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Abstract 

Recent advancements in large language models (LLMs) have created new ways to support 

radiological diagnostics. While both open-source and proprietary LLMs can address privacy 

concerns through local or cloud deployment, open-source models provide advantages in 

continuity of access, and potentially lower costs. In this study, we evaluated the diagnostic 

performance of eleven state-of-the-art open-source LLMs using clinical and imaging 

descriptions from 1,933 case reports in the Eurorad library. LLMs provided differential 

diagnoses based on clinical history and imaging findings. Responses were considered 

correct if the true diagnosis was included in the top three LLM suggestions. Llama-3-70B 

evaluated LLM responses, with its accuracy validated against radiologist ratings in a case 

subset. Models were further tested on 60 non-public brain MRI cases from a tertiary hospital 

to assess generalizability. Llama-3-70B demonstrated superior performance, followed by 

Gemma-2-27B and Mixtral-8x-7B. Similar performance results were found in the non-public 

dataset, where Llama-3-70B, Gemma-2-27B, and Mixtral-8x-7B again emerged as the top 

models. Our findings highlight the potential of open-source LLMs as decision support tools 

for radiological differential diagnosis in challenging, real-world cases.  
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Introduction 

Recent advancements in artificial intelligence (AI) have transformed medical diagnostics, 

offering innovative tools to support clinical decision-making. One promising development is 

the emergence of large language models (LLMs), which excel at processing and generating 

natural language. In radiology, these models have demonstrated potential in various 

applications, including defining study protocols 1,2, performing differential diagnosis 3,4, 

generating reports 5,6, and extracting information from free-text reports 7,8.  

However, a significant barrier to the widespread clinical adoption is data privacy. The LLMs 

primarily used in previous studies are proprietary, closed-source models, such as GPT-4, 

Claude 3, or Gemini 9–11. Access to these models is typically provided via web-based 

interfaces or via application programming interfaces (API), both of which necessitate the 

transfer of data to third-party servers, thereby increasing the risk of unauthorized access or 

misuse of sensitive health information and limiting their use on patient data. While cloud-

based solutions for proprietary LLMs can address some privacy concerns, they may still be 

subject to commercial update cycles and potentially higher long-term costs. 

Open-source models offer a viable alternative enabling care institutions to retain patient data 

within their local infrastructure, mitigating these privacy concerns and providing continuity of 

access independent of commercial update cycles, which can lower costs due to their free 

availability. While historically open-source LLMs have underperformed in clinical decision 

support tasks 12,13, Meta’s latest Llama-3 has shown performance levels on par with leading 

proprietary models in some areas, such as answering radiology board exam questions 14. 

However, the diagnostic accuracy of such models in real-world clinical cases remains largely 

unexplored.  

A well-suited resource for such an evaluation is Eurorad, a comprehensive repository of 

peer-reviewed radiological case reports managed by the European Society of Radiology 

(ESR). Eurorad serves as a valuable educational resource for radiologists, residents, and 

medical students, and encompasses a wide range of cases across radiological 

subspecialties such as abdominal imaging, neuroradiology, uroradiology and pediatric 

radiology 15.   

Therefore, the aim of this study was to evaluate the performance of state-of-the-art open-

source LLMs in radiological diagnosis using Eurorad case reports.  
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Methods 

 

Data 

To create a comprehensive and diverse dataset of challenging radiology cases, we 

automatically downloaded case report data—including “Clinical History,” “Imaging Findings,” 

“Final Diagnosis,” and “Section”—from the European Society of Radiology's case report 

library at https://eurorad.org/. All case reports published after July 6, 2015 and licensed 

under the Creative Commons License CC BY-NC-SA 4.0, were scraped using the Python 

library “Scrapy” (version 2.11.2) on June 15, 2024. 

To address potential data contamination concerns and assess generalizability, we further 

validated the performance of LLMs in a local dataset of 60 brain MRI cases. These were 

obtained from our local imaging database, as reported previously 4, and equally contained a 

brief clinical history and imaging findings. This local dataset is not publicly accessible and 

thus highly unlikely to have been included in the LLMs' training data. 

