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Abstract 22 

Purpose: Phonological production impairments are prevalent in children with developmental 23 

language disorder (DLD) and hearing impairment (HI). This study aims to quantify and compare 24 

phonological errors in Swedish-speaking children using a novel automated assessment tool and 25 

provide an automatic machine learning classification algorithm of children with DLD and HI to 26 

age-matched controls based on phonological errors. 27 

Methods: 72 Swedish-speaking children (29 with DLD, 14 with HI, and 29 typically developing) 28 

participated. Phonological production was elicited using a 72-item confrontation naming task. A 29 

novel tool was developed to calculate a composite phonological error score and specific scores for 30 

different phonological errors (deletions, insertions, substitutions, and transpositions) from written 31 

speech productions. This tool leverages the International Phonetic Alphabet (IPA) and a form of 32 

the Normalized Damerau–Levenshtein Distance for accurate error analysis. 33 

Results: The composite score successfully differentiated between children with DLD and 34 

typically developing children, highlighting its sensitivity in detecting phonological impairment. 35 

Machine learning models can accurately differentiate between children with and without language 36 

disorders. However, children with DLD and HI differed in the phonemic deletion errors, which 37 

suggests that their phonemic production is relatively similar. 38 
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Conclusions: Children with DLD and HI exhibit significantly higher phonological error rates 39 

compared to typically developing peers. Children with HI and DLC are comparably impaired in 40 

phonology (as manifested by the compositive phonological score). These findings highlight the 41 

potential of machine learning for early identification and targeted intervention in language 42 

disorders, improving outcomes for affected children and demonstrated the potential of a 43 

multilingual tool for scoring phonological errors. 44 

 45 

  46 
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1 Introduction 47 

Children with Developmental Language Disorder (DLD) experience difficulties in language 48 

production and perception, often appearing early in childhood and potentially persisting into 49 

adulthood. While the exact cause remains unknown, these challenges are primarily linked to 50 

neurocognitive factors. Similarly, children with hearing impairment (HI) often encounter 51 

difficulties in speech and language development. However, their challenges are directly related to 52 

sensory input limitations, referred to as language disorder associated with hearing loss (Bishop et 53 

al., 2017). Nevertheless, assuming the same prevalence of DLD as in the general pediatric 54 

population (at least 7%; Norbury et al. (2016)), a substantial proportion of children with HI can 55 

also be assumed to have language problems that are independent of their hearing ability, i.e., they 56 

have DLD, or would have had if not for their HI. This means that assessment procedures used with 57 

children with HI should be sensitive to whether language problems are related to their hearing 58 

impairment or to other factors (Hardman et al., 2023).  59 

Both children with DLD (Lancaster & Camarata, 2019) and children with HI (Lederberg 60 

et al., 2013) demonstrate a wide range of individual differences in the severity and particular areas 61 

of language and communication affected. DLD can manifest as difficulties in expressive language 62 

(producing language) and/or receptive language (understanding language), impacting one or more 63 

linguistic domains, such as phonology (speech sounds), grammar (sentence structure), semantics 64 

(word meaning), or pragmatics (social use of language) (Bishop, 2017). Research has indicated 65 

that a substantial proportion (up to 40%) of children with DLD experience speech sound 66 

difficulties severe enough to warrant a diagnosis of speech sound disorder, with the majority (90%) 67 

of these cases being phonological in nature (Ttofari Eecen et al., 2019). 68 
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While many children with HI develop spoken language on par with typically developing 69 

peers, any degree of hearing loss poses a risk for delayed or atypical language development 70 

(Tomblin et al., 2015), especially in the domains of phonology and grammar, where impaired 71 

performance has been found in around 50% of children (Tuller & Delage, 2014). For 72 

example, both children with DLD and HI may experience difficulties in language 73 

perception, impacting their understanding of conversations and instructions. These language 74 

challenges can have a cascading effect on a child's overall language abilities, impacting their verbal 75 

expression, vocabulary acquisition, and narrative skills. Frustration arising from communication 76 

difficulties can also lead to behavioral challenges in both DLD and HI populations. Not only does 77 

insufficient assessment and management of language difficulties in childhood and adolescence 78 

have consequences for communication but they likely also contribute to a higher prevalence of 79 

psychosocial difficulties and lower academic outcomes in both children with DLD (Botting et al., 80 

2016; Ziegenfusz et al., 2022)  and HI (de Jong et al., 2023; Sarant et al., 2015), hindering their 81 

education and impeding their academic success.  82 

With respect to Swedish, both children with DLD and children with HI have been found to 83 

perform below their typically hearing peers on measures of phonological production accuracy.   In 84 

a cross-sectional study of Swedish-speaking four–six-year-old children, Sundstrom et al. (2019) 85 

showed that children with DLD produced phonemes and stress patterns significantly less 86 

accurately compared to controls with typical language development. This was found for immediate 87 

repetition of real words and non-words, as well as for confrontation naming of pictures.  88 

Interestingly, no significant correlation was found between the repetition of stress and tonal word 89 

accents and measures like phonological production or receptive vocabulary Sundstrom et al. 90 
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(2019). However, a significant correlation emerged between the ability to repeat stress in real 91 

words and expressive grammar skills. 92 

Regarding Swedish-speaking children with HI, Nakeva Von Mentzer et al. 93 

(2015)investigated non-word repetition ability in five–seven-year-olds with severe bilateral HI 94 

who wore cochlear implants. Their findings suggested a lower ability of children with cochlear 95 

implants to repeat the consonants, vowels, primary stress and number of syllables in nonwords, 96 

compared to age-matched controls. Similar results for non-word repetition performance were 97 

obtained by Sundström et al. (2018b) in a study comparing four- to six-year-old children with 98 

moderate to severe HI who used cochlear implants or hearing aids to typically hearing age peers. 99 

In addition, they found that consonants, vowels and stress patterns were significantly harder for 100 

the children with HI to produce in a picture naming task (Sundström et al., 2018b). 101 

