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Abstract  

Accurate prediction of post-operative adverse events following cardiothoracic surgery is crucial for timely 

interventions, potentially improving patient outcomes and reducing healthcare costs. By leveraging 
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advanced deep learning techniques, this study highlights the transformative potential of incorporating 

intraoperative variables into predictive analytics models to enhance postoperative care for cardiothoracic 

surgery patients in the ICU. We developed deep learning predictive models for anticipating adverse 

events in patients following cardiothoracic surgery using a dataset from the Society of Thoracic Surgeons’ 

database (4) and intraoperative data. Our models perform late fusion by integrating static patient data and 

intra-operative time-series data, utilizing Fully Connected Neural Networks (FCNN) and long short-term 

memory (LSTM) networks, respectively. The hybrid model was validated through five-fold cross-

validation, demonstrating robust performance with a mean AUC of 0.93, Sensitivity of 0.83 and 

Specificity of 0.89. This work represents a significant step forward in the proactive management of cardio 

thoracic surgery patients in the ICU by effectively predicting potential adverse events associated with 

mortality in the post operative period. 

1 Introduction  

Cardiothoracic surgery, despite advances in medical technology and practice, is fraught with risks of 

untoward events. To prevent these untoward complications, rapid and effective detection and 

interventions are crucial. The Society of Thoracic Surgeons (STS) developed a standardized national 

clinical data registry for cardiothoracic surgery in 1989 which facilitated the development of risk models 

to help guide real-time patient counseling and shared decision making for patients contemplating high risk 

surgery (Shahian 2018). Using the STS database, Reddy et al identified 17 post operative complications 

following open heart surgery associated with mortality in the post operative phase; they went on to 

demonstrate a disparity between the variation in mortality and the variation in incidence of the 17 

complications between hospitals with low-, medium- and high- mortality rates (8.3% vs 10.0% vs 12.7%, 

P < 0.001, respectively). Subsequent studies support the assertion that early prediction of these “failure to 

rescue (FTR)” complications could facilitate early intervention and treatment to prevent mortality in the 

post operative period. A study by Gabriela O. Escalante et al. [2023] (23) used data provided by the Society 

of Thoracic Surgeons (STS) (4) from 20,950 consecutive patients to find that 1 or more of 4 complications 
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viz. prolonged ventilation, stroke, renal failure, and unplanned reoperation, lead to mortality via Failure to 

Rescue. These findings asserted the association between FTR and hospital processes of care. 

The STS database was also used by another Michigan study group to identify “failure to rescue” -like 

complications following esophagectomy, a procedure that definitively treats esophageal cancer and other 

esophageal diseases. Anastomotic leak is a dreaded complication of this procedure highly associated with 

morbidity and mortality and has received significant attention in the literature. Stanley Kalata et al. [2023] 

(29), analyzed STS data from 621 esophagectomies performed at the University of Michigan to find early 

post-operative complications associated with anastomotic leak. They found that early post operative atrial 

fibrillation and pneumonia were associated with the later finding of anastomotic leak. Cox proportional 

hazards analysis and got a sensitivity and specificity of 31.3% and 76.2% respectively for atrial 

fibrillation and 7.0% and 90.6% respectively for pneumonia. This finding is notable because atrial 

fibrillation and pneumonia are typically presented by POD#2-3, vs anastomotic leak, which is not 

typically identified until POD#8.  Ferrando-Vivas P et al. [2022] (28) implemented risk models for 

predicting the outcomes viz. acute hospital mortality and 1-year mortality after cardiothoracic critical care 

admissions. They added pre-operative as well as intra-operative data from NHS cardiothoracic critical 

care units participating in CMP (Case Mix Program) to better the performance of their refitted 

multivariable model and got a c-index value of 0.892. 

Jahan C. Penny‐Dimri et al. [2022] (20) worked on reviewing 2,792 peer-reviewed studies of traditional 

machine learning (ML) techniques. They predicted adverse postoperative outcomes such as 30-day 

mortality and in-hospital mortality in cardiac surgery and got C-index scores which were 0.81 (0.78−0.84) 

and 0.79 (0.73−0.84) for pooled ML models and independent LR respectively. Dimitris Bertsimas et al. 

[2021] (21) explored various ML models to predict the outcomes of cardiac surgery and better resource 

optimization using data of more than 235,000 patients and 295,000 operations provided by the European 

Congenital Heart Surgeons Association (ECHSA) Congenital Database (33). One of their findings was that 

optimal classification trees (OCTs) got the highest AUC training score of 85.5% and AUC testing score 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.24312980doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24312980
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

of 86.2% for the prediction of mortality. OCTs aim to find the most accurate tree model by optimizing for 

the best possible splits in data.  This motivated the use of XGBoost model which like OCTs is another 

decision tree-based ML algorithm and works on finding non-linear relationships while providing insights 

into feature importance. The study also suggested that age and weight were important factors to be 

considered while building prediction models.  