 

LLM Setup 

To evaluate a range of open-source large language models (LLMs), we developed a Python-

based workflow utilizing the “llama_cpp_python” library (version 0.2.79). This library provides 

Python bindings for the widely-used “llama_cpp” software, enabling the execution of local, 

quantized LLMs in GGUF (GPT-Generated Unified Format). Quantization involves reducing 

the precision of the model's numerical weights, typically transitioning from floating-point to 

lower-bit representations, which results in a smaller and faster model while preserving 

performance. For most models, Q5_K_M was chosen as a quantization, typically offering a 

good balance between compression and quality. For the 70B models, a quantization factor 

of Q4_K_M was selected to allow full GPU offloading. 

The “llama_cpp_python” library allows for detailed control over relevant hyperparameters. In 

our experiments, we fully offloaded the LLMs to a GPU for higher computational speed, set 

the temperature to 0 to ensure deterministic responses, and limited the context width to 1024 

tokens, which we previously validated to accommodate all case reports and responses. We 

chose these settings to balance performance and reproducibility, although we acknowledge 

that different configurations might yield varying results. Our Python code for prompt 

construction, along with detailed links to all models (downloaded from 

https://huggingface.co/), is publicly available in our GitHub repository at https://github.com/ai-

idt/os_llm_eurorad. 

For this study, we included eleven open-source LLM models, which are detailed in Table 1. 

All experiments were conducted using an Nvidia P8000 GPU with 48GB of video memory. 
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Case Selection and Response Assessment 

Upon review, we noted that a significant proportion of cases already contained the correct 

diagnosis within the “Clinical History” and “Imaging Findings” sections. Drawing inspiration 

from the “LLM-as-a-Judge” paradigm 16, we employed the most advanced model available at 

the outset of this study, Llama-3-70B, to filter out these cases. A recent study indicated that 

Llama-3-70B, along with GPT-4 Turbo, demonstrated the closest alignment with human 

evaluations 17, making it particularly suitable for this task. We prompted Llama-3-70B to 

assess all cases with the following instruction:  

 

"You are a senior radiologist. Below, you will find a case description for a patient diagnosed 

with [Diagnosis]. Please check if the diagnosis or any part of it is mentioned, discussed, or 

suggested in the case description. Respond with either 'mentioned' (if the diagnosis is 

included) or 'not mentioned,' and nothing else."  

 

Subsequently, we prompted each of the eleven LLMs to provide three differential diagnoses 

along with a brief rationale for each, using the concatenated “Clinical History” and “Imaging 

Findings” as input:  

 

"You are a senior radiologist. Below, you will find information about a patient: first, the 

clinical presentation, followed by imaging findings. Based on this information, name the three 

most likely differential diagnoses, with a short rationale for each." 

 

Finally, we again utilized Llama-3-70B to evaluate each LLM’s responses on a binary scale, 

categorizing them as either “correct” (if the correct diagnosis was among the three 

differential diagnoses) or “wrong.” The prompt for this evaluation was:  

 

"You are a senior radiologist. Below, you will find the correct diagnosis (indicated after 

'Correct Diagnosis:') followed by the differential diagnoses provided by a Radiology Assistant 

during an exam. Please assess whether the Radiology Assistant included the correct 

diagnosis in their differential diagnosis. Respond only with 'correct' (if the correct diagnosis is 

included) or 'wrong' (if it is not)." 

 

Human Evaluation 

In order to gain an understanding of Llama-3-70B’s performance as an LLM judge for 

correctness of diagnoses, three experienced radiologists (SHK, with 2 years of experience, 

DMH and BW, board-certified radiologists with 10 years of experience each) additionally 
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evaluated 60 LLM responses each for correctness, of which 20 were shared between all 

three reviewers to assess human inter-rater agreement. Using a total of 140 LLM responses 

for which both human “ground truth” and LLM judge assessments were known, we 

calculated the accuracy of the LLM judge (Figure 1). 

 

Statistics 

Both the LLM judge as well as human raters evaluated LLM responses on a binary scale, i.e., 

if the correct diagnosis was among the top 3 differential diagnoses listed by the LLM or not. 

From this response data, we calculated the standard error per model and category as: 

 

�� �  �������

�
  

 

where p is the proportion of correct responses, and n is the number of samples.  