Few studies have compared the phonological production ability of Swedish-speaking 102 

children with DLD and children with HI. Ibertsson et al. (2008) investigated nonword repetition 103 

ability in children aged 5–9 years. Consonant production accuracy were not found to differ 104 

between children with mild–moderate HI who used hearing aids and children with SLI, while 105 

children with cochlear implants performed significantly below the other groups. In a more recent 106 

study, Sundström et al. (2018a) found no difference between children with DLD and children with 107 

HI in the ability to correctly produce consonants and vowels when repeating words and nonwords, 108 

or when naming pictures. 109 

In summary, previous studies indicate that Swedish-speaking children with DLD and 110 

children with HI may face considerable challenges in accurately producing consonants, vowels, 111 

stress and tonal word accents. However, differentiating between these groups based on 112 
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phonological production performance may require more in-depth error analyses, rather than coarse 113 

judgments of speech sounds as either correct or incorrect. 114 

Consequently, screening and assessment procedures for children with HI need to be 115 

capable of differentiating between language difficulties stemming from their hearing impairment 116 

and those arising from other underlying factors, such as DLD (Hardman et al., 2023). This 117 

distinction is crucial because it has implications for both diagnosis and treatment. If a child's 118 

language difficulties are primarily attributable to their hearing impairment, interventions focused 119 

on improving auditory access and providing appropriate language models will be most 120 

beneficial. However, if DLD is also present, additional therapeutic approaches targeting specific 121 

language skills and cognitive processes may be necessary. Furthermore, recognizing the potential 122 

coexistence of DLD and HI highlights the importance of comprehensive assessment practices for 123 

children with hearing loss. By employing tools and techniques sensitive to both auditory and 124 

language processing, clinicians can gain a more accurate understanding of a child's unique needs 125 

and develop tailored intervention plans that address their specific challenges, ultimately promoting 126 

optimal language development outcomes. The present study focuses on an aspect of language use 127 

that is often problematic for children with DLD and children with HI, namely phonological 128 

production, defined as the ability to correctly produce speech sounds. Studying phonological errors 129 

in these groups may yield important insights into not only what characterizes phonological 130 

production ability in each group, but also concerning similarities and differences.  131 

 132 

The present study 133 

The manual scoring of phonological errors presents significant challenges within clinical and 134 

research settings. It is a labor-intensive and time-consuming process, often susceptible to human 135 
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error and variability. Accurate and reliable analyses are contingent upon clinicians possessing 136 

specialized expertise in phonetic transcription and a nuanced understanding of the speaker's 137 

dialectal variations (Kent, 1996). These demands can strain resources and potentially introduce 138 

inconsistencies in assessment outcomes. To address these limitations earlier research has 139 

employed distance metrics to provide an Error Frequency Analysis in individuals with acquired 140 

language disorders, such as apraxia of speech and aphasia with phonemic paraphasia (Smith et al., 141 

2019) and to score spelling differences in individuals with PPA (Themistocleous et al., 2020). For 142 

example, in our previous study, Themistocleous et al. (2020) compared and evaluated several 143 

distance metrics and showed that the Normalized Damerau–Levenshtein Distance replicates the 144 

manual scoring process . The advantage of the Normalized Damerau–Levenshtein Distance over 145 

other distance metrics is that it accounts for the transpositions of phonemes or graphemes, whereas 146 

the simpler Levenshtein Distance only for deletion, insertion, and substitution errors. 147 

To enhance the efficiency and objectivity of phonological assessment, this study proposes 148 

an automated Composite Phonological Score (CPS) specifically designed for evaluating the 149 

phonological performance of children with DLD. The CPS algorithm leverages a string distance 150 

metric, the Normalized Damerau–Levenshtein Distance (Jurafsky & Martin, 2009), to compute 151 

the phonemic dissimilarities between a child's production and the target utterance. This approach 152 

enables the quantification of phonological accuracy at a phonemic level. We have refined the 153 

algorithm to generate not only a composite score but also discrete scores for specific categories of 154 

phonetic errors, namely deletions, insertions, substitutions, and transpositions.  This metric 155 

compares the response word and the target word. To account for phonemic processes that appear 156 

at the surface level, we transcribe these both words in the International Phonetic Alphabet (IPA). 157 

The IPA transcription involves both the representation of phonemes into words and phonological 158 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313011doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

processes involved in the production of the surface phonemic forms. In Swedish, for example, the 159 

velar /k/ undergoes a change to become alveopalatal /ɕ/ when it appears before /i/ or /y/, /ø/, /ä/. 160 

This can be observed in words like kille (/ˈɕɪlːɛ/) or köpa (/ˈɕøːpa/). The phonemic distance is 161 

calculated using the Normalized Damerau–Levenshtein Distance, which accounts for four types 162 

of phonemic errors, namely, deletions, insertions, substitutions, and transpositions of phonemes 163 

(Themistocleous et al., 2020). A multilingual web tool, utilizing the Phonemic Distance Algorithm, 164 

offers support for scoring phonological errors in over 65 languages and language varieties, and is 165 

available at Open Brain AI (http://openbrainai.com) (Themistocleous, 2024). The final score is a 166 

distance metric from 0 when the words are identical to 1 when they are dissimilar. This scoring 167 

system provides clinicians and researchers with a more comprehensive understanding of a child's 168 

phonological profile, facilitating targeted intervention planning and progress monitoring. 169 

This study has two primary objectives. First, we aim to quantify phonological production 170 

differences in Swedish-speaking children with DLD and HI compared to Typically Developing 171 

(TD) children. By establishing measurable benchmarks, we hope to improve early diagnosis and 172 

intervention for these conditions. Second, we intend to develop a classification model to 173 

differentiate between children with DLD, HI, and aged matched typically developing children 174 

based on their phonological production patterns. Our primary hypothesis is that Swedish-speaking 175 

children with DLD and HI will exhibit distinct phonological production profiles compared to TD 176 

children and differ from each other. To evaluate this, we have designed a two-step machine 177 

learning approach (Figure 1):  178 
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 179 