Previous efforts to predict FTR have faced limitations, particularly in the transparency and robustness of 

risk estimators. Studies by Shahian et al. [2018] (6), O’Brien et al. [2018] (5), and Kurlansky et al. [2021] (9) 

have pointed out the insufficiency of using the c-statistic as a sole performance measure. Shahian et al. 

used entries from July 2011 to June 2014 in the STS Adult Cardiac Surgery Database (ACSD) to build 

parsimonious models that used backward selection from a full model. New versions of the ACSD risk 

models were built to predict renal failure in Coronary Artery Bypass Grafting, prolonged ventilation in 

Coronary Artery Bypass Grafting, and stroke in Valve procedures among others. Even though our study 

considered some of these targets, our final model combined all adverse effects to form a unified target 

column mostly due to limited data. Similarly, O’Brien et al. built separate statistical models for different 

surgeries and endpoints like stroke, renal failure, prolonged ventilation, mediastinitis/deep sternal wound 

infection to name a few. They also used data from ACSD such as 439,092 entries for coronary artery 

bypass grafting surgery, 81,588 entries for combined valve plus coronary artery bypass grafting surgery to 

name a few. The c-index score ranged from 0.588 for reoperation and 0.826 for renal failure.  Kurlansky 

et al. used ACSD for modeling a predictive model. They included pre-operative and intra-operative 

features in their model and got a c-index score of 0.806. These gaps highlight the necessity for a more 

nuanced approach that integrates a broader spectrum of data and analytical techniques. 

Already in 1993, a study by Mark H. Ebel (27) established the efficacy of Artificial Neural Networks to 

predict Failure to Survive with a positive predictive value of 97%. This reinforces the integration of 

neural networks into our model, especially considering that positive results were obtained in such early 

studies.  
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Arman Kilic et al. [2021] (26) employed an XGBoost model to predict the outcomes of Aortic Valve 

Replacement using entries from the STS National Database between 2007 and 2017. Some of the 

outcomes considered by the model were operative mortality, acute renal failure and deep sternal wound 

infection among others. The average observed-to-expected ratio of the model was 0.985. A study by Aixia 

Guo et al. [2021] (16) that employs an LSTM model to predict cardiovascular health trajectories using the 

Guideline Advantage (TGA) dataset (35) containing Electronic Health Record data from 70 outpatient 

clinics across the United States (US). They achieved an AUROC score as high as 0.97 for Body Mass 

Index (BMI). The study also identified deep sternal wound infection and renal failure as two of the major 

complications. Sundos Alabbadi et al. [2022] (30) used join point regression software on the National 

Inpatient Sample database (36) to conclude that there has been a significant decrease in FTR in 6,185,032 

elderly patients undergoing cardiac surgeries from 2000 to 2018. The decrease was due to targeted quality 

metrics and care bundles for complications such as pneumonia and gastrointestinal bleeding. Incidence 

and trends were adjusted in FTR for groups based on patient information. 

Our study is encouraged by studies like the ones mentioned above to introduce advanced ML techniques 

utilizing both static and intra-operative time-series data to develop a more accurate predictive model for 

FTR. The inclusion of intra-operative data makes sure that the model is more comprehensive than using 

data only from the STS database and reflective of critical intra-operative events that affect post operative 

outcomes. Since the dataset is limited, a technique had to be considered that captured complex, non-linear 

interactions in the data while preventing overfitting. Also, since we are working with intra-operative 

factors, we needed a technique that could work with time series data and chose Long Short-Term Memory 

(LSTM) networks. By employing a combination of fully connected neural networks (FCNN) and Long 

Short-Term Memory (LSTM) networks, our approach addresses the complexity of the data structures and 

captures the temporal dynamics essential for timely predictions. Deep learning provides a more 

sophisticated understanding of different variables and modalities. Our approach combines all target 

columns to predict the possibility of any adverse event among them. To make sure we got the best results, 
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we decided to use the most useful features by computing the feature importances using XGBoost for the 

static data and performed an extensive ablation study for the time series data. We achieved an average c-

index score of 0.92 by following this approach. 

We are focusing in identifying failure to rescue complications, which if intervened upon in the early post 

operative course may reduce the mortality rate after cardiothoracic surgery. Similarly, by providing a 

transparent methodology and rigorous performance evaluation, our research contributes to the ongoing 

efforts to enhance patient safety and quality of care in cardiac surgery settings. This work not only 

advances the field of surgical risk prediction but also sets a foundation for developing actionable insights 

that can be operationalized across various healthcare contexts. 

2 Methods 

2.1 Data Source 

The Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database (ACSD) (5) was utilized for this 

study, focusing on cases from Maine Medical Center over a period from September 2022 to April 2024. 

This database includes detailed time series intraoperative information for each patient. 1,470 patients 

were included in the dataset. All personal identifiers and private health information (PHI) were removed 

to protect patient confidentiality. Data were managed according to the ethical standards for medical 

research involving human subjects, ensuring the reproducibility and portability of our research across 

other institutions using similar datasets. 

2.2 Cohort 

The cohort for this study was defined to identify patients likely to develop one or more of eleven specific 

adverse events post-cardiac surgery, as endorsed by STS National Quality Forum (NQF) measures. These 

adverse events are mentioned in Table 1 below:  
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Target Name 

Positive 

Counts 

Post-Op-Aortic Intervention [6774: 

CAortReint] 

2 

Post-Op-ReOp for Valvular Dysfunction 

[6765: COpReVlv] 

4 

Post-Op-Deep Sternal [6700: 

DeepSternInf] 

5 

Post-Op-Unplanned Coronary Artery 

Intervention [6771: CReintMI] 

7 

Post-Op-ReOp Other Cardiac Reasons 

[6778: COpReOth] 

21 

Post-Op-Neuro-Stroke Perm [6810: 

CNStrokP] 

26 

Post-Op-Renal-Renal Failure [6870: 

CRenFail] 

40 

Post-Op-ReOp Bleeding/Tamponade 

[6755: COpReBld] 

47 

Status at Hospital Discharge [7007: 

DischMortStat] 

48 
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Target Name 

Positive 

Counts 

Mort-Status at 30 Days After Surgery 

(either discharged or in-hospital) [7001: 

Mt30Stat] 

52 

Post-Op-Pulm-Vent Prolonged [6835: 

CPVntLng] 

108 

Total Events 171 

Table 1 - Counts of target variables in the dataset.  

