency intensity. To better visualize and compare feature importance, we correlated the fMRI and 

sMRI saliency values with the regions defined in the CC200 atlas and the Desikan-Killiany atlas 

respectively, applied z-score normalization and further projected them onto a standardized brain 

template using the BrainNet Viewer software (Xia, Wang, and He 2013) (Fig. 10, Fig. 11). 

 

To assess the classification capability of the top selected features, we divided the entire population 

into four groups: true positive (TP, correctly classified as Autism), true negative (TN, correctly 

classified as TD), false positive (FP, incorrectly classified as Autism), and false negative (FN, 

incorrectly classified as TD). We then plotted box plots for each important feature’s normalized 

value across these four groups to compare the features’ value (Fig. 12). 

 

The top 100 most important structural volumetric features and brain connections are provided 

individually in the Supplementary Table 1 and Table 2. 

 

3.3.1 Important sMRI features 

 

We associated the saliency values of cortical, subcortical and white matter features with the 

Desikan-Killiany atlas and employed z-score normalization. Considering white matter areas are 

under cortical surface, we assigned the white matter saliency values to the corresponding cortical 

surface for better visualization and plotted Cortical and Subcortical areas (including ventricles)’ in 

Fig. 10a, and ‘White matter areas’ in Fig. 10b. A z-score below 0 indicates less importance to autism 

classification, whereas a score above 0 means greater importance to autism classification. 

 

The regions with most relevant structural features identified by FCN were: 3rd Ventricle, Left 

Inferior Lateral Ventricles, Right Paracentral lobule, and the white matter of Left and Right Isthmus 

Cingulate.  
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The box plots of three most important structural features are displayed in Fig. 12a, b, c, all showing 

significant differences between the TP and TN groups. These are the volume of the 3rd Ventricle, the 

normalized minimum intensity of white matter of the Left isthmus of the cingulate gyrus, and the 

volume of the Left Inferior Lateral Ventricle. Notably, the boxplot of the feature with the highest z-

score among all the structural features, the volume of the 3rd Ventricle, shows that correctly 

classified autistic participants (TP) exhibit larger 3rd Ventricle volume than the correctly classified 

TD participants (TN). The misclassified autistic and TD participants (FN and FP groups) 

respectively display smaller or larger volume size of the 3rd Ventricle compared to TP and TN groups, 

probably contributing to the incorrect classification of these individuals. 

 

Fig. 10 Important structural brain features that contribute to autism classification task. (a) Cortical + 

Subcortical areas. (b) White Matter areas.  

 

3.3.2 Important fMRI features 

 

We assigned the saliency value of each functional connection to its corresponding pair of brain 

regions, summing up the values for each brain region (nodal saliency “strength”), and then applied 

z-score normalization. The most important brain regions used for classification of autistic 

individuals based on their functional connectivity, as well as specific functional brain connections 

used are visualized in Fig. 11.  

 

The most significant brain regions selected by FCN model are located mostly in temporal cortex 

areas, including the Left Middle, Superior, and Inferior Temporal Cortex, as well as the Right 

Middle, Superior, and Inferior Temporal Cortex. Additionally, the Left Fusiform and Right 

Hippocampus and Parahippocampal regions were also highlighted as significant. This suggests that 

the connections associated with these brain regions may play a more substantial role in the Autism 

and TD classification compared to other connections.  

 

The box plots of the top three connections are shown in Fig. 12d, e, f. Among them, two demonstrate 

a notable difference between TP and TN groups (p < 0.05), they are the connection between “Left 

Inferior Temporal gyrus” and “Right Hippocampus and Parahippocampal gyrus”, and the 

connection between “Left Middle Temporal gyrus” and “Left Superior Medial Frontal gyrus”. 
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Fig. 11 (a) The important brain regions obtained from fMRI features. The numbers indicate the 

corresponding brain regions in the CC200 atlas. The names of these brain regions are listed in the 

Supplementary Table 1. (b) Top 100 connections.  
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Fig. 12 The box plots of the most important structural and functional features. P-value measures the 

difference between TP and TN groups. *：P<0.05, **: P<0.01, ***: P<0.001. 
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4 Discussion 

The purpose of this work was to evaluate the performance of five machine learning models 

classifying autistic individuals and TD participants under a standard setting, and extracting the 

features that contribute the most to the classification task with the most stable machine learning 

model. All the tested models showed similar classification performance, which illustrates that 

different inclusion criteria, data modalities and evaluation pipelines, rather than different machine 

learning models, cause variation in accuracy in published literature. Although the classical machine 

learning model SVM did not achieve the highest accuracy, it didn’t show significantly lower 

performance when compared with other more complex models. Our results suggests that, in this 

task, traditional machine learning models can produce similarly robust results to deep neural 

networks while being more computationally efficient. 

 

The two evaluation pipelines utilized in this paper, 5-fold cross-validation and 5-fold nested cross-

validation, were designed to provide robust and accurate results while also preventing the models 

from overfitting. Employing 5-fold cross-validation enables the evaluation of performance across 

all samples while ensuring that model training and tuning is independent of the test set (Cawley and 

Talbot 2010). The choice of 5 folds is a good compromise between robustness and the number of 

models that need to be trained. Additionally, it would be difficult to stratify the data into more folds 

due to the limited number of samples from some collection sites. We also note that performance 

calculated on the validation set (which we only show for all individual models with ‘no ensemble’) 

is always higher than on the test set. This shows the importance of reporting the performance on the 

test set to avoid unrealistically inflated performance measurements that would not repeat on unseen 

datasets. The application of max voting ensemble improved the performance of all five models 

compared to the individual models (‘no ensemble’). This shows that max voting can result in more 

robust models with stable performance on unseen datasets as previously suggested (Parisot et al. 