Figure 1 Two-fold ML Classification Approach: (1) distinguishing between typically developing 180 

children (TD) and non-TD children; subsequently (2) classifying between children with HI and 181 

children with DLS. 182 

(1) Classify TD vs. non-TD children: This initial step differentiates typically developing 183 

children from those with either DLD or HI. 184 

(2) Classify DLD vs. HI: The second step focuses on distinguishing between children with 185 

DLD and HI. 186 

If successful, this automated system has the potential to expedite diagnosis, allowing clinicians to 187 

quickly identify and address phonological difficulties, which is particularly vital for early and 188 

effective intervention in language impairment cases. 189 

2 Methodology 190 

2.1 Participants 191 

72 children, 29 with DLD, 14 children with HI and 29 age-matched, typically developing children, 192 

participated in the study. All children were between 4 and 6 years old, speakers of the Central 193 

Swedish dialect, and had no known neurodevelopmental or psychiatric disorders. Children with 194 

DLD received a DLD diagnosis by a speech and language therapist and had mainly phonological 195 

and grammatical, excluding pronounced lexical, semantic, and pragmatic deficits. The children 196 

with HI all had congenital or early acquired bilateral mild to profound sensorineural hearing loss. 197 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313011doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Three of the children had bilateral cochlear implants, nine used bilateral conventional air 198 

conduction hearing aids, and two had a bimodal solution with a hearing aid in one ear and a 199 

cochlear implant in the other.  200 

 201 

Table 1 Demographic information of the participants for each group children with DLD, HI, and 

TD children for age, maternal education and their scores in neurolinguistic testing. 

 Condition 

Age Mat. 

Edu 

Word 

Rep 

Non-

Word 

Rep 

Expres. 

Gramm 

Recept. 

Vocab 

Non-

Verbal 

Mean DLD 59.7 14.9 0.57 0.485 28.6 77 24.4 

 HI 60.3 14 0.579 0.467 23.1 56.8 22.9 

 TD 61.2 16 0.828 0.73 34.2 90.6 25.8 

Median DLD 58 16 0.547 0.492 29 73 24 

 HI 59 13.8 0.625 0.458 25.5 55.5 23 

 TD 62 15 0.856 0.748 34 84 26 

Mode DLD 52 16 0.344 0.248 32 72 26 

 HI 64 12 0.0949 0.0859 26 49 18 

 TD 49 15 0.926 0.748 31 71 28 

Standard 

deviation 
DLD 

7 2.25 0.11 0.12 5.31 19.1 6.05 

 HI 7.47 2 0.22 0.208 7.29 17.8 4.12 

  TD 8.04 2.22 0.114 0.134 4.75 20.7 3.68 
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Note: DLD: children with Developmental Language Disorder; TD: typically developing control 202 

children; SD: Standard Deviation; CI: Confidence Intervals. HC and children with DLD differed 203 

significantly in Age, Maternal Education (years), Word Repetition, Nonword Repetition, 204 

Expressive Grammar, Receptive Vocabulary, and Non-Verbal Cognitive Ability. A Mann-205 

Whitney U test showed significant difference between children with DLD and HC for Nonword 206 

Repetition, Expressive Grammar, Receptive Vocabulary at p < .05. 207 

2.1.1 Age in Months 208 

Given the rapid cognitive and linguistic changes in early life stages such as infancy and early 209 

childhood, sage in months allows for a more nuanced understanding of development.  210 

2.1.2 Maternal Education Years 211 

Maternal Education Years is a proxy for the home educational environment or socioeconomic 212 

status. This metric aims to control for environmental variables that could influence cognitive or 213 

linguistic development.  214 

2.1.3 Non-Verbal Cognitive Ability 215 

The Cognitive Ability score is a metric of non-verbal intelligence that attempts to encapsulate an 216 

individual's general cognitive functions. It is assessed through the block design subtest of the 217 

Swedish version of the  Wechsler Preschool and Primary Scale of Intelligence, Third Edition 218 

(WPPSI–III) (Wechsler, 2005) a standardized intelligence test.  219 
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2.1.4 Word and Nonword Repetition 220 

Word and Nonword Repetition evaluates phonological memory and language processing abilities. 221 

The individual is tasked with repeating real or made-up words, and the proportion of accurately 222 

repeated phonemes is calculated. This measure is often used to diagnose children with DLD and 223 

other language disorders.  224 

2.1.5 Expressive Grammar 225 

Expressive Grammar was assessed with Gramba (Hansson & Nettelbladt, 2004). The ability to use 226 

noun morphology, verb morphology, and syntax are probed through a sentence completion test. 227 

During this assessment, children are prompted to complete sentences, allowing researchers to 228 

gauge their grasp of these fundamental aspects of language. To ensure accuracy and enable detailed 229 

analysis, all responses were audio-recorded and later transcribed. The transcriptions were then 230 

scored, with a maximum achievable score of 44. This scoring system provides a quantifiable 231 

measure that enables the comparison of linguistic abilities across individuals or groups. 232 

2.1.6 Receptive Vocabulary Raw 233 

Receptive Vocabulary Raw scores aim to quantify the breadth of words an individual can 234 

understand. Receptive Vocabulary was assessed using The Peabody Picture Vocabulary Test, or 235 

PPVT–III, adapted in Swedish. The examiner pronounces a word, and the child is asked to point 236 

to one of four pictures that best represents the meaning of that spoken word. Given the absence of 237 

standardized norms for Swedish children between the ages of four and six, the study relies on the 238 

raw max scores for analysis.  239 

 240 
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2.2 Procedures and Phonological Scoring 241 

2.2.1 72-item confrontation naming task 242 

Children were assessed for language impairment during one or two sessions (total duration 90–243 

120 minutes including suitable breaks). The testing took place in a quiet room at Linköping 244 