From the 1,470-patient dataset from the MMC STS registry, we identified 171 patients who developed at 

least one of the adverse events. This group formed our case set, as shown in Table 1. The control set 

comprised 171 randomly selected patients from the dataset who did not develop any of the adverse 

events. 

2.3 Traditional Risk Score Model 

In previous studies, traditional risk models such as those developed by Kurlansky et al. [2021] (9) utilized 

a select set of variables—prolonged ventilation, stroke, reoperation, and renal failure - to differentiate 

between failure to rescue (FTR) cases. Despite achieving a c-statistic of 0.81, the lack of additional 

performance metrics (sensitivity, specificity, PPV, NPV, and 95% CI) limits the comprehensive 

evaluation of these models' effectiveness. Further limitations are noted in the works of Shahian et al. 

[2018] (6) and O'Brien et al. [2018] (5), who used the STS Adult Cardiac Surgery Database to develop risk 

scores for various outcomes but did not fully disclose the functional forms of the risk estimators, nor did 

they include intraoperative information, which hampers replicability and thorough assessment. 
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2.4 Current Deep Learning Model 

We explored the integration of static and time-series data using a FCNN + LSTM network to capture 

dynamic changes in patient conditions. This model emphasizes the importance of dynamic data in 

predicting patient outcomes more accurately than traditional static models. 

The incorporation of multi-modal late fusion is crucial for enhancing the performance of our predictive 

model (2). By integrating static data from the Society of Thoracic Surgeons (STS) database with time-

series data from the operating room, our model leverages the strengths of both data types. This fusion 

approach allows for a more comprehensive understanding of patient conditions, leading to better 

predictive accuracy. 

Similarly, our FCNN + LSTM model benefits from the fusion of static and dynamic patient data, 

providing a more complete and accurate representation of patient conditions. This multi-modal approach 

is essential for optimizing the predictive capabilities of our model, ultimately leading to better clinical 

decision-making and outcomes. We also captured the results by using FCNN over the static data alone 

and the time series alone using LSTM. Additionally, from the mixed model of FCNN + LSTM (Figure 1) 

where we used both static and time series data, we performed an ablation study by removing each time 

series feature one at a time and recording the results, as seen in the sub - section 4.3 and detailed 

description in supplemental 8. This ablation study helped identify the most critical time-series features 

that contribute to the model's performance, highlighting the significance of each feature in predicting 
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patient outcomes.

 

Figure 1 - Architecture of Fully Connected and LSTM Networks 

 

3 Statistical Analysis 

We performed statistical analysis to compare demographic and clinical factors between the control cohort 

and cases cohort. The analysis was conducted using independent t-tests for continuous variables (Patient 

Age, Calculated BMI) to compare the means between the control and cases cohorts. Chi-square tests were 

used for categorical variables (Sex, Race/Ethnicity, ASCVD, Cardiovascular Disease, CAD, Heart 

Failure, Hypertension, Diabetes, Current Smokers) when expected frequencies were sufficiently large. 

Fisher's Exact Test was used for categorical variables when expected frequencies were small (less than 5). 

Table 2 presents the calculated p-values for each characteristic, indicating the significance of differences 

observed between the two cohorts. 

variable control cohort (N = 1299) Adverse cohort (N = 171) p -value 
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Patients    

Patient Age [mean, SD] 64.87 (10.93) 63.73 (12.16)  0.2061 

Sex [75: Gender] (Females) 

[count, %] 327 (25.17%) 57 (33.33%) 0.0285 

Race/ethnicity     

White [count, %] 1174 (90.38%) 30 (17.54%) <0.0001 

Black/African American 

[count, %] 8 (0.62%) 

2 (1.17%) 

 0.7389 

Asian [count, %] 8 (0.62%) 0 (0.00%) 0.6340 

Hispanic or Latino or Spanish 

Ethnicity [count, %] 10 (0.77%) 2 (1.17%) 1.0250 

Unknown [count, %] 99 (7.62%) 137 (80.12%) <0.0001 

ASCVD      

Cardiovascular Disease 

[count, %] 334 (25.71%) 52 (30.41%) 0.2226 

CAD [count, %] 188 (14.47%) 20 (11.70%) 0.3883 

Heart Failure [count, %] 416 (32.02%) 110 (64.33%) <0.0001 

Hypertension [count, %] 1018 (78.37%) 133 (77.78%) 0.9384 

Diabetes [count, %] 448 (34.49%) 54 (31.58%) 0.5039 

Calculated BMI [mean, SD] 29.35 (5.74) 28.09 (5.89) 0.0072  

Current Smokers [count, %] 230 (17.71%) 45 (26.32%) 0.0091 
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Table 2 - distributions of characteristics of patients 

4 Results: 

After creating the cohort of 171 patients with at least one of the adverse events and the control group of 

171 randomly selected patients that did not have any adverse events. The FCNN + LSTM model is 

validated with stratified five - fold cross validation and outperformed the best reported model for similar 

task by achieving a Mean AUC of 0.93, Mean Sensitivity of 0.84, Mean Specificity of 0.9, Mean PPV of 

0.89, Mean NPV of 0.85 for balanced classes as shown in the last row of Table 3. The graphical 

representation of the performance of each fold can be seen in Figure 2. 