However, from our human evaluation of the LLM judge performance, we know about its 

inaccuracies and have to adjust the SE to account for this: 

 

����	 � �� � 	1 � ��
 � ��² 

 

where A is the accuracy of the LLM judge. The adjusted 95% Confidence Interval is then: 

 

95% �� �  � �  1.96 �  ����	  
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Figure 1: Study Design. A total of 2,894 cases were excluded as the true diagnosis was mentioned in the case description to be provided as LLM input. DD
diagnoses. 
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Results 

 

Dataset 

The initial dataset retrieved from the Eurorad library consisted of 4,827 case reports. Using 

the Llama-3-70B model, we identified 2,894 cases where the diagnosis was explicitly stated 

within the case description. These cases were subsequently excluded, resulting in a final 

dataset of 1,933 cases for analysis. This filtering process ensured that the LLMs were 

evaluated on genuinely challenging cases that required inference rather than simple 

information extraction. The dataset was primarily composed of cases from neuroradiology 

(21.4%), abdominal imaging (18.1%), and musculoskeletal imaging (14.6%), whereas breast 

imaging (3.4%) and interventional radiology (1.4%) were underrepresented (Table 2). This 

distribution broadly reflects the relative prevalence of different radiological subspecialties in 

clinical practice. 

 

LLM Judge Performance 

Based on 140 LLM responses rated by radiologists as the reference standard, Llama-3-70B 

exhibited an accuracy of 87.8% in classifying responses as “correct” or “incorrect” (123/140 

responses; 95% CI: 0.82 – 0.93). Furthermore, in a subset of 20 responses rated by all three 

radiologists, the interrater agreement was found to be 100%, indicating complete consensus. 

This high level of agreement between Llama-3-70B and human radiologists, as well as 

among radiologists themselves, supports the validity of using Llama-3-70B as an automated 

judge for the larger dataset. 

 

Model Performance 

Across all models, the highest levels of diagnostic accuracy were achieved in interventional 

radiology (65.7 ± 7.3%), cardiovascular imaging (58.8 ± 3.7%), and abdominal imaging (57.0 

± 2.1%), whereas lower accuracy was observed in breast imaging (48.2 ± 5.0%) and 

musculoskeletal imaging (47.3 ± 2.4%) (Figure 2). Granular accuracy metrics by 

subspecialty and model are provided in Supplement 1. Among the evaluated models, Llama-

3-70B demonstrated superior diagnostic performance across all subspecialties, achieving a 

rate of 73.2 ± 2.5% correct responses, a considerable margin ahead of Gemma-2-27B (62.4 

± 2.6%), Mixtral-8x7B (57.8 ± 2.6%), and Meta-Llama-3-8B (56.4 ± 2.6%) (Figure 3).  

In the local brain MRI dataset, comparable results were observed, with Llama-3-70B (71.7 ± 

14.1%), Gemma-2-27B (53.3 ± 15.1%), and Mixtral-8x-7B (51.7 ± 15.1%) again leading the 

rankings (Figure 4). The consistent performance on this non-public dataset suggests that the 
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models’ capabilities generalize beyond potentially contaminated public data, reinforcing the 

robustness of our findings.
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Figure 2: Model Performance by Subspecialty. Meta-Llama-3-70B demonstrated highest performance across all 
subspecialties. 
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Figure 3: Performance of Open-Source LLMs in Eurorad dataset (n = 1,933). Error bars indicate adjusted 95% 
confidence intervals. 

 

 
Figure 4: Performance of Open-Source LLMs in non-public brain MRI dataset (n = 60). Error bars indicate 
adjusted 95% confidence intervals.  
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Discussion 

In this study, we benchmarked the diagnostic performance of eleven leading open-source 

LLMs in a heterogeneous, challenging cohort of 1,933 peer-reviewed case reports from the 

Eurorad library. Meta’s Llama-3-70B demonstrated superior performance, surpassing the 

other models across all radiological subspecialties with an overall accuracy of 73.2%. This 

level of performance is particularly noteworthy given the complexity and diversity of the 

cases included in our dataset. 

These findings underscore the current dominance of Llama-3 among open-source models, 

consistent with its proficiency in other clinical tasks, such as answering close-ended medical 

questions, summarizing clinical documents, and patient education 14,18.  

Importantly, this study assessed the diagnostic performance of LLMs based on real case 

descriptions, more accurately representing the complexities of real-life clinical decision-

making than questions with pre-defined response options. This approach provides a more 

realistic evaluation of LLMs’ potential in clinical settings, where the ability to interpret 

nuanced clinical information is crucial. 