University hospital, at the preschool, or in the child’s home. All testing was administered by the 245 

first author. Phonological production was elicited with a 72-item confrontation naming task.  In 246 

this task, researchers assessed participants' ability to produce sounds and words accurately by 247 

presenting them with pictures of objects and asking them to name the object depicted (Sundstrom 248 

et al., 2019). 249 

2.2.2 Automated Phonological Scoring 250 

The Normalized Damerau–Levenshtein Distance is a distance metric, which allows the 251 

comparison of two strings and calculates a composite score of the differences between the two 252 

strings. A string can be a sequence of letters (graphemes), phonemes or another type of elements. 253 

The Damerau–Levenshtein function (𝑑𝑙𝑒𝑣!,#(𝑖, 𝑗)) is the distance between two strings of 254 

phonemes' words' a and b by estimating the distance between the i–symbol of an initial substring 255 

of the word a (prefix) and a j–symbol prefix of word b. The restricted distance is calculated 256 

recursively as: 257 

 258 

 259 

dleva,b(i, j) = min

8
>>>>>><

>>>>>>:

0 if i = j = 0

dleva,b(i� 1, j) + 1 if i > 0

dleva,b(i, j � 1) + 1 if j > 0

dleva,b(i� 1, j � 1) + 1(ai 6=bj) if i, j > 0

dleva,b(i� 2, j � 2) + 1 if i, j > 1 and a[i] = b[j � 1] and a[i� 1] = b[j]
<latexit sha1_base64="/TeFvd+iUfG4TUFJtlxEcvH34dk="></latexit>
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where 1$!!%#"& is equal to 0 when 𝑎' = 𝑏(	and is equal to 1 otherwise. The phonemic scoring 260 

requires the match one of the following processes: 261 

 262 

1. 𝑑𝑙𝑒𝑣!,#(𝑖 − 1, 𝑗) + 1: a deletion from word a to word b. 263 

2. 𝑑𝑙𝑒𝑣!,#(𝑖, 𝑗 − 1) + 1:	an insertion from word a to word b 264 

3. 𝑑𝑙𝑒𝑣!,#(𝑖 − 1, 𝑗 − 1) + 1$!!%#"&: a (mis-)match from word a to word b. 265 

4. 𝑑𝑙𝑒𝑣!,#(𝑖 − 2, 𝑗 − 2) + 1: transposition  266 

 267 

Typically, a score of 0 indicates perfect phonological production (i.e., no difference between the 268 

target and the response), and higher scores indicate more errors.  269 

For the purposes of this study, we have adapted the Normalized Damerau–Levenshtein 270 

Distance algorithm to automatically compute the Composite Phonological Score of Errors (CPS) 271 

metric from written speech productions. This adaptation enables the identification and 272 

categorization of specific speech errors, deletions (i.e., the absence of phonemes that should be 273 

present in the target production), insertions (i.e., the presence of extra phonemes not found in the 274 

target production; the substitutions (i.e., the replacement of one phoneme with another), and 275 

transpositions (i.e., the swapping of the order of two adjacent phonemes). 276 

Our implementation involves a two-step process. The first step involves the Phonetic 277 

Transcription. The written speech productions are first converted into their corresponding 278 

representations using the International Phonetic Alphabet (IPA). This standardized phonetic 279 

notation allows for a precise comparison at the sound level, regardless of the original language or 280 

orthography. The second step involves the Error Calculation. The IPA transcription of the target 281 

production is then compared to the IPA transcription of the response. The modified Normalized 282 
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Damerau–Levenshtein Distance algorithm analyzes the differences between these two phonetic 283 

sequences, identifying and classifying the specific error types (deletions, insertions, 284 

substitutions, and transpositions). This information is then used to calculate the CPS 285 

metric, providing a quantitative assessment of the accuracy of the speech production. The 286 

Automated Phonological Scoring is approach was developed and implemented in Open Brain AI  287 

(http://openbrainai.com) (Themistocleous, 2024) and provides a Multilingual Composite 288 

Phonological Score of Errors and the individual phonemic errors adapted to several languages. 289 

2.2.3 Statistical Analysis 290 

Pearson and Spearman rank-order correlations were computed between CPS, phonemic errors, and 291 

the other numerical variables of interest. Statistical tests were conducted to assess the differences 292 

between the groups. The choice of statistical test (independent t-test or Mann-Whitney U) was 293 

determined based on the Levene's test for equality of variances. 294 

 295 

𝐷𝑉	~	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	 +	(	1	|	𝑐ℎ𝑖𝑙𝑑	𝑖𝑑	) 	+	(	1	|	𝑡𝑎𝑠𝑘	) (1) 296 

 297 

We employed linear mixed-effects models to evaluate the effects of children with DLD vs. 298 

typically developing children on the phonological distance. The dependent variable was the 299 

phonological distance and the condition (children with DLD vs. typically developing children) 300 

were the predictors. The participant was modeled as a random slope to model participants' 301 

differences. We computed the Linear Mixed-Effects Models in R, a programming language for 302 

statistical analysis (R Core Team, 2020), using the “lme4” package (Bates et al., 2015) and 303 

extracted the p values with the LmerTest package (Kuznetsova et al., 2016). Finally, post-hoc 304 

contrasts were provided using the R package emmeans (EMMs, also known as least-squares 305 
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means), which provides estimated marginal means (Russell, 2020). A t-test was performed to 306 

compare the duration of vowels and consonants produced by patients and clinicians. 307 

 308 

2.3 Machine Learning 309 

From our statistical models, we wanted to assess the implications of our measures for identifying 310 

a child with DLD from children with TD. Therefore, we designed a robust classification approach 311 

to work with a small amount of data. To assess the diagnostic value of phonological scores as 312 

predictors of hearing Impairment and DLD, we implemented two machine learning approaches. 313 

The first approach focused on differentiating typically developing children from those with hearing 314 

Impairment or DLD based on their phonological errors. Subsequently, we explored the ability to 315 

differentiate within the latter group, specifically between children with DLD and those with 316 

hearing Impairment. 317 

2.3.1 Model Comparison 318 

For the classification we evaluated three classifiers: Decision Tree Classifier, Random Forest 319 