 

 

Figure 2 - Area under the curve for the FC + LSTM model with balanced classes 

 

Fold AUC 95% CI Sensitivity Specificity PPV NPV 

1 0.7303 

0.6030 - 

0.8504 

0.5714 0.7353 0.6897 0.6250 
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2 0.9025 

0.8201 - 

0.9687 

0.8235 0.7714 0.7778 0.8182 

3 0.9983 

0.9913 - 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9896 

0.9614 - 

1.0000 

0.8824 1.0000 1.0000 0.8947 

5 1.0000 

1.0000 - 

1.0000 

1.0000 0.9706 0.9714 1.0000 

averag

e 

0.9210 ± 

0.1165 

0.8751 - 

0.9638 

0.8378, 95% 

CI: 

(0.69,0.98) 

0.8955, 95% 

CI: 

(0.78,1.01) 

0.8878, 95% 

CI: 

(0.76,1.01) 

0.8514, 95% 

CI: 

(0.73,0.98) 

 

Table 3 - performance of the model across all 5 folds in balanced dataset 

 

4.1 Results after using only static features with fc model on balanced data: 

 

The scores of individual folds while working with static features in balanced data are in Table 4 and the 

graphical representation is in Figure 3. 
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Figure 3 - Area under the curve for the FC model with balanced classes 

 

 

Fold AUC 95% CI Sensitivity Specificity PPV NPV 

1 0.8630 

0.7711 - 

0.9436 

0.8286 0.7353 0.7632 0.8065 

2 0.7471 

0.6204 - 

0.8530 

0.6471 0.7429 0.7097 0.6842 

3 0.7889 

0.6831 - 

0.8874 

0.6471 0.8235 0.7857 0.7000 

4 0.8391 

0.7368 - 

0.9264 

0.6765 0.9118 0.8846 0.7381 
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5 0.6920 

0.5597 - 

0.8187 

0.5588 0.7059 0.6552 0.6154 

average 

0.8183 ± 

0.0249 

0.67422 - 

0.88582 

0.7192, 95% 

CI: 

(0.65,0.78) 

0.7787, 95% 

CI: 

(0.71,0.85) 

0.7696, 95% 

CI: 

(0.73,0.82) 

0.7385, 95% 

CI: 

(0.71,0.77) 

 

Table 4 - performance of the FC model across all 5 folds in balanced dataset 

4.2 Results after using only time series features with the lstm model on balanced data: 

 

The scores of individual folds while working with time series features in balanced data are in Table 5 and 

the graphical representation is in Figure 4. 
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Figure 4 - Area under the curve for the LSTM model with balanced classes 

 

Fold AUC 95% CI Sensitivity Specificity PPV NPV 

1 0.7874 

0.6700 - 

0.8795 

0.5143 0.9118 0.8571 0.6458 

2 0.8798 

0.7895 - 

0.9561 

0.7647 0.8857 0.8667 0.7949 

3 0.9464 

0.8787 - 

0.9922 

0.7059 0.9706 0.9600 0.7674 

4 0.9066 

0.8300 - 

0.9729 

0.6471 0.9706 0.9565 0.7333 

5 0.9619 

0.9134 - 

0.9947 

0.9118 0.8529 0.8611 0.9062 

average 

0.7837 ± 

0.1281 

0.8163 − 

0.9591 

0.6160, 95% 

CI: 

(0.41,0.82) 

0.8250, 95% 

CI: 

(0.77,0.88) 

0.7695, 95% 

CI: 

(0.71,0.83) 

0.7026, 95% 

CI: 

(0.59,0.82) 

 

Table 5 - performance of the LSTM model across all 5 folds in balanced dataset 

 

4.3 Ablation study: 

In our ablation study analysis, we have removed one time series feature at a time to check the 

performance fluctuations in the model, different features exhibited varying impacts on key metrics such 
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as AUC, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). 

Starting with the AUC, the exclusion of the Pulse rate as a feature contributed to the most substantial 

increase, improving the AUC by 0.0301 or 3%. Conversely, the removal of all Pulmonary Artery (PA) 

values resulted in a notable decrease in AUC by 0.1991, a 22% reduction. The only other feature that 

decreased the AUC marginally by 0.0066 (1%), was the Electrocardiogram Heart Rate (ECG HR). 

Regarding sensitivity, the maximum increase was observed when ETCO2 (end-tidal carbon dioxide) was 

excluded, enhancing sensitivity by 0.0467 or 3%. On the other hand, removing all PA values led to the 

largest decrease in sensitivity by 0.1912 or 23%. Another notable decline was when the bypass feature 

was removed, which decreased sensitivity by 0.0287 or 3%. 

For specificity, the exclusion of Pulse rate again showed the most significant positive impact, increasing 

specificity by 0.0526 or 6%. In contrast, the removal of all Arterial (ART) values led to the largest 

decrease in specificity, a substantial reduction of 0.2637 or 29%. Only the removal of the feature ST 

generic V slightly decreased specificity by 0.0002 or less than 1%. 

In terms of PPV, like specificity, exclusion of Pulse rate provided the most significant boost, increasing 

PPV by 0.0539 or 6%. The removal of all ART values again caused the most significant decrease, 

lowering PPV by 0.2118 or 24%. The removal of ST generic V also slightly decreased PPV by 0.0021. 

Lastly, the NPV saw its greatest increase with the exclusion of ETCO2, which improved NPV by 0.0438 

or 5%. The largest decline in NPV occurred with the removal of all PA values, which decreased it by 

0.1909 or 22%. Additionally, removing the bypass feature led to a minor decrease in NPV by 0.0047 or 

1%. 

As observed from the above comparisons, we can say that there is always a decrease in scores when the 

entirety of the ABP, AO, PA or ART values are removed. Using just the time series or static variables 

with the LSTM and FC models respectively also always results in a reduction of scores. The model 

combing both the models gives us better results. 
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During the ablation study, some features when removed, resulted in better performance. The ablation 

study, as mentioned, only deals with time series features. Based on the results, the scores improve when 

the features Pulse Rate, ETC02, PA Sys are removed from the time series features. 