Our results revealed interesting variations in performance across radiological subspecialties, 

with higher accuracy in genital (female) imaging and lower accuracy in musculoskeletal 

imaging. These differences may reflect inherent complexities within each subspecialty, 

variations in the quality or specificity of case descriptions, or potential biases in the models’ 

training data. Further investigation into these subspecialty-specific performance variations 

could provide valuable insights for targeted model improvements and clinical applications. 

Interestingly, some lighter models such as Meta-Llama-3-8B exhibited strong performance, 

outperforming larger models with more parameters (e.g. Llama-2-70B, Vicuna-13B). This 

suggests that smaller, lower-cost models with nonetheless robust results are attainable, 

making the implementation of LLMs in resource-constrained healthcare settings more viable. 

The strong performance of smaller models highlights the importance of model architecture 

and training strategies, rather than just model size, in achieving high performance on 

specialized tasks. 

Employing a state-of-the-art LLM model to automate the evaluation of LLM responses 

facilitated the large-scale analysis of thousands of cases, a scope unrealizable through 

manual processing. This strategy establishes a methodical benchmark for future large-scale 

investigations of clinical text documents. 

 
Limitations 

First, data contamination of LLMs cannot be definitively ruled out. Given the lack of 

transparency regarding the LLM training datasets, it is possible that the case reports used in 

this study overlap with the training data of some models. However, our complementary 
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assessment on a non-public brain MRI dataset revealed only a minor drop in performance, 

while the overall model rankings remained nearly identical. 

Second, while the use of an LLM for the evaluation of LLM responses significantly enhanced 

the scalability of the analysis, it did so at the expense of reduced accuracy. To mitigate this 

limitation, we adjusted the standard error of model performance assessment based on our 

evaluation of Llama-3-70B’s judging accuracy in a subset of the data. 

Third, we did not investigate the impact of temperature settings or prompt design on LLM 

performance. To ensure deterministic responses, we applied a temperature of 0, but higher 

temperatures could potentially improve diagnostic accuracy 10. Similarly, the optimal task-

specific prompting strategy for radiological diagnosis is yet to be determined 19. 

Finally, this study did not account for the influence of varying descriptions of the same case.  

A recent study evaluating GPT-4(V) in radiological diagnosis revealed that the image 

description is a major determinant of LLM accuracy 4. The Eurorad case descriptions were 

written in awareness of the correct diagnosis, and their use of specific terminology or 

emphasis on certain image characteristics might have introduced a positive bias in LLM 

performance. 

  

In conclusion, we found that several open-source LLMs demonstrate promising performance 

in identifying the correct diagnosis based on case descriptions from the Eurorad library, 

highlighting their potential as decision support tool for radiological differential diagnosis.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.09.04.24313026doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313026


 

References 

 

1. Gertz, R. J. et al. GPT-4 for Automated Determination of Radiologic Study and 

Protocol Based on Radiology Request Forms: A Feasibility Study. Radiology 307, 

(2023). 

2. Rau, A. et al. A Context-based Chatbot Surpasses Radiologists and Generic 

ChatGPT in Following the ACR Appropriateness Guidelines. Radiology 308, (2023). 

3. Kottlors, J. et al. Feasibility of Differential Diagnosis Based on Imaging Patterns Using 

a Large Language Model. Radiology 308, (2023). 

4. Schramm, S. et al. Impact of Multimodal Prompt Elements on Diagnostic Performance 

of GPT-4(V) in Challenging Brain MRI Cases. medRxiv 2024.03.05.24303767 (2024) 

doi:10.1101/2024.03.05.24303767. 

5. Mallio, C. A., Sertorio, A. C., Bernetti, C. & Beomonte Zobel, B. Large language 

models for structured reporting in radiology: performance of GPT-4, ChatGPT-3.5, 

Perplexity and Bing. Radiologia Medica 128, 808–812 (2023). 

6. Doshi, R. et al. Quantitative Evaluation of Large Language Models to Streamline 

Radiology Report Impressions: A Multimodal Retrospective Analysis. Radiology 310, 

(2024). 

7. Guellec, B. Le et al. Performance of an Open-Source Large Language Model in 

Extracting                    Information from Free-Text Radiology Reports. Radiol Artif 

Intell (2024) doi:10.1148/RYAI.230364. 