Classifier, and Gradient Boosting Classifier. Each of these classifiers has unique characteristics 320 

and is suited for several types of data and classification problems. The primary motivation for 321 

using these models is that they are able to support smaller datasets and also provide feature 322 

importance, which was critical for us because we wanted to assess the phonological measures 323 

developed for this study. 324 

 325 

1. Decision Tree Classifier (DT) is a simple, yet powerful model used in supervised 326 

learning. For the classification it creates a tree-like graph of decisions by spliting the data 327 

into branches at decision nodes, which are formed based on feature values. Each decision 328 
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node in the tree represents a feature in an instance to be classified, and each branch 329 

represents a value that the node can assume. Instances are classified starting from the root 330 

node and sorted based on their feature values down the tree along the branches until they 331 

reach a leaf node, which provides the classification (Hastie et al., 2009).  332 

 333 

2. Random Forest Classifier (RF) this is an ensemble learning method for classification 334 

that operates by constructing a multitude of DTs at training time and outputting the class 335 

that is the mode of the classes of the individual trees (Breiman, 2001). In other words, RFs 336 

create a set of decision trees from randomly selected subsets of the training set, then 337 

aggregate their individual predictions to make a final decision. It introduces additional 338 

randomness when growing trees; instead of searching for the most important feature while 339 

splitting a node, it searches for the best feature among a random subset of features. Because 340 

of its ensemble nature, the random forest can achieve higher accuracy than a single DT and 341 

is better at avoiding overfitting. Random forests handle unbalanced and missing data and 342 

maintain accuracy for missing data. 343 

 344 

3. Gradient Boosting Classifier (GBC) is an ensemble approach, like RFs, that builds 345 

models sequentially, each new model attempting to correct errors made by the previous 346 

ones (Bentéjac et al., 2021). Models are added one at a time, and existing models in the 347 

sequence are not changed. It involves three parts: a Impairment function to be optimized, 348 

a weak learner to make predictions, and an additive model to add weak learners to minimize 349 

the Impairment function. New learners are created to be maximally correlated with the 350 

negative gradient of the Impairment function associated with the whole ensemble.  351 
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2.3.2 Preprocessing and Addressing Data Imbalance 352 

For the ML classification, we employed the automated phonological error scores for each word 353 

(CPS and error types), demographic data (age and maternal education), and psychological 354 

assessments (nonverbal IQ, word and nonword repetition abilities, and vocabulary skills) (Table 355 

1). The individual scores of each word items of the test were consolidated into a single score 356 

performance for each child by calculating median values for each child. Following data 357 

preparation, we addressed potential imbalances in how frequently each condition occurs within 358 

their dataset. Balancing a dataset is crucial for developing a reliable and fair predictive model as 359 

class imbalance can lead the machine learning model to develop a bias toward the majority class, 360 

often at the expense of poorly predicting the minority class. To counter this imbalance, we 361 

employed SMOTE and works by creating samples by over-sampling with replacement (Chawla et 362 

al., 2002). During five-fold cross-validation, SMOTE is applied within each training fold 363 

separately, ensuring that each fold used for validation remains a true representation of the original 364 

dataset. This approach provides a robust estimate of how the model will perform on unseen data. 365 

We set up a machine learning pipeline to manage missing data (using median values to fill in gaps), 366 

standardize measurements (to give them equal weight in the analysis), and apply the three 367 

classifications classification algorithms to predict the condition based on the input data. 368 

2.3.3 Training the models 369 

The training of the models was conducted using a five-fold grouped cross-validation, which 370 

considers the child id to ensure that there is no data leakage from the training test into the test set. 371 

To tune the models and select the best one employed GridSearchCV, an approach implemented in 372 

scikit-learn that automate the process of tuning parameters of a model by evaluating multiple 373 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313011doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

combinations of parameter tunes, cross-validate the results to find the best set of parameters that 374 

offer the most accurate model.  375 

 A 5-fold cross-validation was used to split into 5 different subsets; each fold serves as a test 376 

set once, with the remaining parts used as the training set, thus rotating through all combinations. 377 

The performance of the final model is evaluated through standard statistical measures, namely 378 

their accuracy, F1 score, and by generating a confusion matrix and a classification report that 379 

explain how well the model predicts conditions and where it might be making errors. We then 380 

extracted the feature importance from the final ML model. Each classifier was trained using the 381 

training data from the group five-fold and then validated on the testing data. Post prediction, each 382 

model's performance was assessed using standard evaluation metrics, namely the accuracy, which 383 

is the proportion of correctly predicted classification; the F1 Score, which is the harmonic mean 384 

of precision and recall; the precision, which is the proportion of positive identifications that were 385 

indeed correct; the recall, which is the proportion of actual positives that were identified correctly; 386 

the Area Under the Receiver Operating Characteristic Curve (ROC/AUC), and the Cohen's Kappa 387 

(Hastie et al., 2009). 388 

3 Results 389 

In this section, first we discuss the differences between children with DLD, HI, and TD. Table 2 390 

shows the Mean and Standard Deviation (SD) scores. Subsequently, we present the statistical 391 

analysis for each of the outcome phonological measures.  392 

 393 

Table 2 Mean and Standard Deviation (SD) scores. 394 

Condition CPS Deletions Insertions Substitutions Transpositions 

 Mean SD Mean SD Mean SD Mean SD Mean SD 
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DLD 0.27 0.22 0.47 0.87 0.15 0.47 1.55 1.64 0.009 0.11 

HI 0.28 0.26 0.63 1.2 0.15 0.45 1.49 1.78 0.007 0.092 

TD 0.11 0.16 0.17 0.49 0.10 0.41 0.70 1.19 0.005 0.069 

Notes: DLD = developmental language disorder, HI = hearing impairment, TD = typical 

development, CPS composite phonological score. 