Results of ablation study can be found in Table 6 below and detailed description in supplemental 8. 

 

Model AUC 

Difference 

in AUC Sensitivity 

Difference 

in 

sensitivity Specificity 

Difference 

in 

specificity 

Full data/Baseline  0.921  0%  0.8378  0%  0.8955  0%  

Excluding Static Data 0.7837  -15%  0.616  -26%  0.825  -8%  

 Excluding all Time-

Series Data 

0.8183  -11%  0.7192  -14%  0.7787  -13%  

Excluding ECG HR 0.9144 -1% 0.8494 1% 0.9129 2% 

Excluding ABP 0.7777 -16% 0.681 -19% 0.7407 -17% 

Excluding AO 0.7575 -18% 0.6662 -20% 0.6985 -22% 

Excluding ART 0.7459 -19% 0.7299 -13% 0.6318 -29% 

Excluding PA 0.7219 -22% 0.6466 -23% 0.6973 -22% 

Excluding CVP 0.923 0% 0.8555 2% 0.942 5% 

Excluding PA Sys 0.9265 1% 0.8555 2% 0.9418 5% 

Excluding PA Dia 0.9282 1% 0.8613 3% 0.9012 1% 
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Excluding Sp02 0.9308 1% 0.8555 2% 0.9128 2% 

Excluding Blood 

Temp 

0.9339 1% 0.8671 3% 0.9187 3% 

Excluding Esoph 

Temp 

0.9292 1% 0.8556 2% 0.8955 0% 

Excluding xclamp 0.9299 1% 0.8555 2% 0.9071 1% 

Excluding Core Temp 0.9267 1% 0.8733 4% 0.936 5% 

Excluding PA Mean 0.9283 1% 0.8382 0% 0.9304 4% 

Excluding Naso Temp 0.9433 2% 0.8497 1% 0.9363 5% 

Excluding ETC02 0.9421 2% 0.8845 6% 0.9188 3% 

Excluding Pulse Rate 0.9511 3% 0.8671 3% 0.9481 6% 

Table 6 – Results of ablation study 

 

4.4 Results with only the most impactful variables from the ablation study: 

As noticed in the ablation study above, certain variables, namely AO, ABP, PA, ART, and ECG HR, 

were found to be important as their removal reduced the model's overall performance. We tested a model 

incorporating only these few variables along with all the other static variables using the same FC + LSTM 

architecture. The results were quite impressive; the average AUC across all the Folds obtained from this 

model was 0.9392 ± 0.0848, while the average AUC across all the folds from the model with all the 

variables was 0.9210 ± 0.1165, the detailed results can be seen in the Figure 5 and Table 7 below. 
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Figure 5 - Area under the curve for the FC + LSTM model with only impactful time series features 

 

Metric Value 

Mean AUC 0.9392 ± 0.0848 

Mean Sensitivity 0.8715, 95% CI: (0.793, 0.950) 

Mean Specificity 0.8959, 95% CI: (0.772, 1.019) 

Mean PPV 0.9086, 95% CI: (0.811, 1.006) 

Mean NPV 0.8710, 95% CI: (0.786, 0.956) 

Table 7 - Results for FC + LSTM model with only impactful time series features 

 

We tried to pull the feature importances using the static variables through XGBoost model. The top 20 

static variables that most contributed to outcomes are stated in the Figure 6 while their absolute SHAP 

values are represented in the Figure 7. We had an initial assumption that ‘sex’ of the patient would also be 
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among the most important variables contributing for the prediction, it is found that ‘sex’ is the 37th among 

the feature importances. 

 

Figure 6 - Top 20 most predictive features in static variables according to XGBoost 
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Figure 7 - Absolute SHAP Values for Top 20 Predictive Features in the XGBoost Model 

 

SHAP values are used to understand how each feature affects a model. An importance is attached to each 

feature and the magnitude of this importance value indicates the intensity of its effect on the model. Each 

dot in the above plot represents a row in the dataset. 

The colors indicate the high and low values of the features. Categorical features are converted into 

dummy variables through one-hot encoding. Therefore, ones in these binary dummy features represent 

high values in the corresponding categorical variables. The magnitude of the positive or negative impact 

of each feature is determined by the position of the dots relative to zero, with dots on one side indicating a 

positive impact and dots on the other side indicating a negative impact.  

To understand this better we can consider the example of the “IABP-When Inserted 3730” feature. It can 

very clearly be seen that the low values of this feature have a tangible positive impact on the model while 

the high values have a comparatively smaller negative impact. The same understanding is followed by all 

other features. 
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5 Discussions 

In this investigation, we employed a hybrid FC + LSTM model to predict adverse events in patients 

undergoing cardiac surgery, utilizing a dataset of 1,470 patients from the Society of Thoracic Surgeons 

(STS) Adult Cardiac Surgery Database (ACSD) at Maine Medical Center between September 2022 and 

April 2024 (5). This model uniquely integrates static patient data, such as age and gender, processed 

through Fully Connected (FC) layers, with dynamic, time-series intraoperative data such as ABP Dia, 

ABP Mean, ABP Sys, CVP, and Pulse Rate processed via Long Short-Term Memory (LSTM) layers. The 

outputs from both data streams are then concatenated to perform binary classification. Validated using 

Fivefold cross-validation, our model demonstrated exceptional performance, notably achieving a Mean 

AUC of 0.93. 