8. Lehnen, N. C. et al. Data Extraction from Free-Text Reports on Mechanical 

Thrombectomy in                    Acute Ischemic Stroke Using ChatGPT: A 

Retrospective Analysis. Radiology 311, (2024). 

9. Katz, U. et al. GPT versus Resident Physicians — A Benchmark Based on Official 

Board Scores. NEJM AI 1, (2024). 

10. Suh, P. S. et al. Comparing Diagnostic Accuracy of Radiologists versus GPT-4V and 

Gemini Pro Vision Using Image Inputs from Diagnosis Please Cases. Radiology 312, 

e240273 (2024). 

11. Sonoda, Y. et al. Diagnostic performances of GPT-4o, Claude 3 Opus, and Gemini 

1.5 Pro in “Diagnosis Please” cases. Jpn J Radiol 1–5 (2024) doi:10.1007/S11604-

024-01619-Y. 

12. Wu, S. et al. Benchmarking Open-Source Large Language Models, GPT-4 and 

Claude 2 on Multiple-Choice Questions in Nephrology. NEJM AI 1, (2024). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.09.04.24313026doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313026


 

13. Sandmann, S., Riepenhausen, S., Plagwitz, L. & Varghese, J. Systematic analysis of 

ChatGPT, Google search and Llama 2 for clinical decision support tasks. Nat 

Commun 15, (2024). 

14. Adams, L. C. et al. Llama 3 Challenges Proprietary State-of-the-Art Large Language 

Models in Radiology Board–style Examination Questions. Radiology 312, (2024). 

15. Homepage | Eurorad. https://eurorad.org/. 

16. Zheng, L. et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. Adv 

Neural Inf Process Syst 36, 46595–46623 (2023). 

17. Singh Thakur, A., Choudhary, K., Srinik Ramayapally, V., Vaidyanathan, S. & Hupkes 

Meta, D. Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-

Judges. (2024). 

18. Liu, F. et al. Large Language Models in the Clinic: A Comprehensive Benchmark. 

medRxiv 2024.04.24.24306315 (2024) doi:10.1101/2024.04.24.24306315. 

19. Sivarajkumar, S., Kelley, M., Samolyk-Mazzanti, A., Visweswaran, S. & Wang, Y. An 

Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot 

Clinical Natural Language Processing: Algorithm Development and Validation Study. 

JMIR Med Inform 12, e55318 (2024). 

  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.09.04.24313026doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313026


 

Model No. of Parameters Link to Base Model 

Meta-Llama-3-70B 70 billion https://huggingface.co/meta-llama/Meta-

Llama-3-70B-Instruct 

Gemma-2-27B 27 billion https://huggingface.co/google/gemma-2-27b-it 

Mixtral-8x7B 47 billion https://huggingface.co/mistralai/Mixtral-8x7B-

Instruct-v0.1 

Meta-Llama-3-8B 8 billion https://huggingface.co/meta-llama/Meta-

Llama-3-8B-Instruct 

Phi-3-medium-128K 14 billion https://huggingface.co/microsoft/Phi-3-

medium-128k-instruct 

Llama-2-70B 70 billion https://huggingface.co/meta-llama/Llama-2-

70b-chat-hf 

Vicuna-13B 13 billion https://huggingface.co/lmsys/vicuna-13b-v1.5 

BioMistral-7B 7 billion https://huggingface.co/BioMistral/BioMistral-

7B 

Meditron-7B 7 billion https://huggingface.co/epfl-llm/meditron-7b 

OpenBioLLM-Llama3-8B 8 billion https://huggingface.co/aaditya/Llama3-

OpenBioLLM-8B 

Medalpaca-13B 13 billion https://huggingface.co/medalpaca/medalpaca

-13b 

Table 1: Model details.  
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Subspecialty No. Cases Proportion 

Neuroradiology 413 21.4% 

Abdominal imaging 349 18.1% 

Musculoskeletal system 282 14.6% 

Chest imaging 190 9.8% 

Uroradiology & genital male imaging 151 7.8% 

Paediatric radiology 137 7.1% 

Head & neck imaging 124 6.4% 

Cardiovascular 112 5.8% 

Genital (female) imaging 83 4.3% 

Breast imaging 65 3.4% 

Interventional radiology 27 1.4% 

Total 1933 100.0% 

Table 2: Dataset composition by subspecialty. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.09.04.24313026doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313026