 395 

Across all three groups (DLD, HI, and TD), substitutions are the most frequent type of phonemic 396 

error. Children with DLD and HI exhibit a similar rate of substitutions, which is notably higher 397 

than that of TD children. Deletions are the next most frequent error type, with the HI group 398 

showing the highest rate, followed by DLD, and then TD. Insertions occur at a relatively low rate 399 

across all groups, with DLD and HI children showing similar rates, slightly higher than TD 400 

children. Transpositions are the least common error, with minimal occurrences in all groups. 401 

Overall, children with DLD and HI demonstrate considerably higher rates of phonemic errors 402 

compared to TD children, suggesting greater challenges in phonological development. 403 

 404 

3.1 Phonological Errors: CPS, Deletions, Insertions, Substitutions, Transpositions 405 

Table 3 shows the comparative effects of the three groups, namely DLD, HI, and TD on the CPS. 406 

 407 

Table 3 Statistical analysis of the effect of the group on the CPS. 408 

  95% Confidence Intervals   

Effect Estimate SE Lower Upper df t p 

(Intercept) 0.2648 0.0549 0.1573 0.3724 2.2 4.83 0.033 
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HI - DLD 0.0311 0.0311 -0.0298 0.092 69.33 1 0.32 

TD - DLD -0.1628 0.025 -0.2118 -0.1139 69.15 -6.52 < .001 

Notes: DLD = developmental language disorder, HI = hearing impairment, TD = typical 

development. 

 409 

TD compared to children with DLD and HI differed significantly in their composite phonological 410 

score. Children with TD produced phonological errors closer to 0 whereas both children with DLD 411 

and HI had a composite phonological score closer to 30%. The difference in the productions was 412 

also shown in the post-hoc Bonferroni analysis, which showed significant differences between 413 

children with DLD and TD (p < .001) and HI and TD (p < .001) but no difference between children 414 

with DLD and HI. 415 

3.1.1 Deletions  416 

Table 4 shows the results of the statistical analysis of the effects of children with DLD, HI, and 417 

TD on the phonemic deletion errors.  418 

 419 

Table 4 Statistical analysis of the effect of the group on the deletions. 420 

  95% Confidence Intervals   

Effect Estimate SE Lower Upper df t p 

(Intercept) 0.551 0.1543 0.249 0.853 2.23 3.57 0.06 

HI - DLD 0.185 0.0944 1.40E-04 0.37 66.88 1.96 0.054 

TD - DLD -0.315 0.0758 -0.464 -0.167 66.51 -4.16 < .001 
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Notes: DLD = developmental language disorder, HI = hearing impairment, TD = typical 

development. 

 421 

Children with HI and DLD differed significantly from the TD children regarding deletions, which 422 

is also evidenced by the higher number of deletions in children with DLD and HI compared to TD 423 

as shown in Table 4. Specifically, we find that deletions occur more frequently in children with HI 424 

compared to those with DLD. This difference is statistically significant (p = 0.05). More 425 

pronounced variations are observed between children with HI and those with TD, as well as 426 

between children with DLD and TD. These comparisons reveal significant differences, indicating 427 

that deletions are relatively rare in children with TD.  428 

3.1.2 Insertions 429 

Table 5 shows the comparative effects of the three groups, namely DLD, HI, and TD on the 430 

phonemic insertion errors. 431 

 432 

Table 5 Statistical analysis of the effect of the group on the insertions. 433 

  95% Confidence Intervals   

Effect Estimate SE Lower Upper df t p 

(Intercept) 0.17624 0.0651 0.0487 0.3038 2.04 2.708 0.111 

HI - DLD 0.00253 0.0204 -0.0374 0.0424 67.59 0.125 0.901 

TD - DLD -0.04733 0.0162 -0.0792 -0.0155 65.77 -2.915 0.005 

Notes: DLD = developmental language disorder, HI = hearing impairment, TD = typical 

development. 

 434 
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The post-hoc Bonferroni analysis showed that children with DLD different significantly compared 435 

to those with TD in insertions (p = 0.015), primarily because they tended to produce more insertion 436 

errors. Similarly, children with HI also differed significantly from those with TD (p = 0.052). 437 

However, there was no significant difference in the frequency of insertion errors between children 438 

with DLD and those with HI.  439 

3.1.3 Substitutions 440 

Table 6 shows the comparative effects of the three groups, namely DLD, HI, and TD on the 441 

phonemic insertion errors. 442 

 443 

Table 6 Statistical analysis of the effect of the group on the phonemic substitution errors. 444 

  95% Confidence Intervals   

Effect Estimate SE Lower Upper df t p 

(Intercept) 1.6132 0.513 0.608 2.618 2.05 3.146 0.085 

HI - DLD 0.0498 0.148 -0.24 0.339 69.03 0.337 0.737 

TD - DLD -0.8347 0.119 -1.067 -0.602 68.61 -7.033 < .001 

Notes: DLD = developmental language disorder, HI = hearing impairment, TD = typical 

development. 

 445 

The post-hoc Bonferroni analysis showed that children with DLD differed significantly from those 446 

with TD (p < .001) as children with DLD produced more substitution errors that TD children. 447 

Children with HI also showed significant differences from those with TD (p < .001). However, 448 

there was no significant difference in the incidence of insertion errors between children with DLD 449 

and those with HI. 450 
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3.1.4 Transpositions 451 

Error! Reference source not found. shows the comparative effects of the three groups, namely 452 

DLD, HI, and TD on the phonemic transposition errors. 453 

 454 

Table 7 Statistical analysis of the effect of the group on the phonemic transposition errors. 455 

  95% Confidence Intervals   

Effect Estimate SE Lower Upper df t p 

(Intercept) 0.00887 0.0035 0.00201 0.01574 2.21 2.533 0.115 

HI - DLD -0.00111 0.00319 -0.00736 0.00514 68.65 -0.349 0.728 

TD - DLD -0.00372 0.00253 -0.00868 0.00124 66.22 -1.47 0.146 

Notes: DLD = developmental language disorder, HI = hearing impairment, TD = typical 

development. 