The advantage of our approach is further underscored by its robust performance across both balanced and 

imbalanced datasets, achieving high specificity and NPV in scenarios typical in clinical settings where 

class distribution can often be skewed. These results not only highlight the model's precision but also its 

adaptability, making it highly suitable for real-world clinical applications. Our FC + LSTM model thus 

marks a significant advancement over traditional models, providing a deeper, more accurate assessment 

of patient risk profiles which could facilitate more timely and targeted interventions in cardiothoracic 

surgery. Future studies will focus on expanding the application of this model to other types of surgical 

data and further validating its effectiveness and generalizability across different healthcare environments. 

We achieved an average AUC of around 0.92 using our FC + LSTM model. Though Kurlansky et al. 

[2021] (9) used a different dataset, their purpose was similar, and by using the STS and time-series data, 

we obtained better results. In our previous random forest model, we used only static variables and 

achieved reasonable results. However, with the inclusion of time-series variables, we achieved even better 

results. 
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Before incorporating the time-series data, we created models using XGBoost, random forest, and decision 

trees with static data alone. The results of the four models are represented in Table 8, these results prove 

that the approach of using deep learning is better than traditional ML algorithms. 

 

Model AUC Sensitivity Specificity PPV 

(Precision) 

NPV 95% CI for 

AUC 

Random 

Forest 

0.79 0.72 0.8 0.79 0.73 [0.70, 0.88] 

Gradient 

Boosting 

0.73 0.74 0.64 0.68 0.7 [0.63, 0.83] 

XGBoost 0.69 0.68 0.68 0.69 0.67 [0.58, 0.79] 

Decision 

Tree 

0.69 0.6 0.72 0.7 0.63 [0.59, 0.79] 

Table 8 – Results of ML models with static data 

 

6 Limitations 

This model is based on a significantly small sample size of only 171 patients in the cases cohort. The 

previous models have been built with larger datasets. The model’s performance might be further 

enhanced with the addition of more patients as well as more variables such as intraoperative medication 

administration, intravenous fluid administration, blood product administration and urine output. 

 

7 Conclusions and future work 

We built an FC + LSTM model using the static and time series data. The static data has been processed 

with the FC neural network while the Time Series data has been processed with the LSTM neural 

network. We then concatenated both the layers and made a binary classifier with sigmoid activation 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.24312980doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24312980
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

function. We created a prediction model that out-performed our previous work that leveraged random 

forest with static variables, and existing logistic regression prediction models in cardiac surgery as our 

prediction model had a mean AUC of 0.93 for multiple adverse events in all the folds of data. We also 

observed that the model is robust to both classes balanced data and class imbalance data. Furthermore, the 

dynamic design of this FC + LSTM model is designed to improve with time and more data. This work 

combining the static data with time-evolving data in dynamic settings such as the operating room or 

intensive care units will drive real-time feedback to the care team with potential improvement in failure to 

rescue rates. In the future, as done by Ghanzouri et al. [2022] (11) we will add visualization to reflect the 

risk score for the care team to interpret in real time. We can then perform a user study similar to Ho et al. 

[2022] (12) to collect feedback from the care team on the efficacy of the risk score to help guide timely 

patient care. 

This current approach combines 11 failures to rescue outcomes into a single target column which predicts 

if a cardiovascular event takes place post operatively or not. With complete datasets available for more 

patients, there is scope for creating a model which could predict individual failure to rescue outcomes. 

Future work could explore the integration of digital twin models to enhance our predictive capabilities. 

By incorporating detailed fluid-structure interaction models(39), we could account for patient-specific 

arterial compliance and pulse transit time(37). This approach could provide more accurate hemodynamic 

parameters, potentially improving our ability to predict adverse events. Additionally, coupling 3D and 1D 

models(38) could offer a more comprehensive view of the cardiovascular system, allowing for better 

representation of complex structures like aneurysms or the venous system. These advancements could 

lead to more personalized risk assessments and treatment strategies for cardiothoracic surgery patients. 
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Supplement 1    Static variables used to construct risk scores for these outcomes identified by 

O’Brien et al [2018] (6). ACE = angiotensin-converting enzyme; ADP = adenosine diphosphate; ARB = 

angiotensin-receptor blocker; AVR = aortic valve replacement; CABG = coronary artery bypass grafting 

surgery; CAD = coronary artery disease; CBA = catheterization-based assist device; CVA = 

cerebrovascular accident; CVD = cardiovascular disease; ECMO = extracorporeal membrane 

oxygenation; IABP = intra- aortic balloon pump; ICD = implantable cardioverter-defibrillator; LAD = left 

anterior descending artery; PAD = peripheral arterial disease; PCI = percutaneous coronary intervention; 

TIA = transient ischemic attack. 

 

Operation type 

Age 

Ejection fraction 

Illicit drug use 

Alcohol consumption (drinks per week) 

Recent pneumonia 
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Body mass index 

Body surface area 

Sex 

Renal function (dialysis/creatinine) 

Hematocrit 

White blood cell count 

Platelet count 

ADP receptor inhibitor usage/timing of  

       discontinuation 

Hypertension 

Immunosuppressive therapy within 30 days 

Steroids within 24 hours 

Glycoprotein IIb/IIIa inhibitor within 24 hours 

Inotropes within 48 hours 

Preoperative IABP 

Shock/ECMO/CBA 

PAD 

Left main disease 

Proximal LAD 

Aortic root abscess in AVR/AVR+CABG 

Mitral stenosis 

Aortic stenosis 

Mitral insufficiency 

Tricuspid insufficiency 

Aortic insufficiency 

Mediastinal radiation 

Cancer diagnosis within 5 years 

Diabetes/diabetes control method 

Number of diseased vessels 

Myocardial infarction history/timing 

Cardiac presentation on admission 

Race/ethnicity 

Status 

ACE/ARB inhibitor within 48 hours in non-elective 

operation 

Heart failure class and timing 

Recent smoker/timing 

Family history of CAD 

Home oxygen 

Sleep apnea 

Liver disease 

Unresponsive neurologic status 

Syncope 

Previous CABG 

Previous aortic valve procedure 

Previous mitral valve procedure 

Previous transcatheter valve replacement/percutaneous 

valve repair 

Previous other valve procedure 

Number of previous cardiovascular surgeries 
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Arrhythmia and type 