2018; Rakić et al. 2020). While max voting consistently resulted in better performance, EMMA’s 

contribution was weaker, and in some cases even had a negative effect. 

 

Our classification results show that feature sets used for training of the classifiers resulted in the 

most significant differences in model performance. We have observed that models trained with 

fMRI features (i.e., functional connectivity), exhibit better performance than the models trained with 

sMRI features. This suggests that functional connectivity plays a more prominent role in prediction 

of autism diagnosis than structural features, as previously reported in literature (Traut et al. 2022). 

When merging sMRI and fMRI features, the addition of sMRI information improved the 

performance only marginally. Moreover, adding non-imaging features did not yield a significant 

improvement in any of the feature sets. 

 

Comprehensive experiments presented in this paper demonstrate that variations in experimental 

conditions, such as data modality and cross-validation technique, can lead to disparate outcomes, 

despite utilizing the same machine learning model. However, the differences in performance are 

moderate, with classification accuracy of around 70%. In fact, our results are consistent with most 

studies in the published literature that utilise the 871 samples of ABIDE fMRI dataset. This suggests 
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that the limitations of this dataset, including inherent biological heterogeneity of autism, or site-

dependent acquisition and processing characteristics, rather than the classification models, may be 

the primary cause of the limited classification performance. This highlights that fruitful directions 

of the future work will likely focus on better comprehension and disentanglement of the 

heterogeneity of autism and exploration of robust, effective stratification biomarkers.  

 

FCN model combined with SmoothGrad yield the most stable interpretation results in comparison 

to other machine learning models. The lower SNR values observed for saliency features in GCN 

and AE-FCN models may be attributed to several factors. Firstly, the GCN model has the population 

graph as the second feature input, while FCN focuses on the functional and structural features only. 

Secondly, the AE-FCN model performs the classification and the denoising tasks at the same time, 

which could result in lower saliency SNR values.  

 

Many studies have investigated atypical brain structural features in autism (Courchesne 2002; 

Katuwal et al. 2015; Moradi et al. 2017). In this study, we found the structural features in the 

ventricles contributed the most to the model decision-making. Some observations from our results 

are consistent with the published literature, for example, we observed an increased volume of the 

3rd Ventricle and Left and Right Lateral-Ventricle in autistic participants (p=1.3e-8), which aligns 

with findings from previous studies (Hardan et al. 2001; Palmen et al. 2005; Wolfe et al. 2015). The 

cortical features of the right paracentral lobule and the white matter near the isthmus cingulate gyrus 

also showed higher z-scores than other areas. These areas may play an important role in emotion 

regulation, emotion processing, and cognitive control in autism (Chien, Chen, and Gau 2021; Hau 

et al. 2019). Temporal cortex areas have been commonly associated with auditory perception, 

language and vision functions (Bonner and Price 2013; Hickok and Poeppel 2007; Zaehle et al. 

2004). Alterations in functional connectivity within the temporal cortex may contribute to the 

auditory and language difficulties observed in individuals with autism (Rotschafer 2021; Xiao et al. 

2023). It is worth noting that we didn’t identify a similar pattern of important brain regions for 

autism classification using functional and structural features, suggesting distinct patterns of regions 

with atypical structural morphology, and functional connectivity associated with autistic phenotypes. 

 

One limitation of this study is that the samples used are solely from the ABIDE I dataset. In future, 

similar experiments may be performed on other datasets such as ABIDE II, and AIMS-2-TRIALS, 

(Loth et al. 2017). The investigation of longitudinal autism databases may enable the identification 

and development of early stratification biomarkers for autism, potentially leading to more effective 

personalised supportive strategies for those individuals that request them. Another limitation of our 

study is that we mainly utilized functional connectivity and sMRI volumetric features. Other types 

of features, such as topological properties of functional connectivity matrices (Kazeminejad and 

Sotero 2019; Plitt, Barnes, and Martin 2015), extra-axial cerebrospinal fluid (Shen et al. 2017) and 

genomic copy number variations (Sherman et al. 2021; Velinov 2019) also hold significant potential 

for autism classification and stratification. 
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5  Conclusion 

In this paper, five machine learning models from the existing literature were trained to classify 

individuals with autism using ABIDE I dataset. The results showed that all tested models had similar 

performance, indicating that variations in accuracy in published literature may be attributed to 

different inclusion criteria, data modalities and evaluation pipelines rather than the models 

themselves. The highest classification performance was obtained by combining fMRI and sMRI 

features, to train the GCN model with max voting, resulting in a classification accuracy of 72.2% 

and AUC of 0.78. Ensemble using max voting method was found to consistently improve the 

performance of the models. We conclude that the performance of the classifiers is likely limited by 

other factors than the model architecture, such as high heterogeneity in terms of age, collection site 

and image quality, as well as biological heterogeneity of autism in general. Furthermore, 

SmoothGrad method was applied to FCN, which exhibited the highest SNR value and was selected 

as the most stable model. The results suggested that structural features from the ventricles and 

functional features from the temporal cortex made the most significant contributions to the 

algorithms identifying autistic participants. 
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