 456 

We found no errors with regards to transposition errors between the three groups. 457 

 458 

3.2 Classification 1: TD vs non-TD children 459 

We evaluated three classification models: Decision Trees, Random Forests, and Gradient 460 

Boosting. The classification models were able to classify between TD children and non-TD 461 

children. The best model, a Random Forests classifier, was able to perform the classification with 462 

a relatively high classification accuracy and F1-score, i.e., 93%. 463 
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 464 

Figure 2 ROC / AUC Curve of the best performing model (AUC = 88%). 465 

The ROC Curve of the best performing model, namely a RF model, which was 88%. Precision 466 

informs the model’s accuracy of positive predictions. The model’s accuracy, precision and F1-467 

score approximated a mean 93% across folds, which indicates good overall performance across 468 

both classes. We run a feature importance, which showed that the CPS had substantial contribution. 469 

 470 

Table 2 The ranking of the first 5 features and their importance. 471 

Ranking Feature Feature Importance 

1 CPS 0.60 

2 Expressive grammar 0.17 

3 Non-Verbal 0.08 

4 Non-Word Repetition 0.07 
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5 Receptive Vocabulary 0.04 

Note: Feature importance is total score of 1. 472 

 473 

3.3 Classification 2: Children with DLD vs. HI 474 

We followed the same model classification approach as in classification 1 and evaluated three 475 

classification models: Decision Trees, Random Forests, and Gradient Boosting. The best model in 476 

this case was a Decision Tree classifier and classified children with DLD and HI with 91% 477 

classification accuracy and F1-score (Table 2) and ROC/AUC was 86% (Figure 2).  478 

 479 

Figure ROC / AUC Curve of the best performing model (AUC = 86%). 480 

 481 

Table 8 Classification results of the best performing model, a Random Forest model. 482 
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Label Precision Recall F1-score 

Accuracy 
  

0.91 

Macro Avg 0.89 0.91 0.90 

Weighted Avg 0.92 0.91 0.91 

 483 

Table 8 shows the precision, recall, F1-score, and support for each label, along with the 484 

overall accuracy, macro average, and weighted average for the model. The model is highly 485 

effective, especially in predicting class 1 with high precision and good recall. Class 0, while having 486 

a lower precision, still had excellent recall. The overall accuracy and weighted metrics suggest that 487 

the model performs robustly, making it quite effective for tasks where both classes are crucial. The 488 

high F1-scores across both classes also indicate a strong balance between precision and recall, 489 

crucial for many practical applications. The feature importance is shown in Table 9. 490 

 491 

Table 9 The ranking of the first 5 features and their importance. 492 

Ranking Feature Feature Importance 

1 Receptive Vocabulary' 0.43 

2 Word Repetition 0.39 

3 Non-Verbal 0.09 

4 Expressive Grammar' 0.08 

 493 

The most importance feature was Receptive Vocabulary and Word Repetition. Unlike the previous 494 

case, the role of the CPS to distinguish between individuals with DLD and HI was negligeable. 495 

 496 
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4 Discussion 497 

Traditional phonological assessments rely heavily on manual scoring, which is time-consuming, 498 

labor-intensive, and prone to human error and variability. This study addresses the challenges of 499 

manually scoring phonological errors by proposing an automated system that calculates phonemic 500 

errors and introduces a novel approach by leveraging computational methods to standardize and 501 

streamline this process (Heeringa et al., 2009; Hixon et al., 2011; Riches et al., 2011; Smith et al., 502 

2019). The new algorithm calculates a Compositive Phonological Score (CPS) from the 503 

Normalized Damerau–Levenshtein Distance for phonemic error calculation and, at the same time, 504 

introduces specific scores for individual errors like deletions, insertions, substitutions, and 505 

transpositions (Themistocleous, 2024; Themistocleous et al., 2020). The proposed automated 506 

system ensures consistency across assessments by applying the same criteria and calculations to 507 

each case, eliminating the subjectivity inherent in manual scoring. This consistency is crucial for 508 

reliable diagnosis and tracking of progress over time. Also, the automated scoring enhances 509 

precision in phonemic error analysis, as the system can measure phonemic differences between a 510 

child’s production and the target pronunciation, providing detailed insights that are difficult to 511 

achieve manually.  512 

Specifically, we have applied this algorithm to assess phonological performance in Swedish-513 

speaking children with DLD and HI, compared to TD children, and provided a detailed analysis 514 

of phonological errors among Swedish-speaking children with DLD, HI, and TD children, 515 

demonstrating distinct patterns of phonological errors across these groups (Sundström et al., 516 

2018a; Sundstrom et al., 2019). This study had two primary objectives. First, we aimed to quantify 517 

phonological production differences in Swedish-speaking children with DLD and HI compared to 518 

TD children. The study demonstrated that children with DLD and HI exhibited significantly higher 519 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313011doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

CPS than TD children, indicating more frequent phonological errors. DLD and HI groups showed 520 

a CPS of around 0.27-0.28, while TD children had a lower CPS of 0.11. The findings suggest that 521 

phonological errors are considerably more common in children with language impairments than 522 

in typically developing peers (Andreou et al., 2024).  523 

However, the CPS did not significantly differ between the DLD and HI groups, suggesting 524 

similar levels of overall phonological difficulty in both groups. The lack of significant difference 525 

between DLD and HI groups underscores the complexity of diagnosing and treating language 526 

disorders that manifest similar phonological difficulties (Law et al., 1996). It highlights the need 527 

for comprehensive and multifaceted approaches to diagnosis and intervention, the importance of 528 

understanding these conditions' shared and unique aspects, and the potential challenges in clinical 529 

practice. Also, the phonological difficulties in DLD and HI groups underscore that interventions 530 

targeting phonological errors might need to be similar for both groups. However, since the 531 

underlying causes of these errors differ (DLD being a language disorder and HI related to hearing 532 

loss), interventions should still be tailored to address each group's specific needs and underlying 533 

issues. For children with HI, interventions can focus more on improving auditory processing and 534 

maximizing residual hearing through assistive technologies (e.g., hearing aids and cochlear 535 

implants). In contrast, for children with DLD, therapy might emphasize enhancing language 536 

processing and production skills (Hoover, 2019). The similarity in CPS underscores the need for 537 

interventions to go beyond phonological errors and address the broader context of each disorder. 538 