Endocarditis 

Chronic lung disease 

CVD/CVA/TIA 

Carotid stenosis 

Previous carotid surgery 

Previous ICD 

PCI history/timing 

Previous any other cardiac intervention 

Payer/insurance type 

Tricuspid valve repair performed concomitantly 

Time trend (surgery date) 

 

Supplement 2    Static variables used in random forest algorithm 

 

Patient Age 

Pre Op Ejection Fraction 

Body mass index 

Height (cm) 

Weight (kg) 

Sex 

Pre Op Dialysis 

Last Creatinine level 

Pre Op Hematocrit 

Pre Op White blood cell count 

Pre Op Platelet count 

Pre Op Hypertension 

Immunosuppressive therapy w/in 30 days of procedure 

Steroids within 24 hours of procedure 

Glycoprotein IIb/IIIa inhibitor w/in 24 hours of procedure 

Pre Op Transient ischemic attack 

Carotid stenosis 

Illicit drug use 

Alcohol Use (drinks per week) 

Recent pneumonia 

Pre Op mediastinal radiation 

Cancer diagnosis within 5 years 

Pre Op Diabetes 

diabetes control method 

Number of diseased vessels 

Prior myocardial infarction 

Prior myocardial infarction timing 

Cardiac presentation on admission 

Race Documented 

Patient Race 
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Inotropes within 48 hours of procedure 

IABP Insertion Timing 

Pre Op Cardiogenic shock 

ECMO Insertion Timing 

Temp assist Device Type (Open or Catheter) 

Catheter based assist device insertion timing 

Peripheral Arterial Disease 

Left main coronary artery disease 

Proximal LAD percent stenosis 

Aortic valve disease etiology 

Mitral valve stenosis 

Aortic valve stenosis 

Pre Op Mitral insufficiency grade 

Pre Op Tricuspid insufficiency grade 

Pre Op Aortic insufficiency grade 

Arrhythmia type 

Pre Op Endocarditis 

Pre Op Chronic lung disease 

Pre Op Cerebrovascular disease 

CVA 

Hispanic, Latino or Spanish ethnicity 

Operative Status 

Heart failure history 

Heart failure timing 

Heart failure type 

NYHA classification 

Pre Op Tobacco use 

Family history of Premature CAD 

Home oxygen use 

Pre Op Sleep apnea 

Pre Op Liver disease 

Pre Op Unresponsive neurologic status 

Pre Op Syncope 

Previous CABG procedure 

Previous valve procedure 

Previous valve procedure type 

Previous other cardiac procedure type 

Primary payer/insurance type 

Tricuspid valve repair performed 

Surgery date 

 

Supplement 4 Static variables used in the FC + LSTM Model 
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Column Name Column Name 

Patient Age [70: Age] Immunocompromised Present [492: ImmSupp] 

Hemo Data-EF [1545: HDEF] Meds-Steroids Within 24 Hours [1143: MedSter] 

Calculated BMI [336: CalculatedBMI] 

Meds-Glycoprotein IIb/IIIa Inhibitor Within 24 

Hours [1073: MedGP] 

Height (cm) [330: HeightCm] 

Meds-Inotropes Within 48 Hours [1130: 

MedInotr] 

Weight (kg) [335: WeightKg] IABP-When Inserted [3730: IABPWhen] 

Sex [75: Gender] Cardiogenic Shock [930: CarShock] 

RF-Renal Fail-Dialysis [375: Dialysis] ECMO Initiated [3780: ECMOWhen] 

Last Creatinine Level [605: CreatLst] 

Temporary Assist Device Used - Position [3787: 

TempAssistDevPos] 

Hematocrit [575: Hct] 

Temporary Assist Device When Inserted [3789: 

CathBasAssistWhen] 

WBC Count [565: WBC] Peripheral Artery Disease [505: PVD] 

Platelet Count [580: Platelets] 

Left Main Stenosis >= 50% Known [1174: 

StenLeftMain] 

RF-Hypertension [380: Hypertn] 

LAD Distribution Stenosis Percentage [1179: 

LADDistStenPercent] 

VD-Aortic Valve Disease Primary Etiology [1646: VD-Stenosis-Mitral [1690: VDStenM] 
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VDAoPrimEt] 

VD-Stenosis-Aortic [1600: VDStenA] Mitral Valve Regurgitation [1679: MVRegurg] 

Tricuspid Valve Regurgitation [1774: 

TricuspidVRegurg] 

Aortic Valve Regurgitation [1585: 

AorticValveRegurg] 

Cardiac Arrhythmia [945: Arrhythmia] RF-Endocarditis [385: InfEndo] 

RF-Chronic Lung Disease [405: ChrLungD] Cerebrovascular Disease [525: CVD] 

Prior CVA [530: CVA] CVD TIA [540: CVDTIA] 

CVD Carotid Stenosis [545: CVDCarSten] 

RF-Illicit Drug Use within One Year [470: 

IVDrugAb] 

RF-Intravenous Drug Use within One Year [471: 