Concerning the specific types of Phonological Errors, substitutions were the most common 539 

error across all groups, with DLD and HI children showing significantly higher rates than TD 540 

children. Thus, replacing one phoneme with another is a prevalent issue in DLD and HI. Deletions 541 

were more frequent in the HI group than in the DLD and TD groups, with the HI group showing a 542 
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trend towards more deletion errors than the DLD group. Both DLD and HI groups had significantly 543 

more deletions compared to TD children. Insertions were relatively rare across all groups, but both 544 

DLD and HI children exhibited higher rates than TD children. The differences between DLD and 545 

TD were significant, highlighting that children with language disorders may add extra phonemes 546 

do not present in the target word. Transpositions were the most minor common type of error and 547 

did not show significant differences between the groups, indicating that swapping adjacent 548 

phonemes is not a prominent issue in these populations. These findings indicate that despite 549 

different etiologies, children with DLD and HI experience comparable difficulty levels in 550 

phonological production, which suggests that phonological errors in these conditions may stem 551 

from broader, shared difficulties in language processing, whether due to impaired auditory input 552 

(in HI) or impaired linguistic processing (in DLD). Understanding these shared challenges can 553 

inform the development of more effective cross-cutting intervention strategies. 554 

Second, the study intended to develop a classification model to differentiate between 555 

children with DLD, HI, and aged matched typically developing children based on their 556 

phonological production patterns. We hypothesized that Swedish-speaking children with DLD and 557 

HI will exhibit distinct phonological production profiles compared to TD children and differ from 558 

each other. The hypothesis was confirmed, and the Classification of TD vs. Non-TD Children 559 

resulted in a high classification accuracy. Specifically, the Random Forest classifier was the most 560 

effective, achieving high classification accuracy (93%) and a strong F1 score. The CPS emerged 561 

as the most crucial feature in distinguishing TD children from those with language impairments 562 

(DLD and HI), underscoring the utility of the CPS metric in clinical diagnostics. The classification 563 

results of DLD vs. HI Children showed that the Decision Tree classifier had the best performance, 564 

with an accuracy of 91% and a high F1 score. 565 
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Interestingly, in this classification, the CPS was not a significant feature. Instead, Receptive 566 

Vocabulary and Word Repetition were the most important predictors, which suggests that while 567 

CPS is crucial for identifying general language impairment, other linguistic measures are more 568 

critical in differentiating between specific disorders like DLD and HI. 569 

The study offers a more objective and consistent method for assessing phonological 570 

performance by quantifying phonological errors with the CPS. The method can reduce reliance on 571 

labor-intensive manual scoring and minimize the risk of human error, making diagnostics more 572 

precise and accessible. The study provides valuable insights into the phonological profiles of 573 

children with DLD and HI. The several types of phonological errors highlight the specific 574 

challenges faced by these groups, such as a higher prevalence of substitutions and deletions. These 575 

findings can inform targeted intervention strategies that address the needs of children with these 576 

language impairments. The study’s application of machine learning models to classify children 577 

based on their phonological errors is another significant contribution as it demonstrates the 578 

potential that the combination of metrics employed in this study can corroborate existing screening 579 

approaches for DLD and HI (see Bao et al. (2024) for a recent review). The ability to accurately 580 

distinguish between TD, DLD, and HI children using phonological metrics and other linguistic 581 

measures demonstrates the potential of AI in enhancing early diagnosis and intervention. This 582 

approach can be particularly beneficial in resource-limited settings where access to specialized 583 

clinicians is scarce. 584 

4.1 Limitations and Future Research 585 

While this study contributes significantly to phonological assessment and language disorder 586 

diagnosis, several limitations should be noted. First, the study involved a relatively small sample 587 

size of 72 children, which may limit the generalizability of the findings. Although the study 588 
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included three distinct groups (DLD, HI, and TD), the small number of participants in each group 589 

may not fully capture the variability in the broader population of children with these conditions. 590 

The study is also limited to Swedish-speaking children, specifically those speaking the Central 591 

Swedish dialect. This focus restricts the applicability of the findings to other languages or dialects, 592 

where phonological rules and error patterns may differ. Finally, the proposed method capture only 593 

phonemic level differences, thus, domains such as lexical and post-lexical prosody, which might 594 

be affect in children with HI and TD require a separate scoring algorithm (Sundstrom et al., 2019; 595 

Themistocleous, 2016). Despite these limitations, the study offers valuable insights and tools for 596 

assessing phonological errors in children with language disorders.  597 

Future research should aim to address these limitations by including larger and more diverse 598 

populations, exploring additional linguistic factors, and refining the machine learning models and 599 

error analysis methods to enhance the robustness and applicability of the findings. By establishing 600 

measurable benchmarks for phonological errors, the study contributes to the early diagnosis and 601 

treatment of language disorders. Early identification of children with DLD or HI can lead to timely 602 

interventions, potentially mitigating the long-term impacts of these disorders on language 603 

development and academic achievement (Davidson et al., 2019). The study's implementation of 604 

the phonological scoring algorithm in Open Brain AI (http://openbrainai.com), with multilingual 605 

support, underscores its broad applicability (Themistocleous, 2024). This makes the tool feely 606 

accessible to a wide range of clinicians and researchers, facilitating its integration into various 607 

linguistic and cultural contexts. This generalizability enhances the tool's utility in global clinical 608 

practice and research. 609 
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4.2 Conclusion 610 

The study represents a significant advancement in the automated assessment of phonological 611 

errors, offering a reliable, scalable tool for diagnosing and understanding language disorders. Its 612 

integration of machine learning further enhances its diagnostic power, making it a valuable 613 

resource for clinicians and researchers aiming to improve outcomes for children with language 614 

impairments. 615 

Data Availability Statement 616 

The data are available upon request to the first author (SS). The Phonological Scoring Application, 617 

developed by the second author, is freely accessible at Open Brain AI (http://openbrainai.com). 618 
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