IVDrugUse1Yr] 

RF-Drug use within 30 days of procedure? [472: 

DrugUse30D] 

RF-Alcohol Use [480: Alcohol] RF-Pneumonia [465: Pneumonia] 

Mediastinal Radiation [495: MediastRad] Cancer Within 5 Years [500: Cancer] 

RF-Diabetes [360: Diabetes] RF-Diabetes-Control [365: DiabCtrl] 

Number of Diseased Vessels [1170: NumDisV] Prior MI [885: PrevMI] 

MI-When [890: MIWhen] 

Primary Coronary Symptom for Surgery [895: 

CardSympTimeOfAdm] 

Race Documented [150: RaceDocumented] 

Hispanic or Latino or Spanish Ethnicity [185: 

Ethnicity] 
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Status [1975: Status] Heart Failure [911: HeartFail] 

Heart Failure Timing [912: HeartFailTmg] Heart Failure Type [913: HeartFailType] 

Classification-NYHA [915: ClassNYH] RF-Tobacco Use [400: TobaccoUse] 

RF-Family History of Premature CAD [355: 

FHCAD] 

RF-Home Oxygen [450: HmO2] 

RF-Sleep Apnea [460: SlpApn] RF-Liver Disease [485: LiverDis] 

Unresponsive State [512: UnrespStat] Syncope [515: Syncope] 

Prev CAB [670: PrCAB] Prev Valve [675: PrValve] 

Prev Valve Procedure 1 [695: PrValveProc1] Prev Valve Procedure 2 [700: PrValveProc2] 

Prev Valve Procedure 3 [705: PrValveProc3] Prev Valve Procedure 4 [710: PrValveProc4] 

Prev Valve Procedure 5 [715: PrValveProc5] 

Previous Other Cardiac Intervention 1 [810: 

POCInt1] 

Previous Other Cardiac Intervention 2 [815: 

POCInt2] 

Previous Other Cardiac Intervention 3 [820: 

POCInt3] 

Previous Other Cardiac Intervention 4 [825: 

POCInt4] 

Previous Other Cardiac Intervention 5 [830: 

POCInt5] 

Previous Other Cardiac Intervention 6 [835: 

POCInt6] 

Previous Other Cardiac Intervention 7 [840: 

POCInt7] 

Primary Payor [291: PayorPrim] 

VS - Tricuspid Valve Procedure Performed - Type 

[3636: VSTrPr] 
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Supplement 5 Time Series variables used in the FC + LSTM Model 

Column Name Column Name 

ABP Dia ART Dia 

ABP Mean ART Mean 

ABP Sys ART Sys 

AO Dia CVP 

AO Mean ETCO2 

AO Sys Core Temp 

ECG HR Esoph Temp 

Naso Temp PA Dia 

PA Mean PA Sys 

Pulse Rate SpO2 

ST generic II ST generic V 

Blood Temp bypass 

xclamp 
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Supplement 6 Top 20 static variables with rank of importance for XGBoost 

Feature Rank Column Name 

1 Hematocrit [575: Hct] 

2 Last Creatinine Level [605: CreatLst] 

3 WBC Count [565: WBC] 

4 Platelet Count [580: Platelets] 

5 Calculated BMI [336: CalculatedBMI] 

6 Patient Age [70: Age] 

7 Hemo Data-EF [1545: HDEF] 

8 Weight (kg) [335: WeightKg] 

9 Height (cm) [330: HeightCm] 

10 IABP-When Inserted [3730: IABPWhen]_Preop 

11 

Aortic Valve Regurgitation [1585: 

AorticValveRegurg] 

12 RF-Chronic Lung Disease [405: ChrLungD]_No 

13 Status [1975: Status]_Emergent 

14 

VD-Aortic Valve Disease Primary Etiology [1646: 

VDAoPrimEt]_Degenerative- Calcified 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.24312980doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24312980
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

15 Classification-NYHA [915: ClassNYH]_Class II 

16 RF-Pneumonia [465: Pneumonia]_No 

17 

Classification-NYHA [915: ClassNYH]_Not 

documented 

18 

Cardiogenic Shock [930: CarShock]_Yes - At the 

time of the procedure 

19 

RF-Tobacco Use [400: TobaccoUse]_Former 

smoker 

20 Prev CAB [670: PrCAB] 

 

Supplement 7 Additional static variables with scores 

Patient Age [70: Age] 64.87 (10.93) 63.73 (12.16) 0.2073 

Calculated BMI [336: 

CalculatedBMI] 29.35 (5.74) 28.09 (5.89) 0.0072 

Height (cm) [330: 

HeightCm] 172.50 (9.55) 171.63 (10.37) 0.2688 

Weight (kg) [335: 

WeightKg] 87.63 (19.11) 83.06 (19.06) 0.0033 

Last Creatinine Level [605: 

CreatLst] 1.02 (0.50) 1.26 (0.78) 0 

WBC Count [565: WBC] 7.73 (2.49) 9.39 (3.69) 0 
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Platelet Count [580: 

Platelets] 223016.82 (65340.55) 220991.59 (87087.22) 0.7152 

Hematocrit [575: Hct] 39.79 (5.06) 36.48 (6.11) 0 

Hemo Data-EF [1545: 

HDEF] 55.43 (10.25) 48.79 (15.47) 0 

Sex [75: Gender]       

'Male' '972 (74.83%)' 114 (66.67%)' 0.022(0.5024) 

'Female' '327 (25.17%)' '57 (33.33%)' 0.022(0.5024) 

RF-Hypertension [380: 

Hypertn]  1018 (78.37%)  133 (77.78%)  0.86(1.0) 

Cardiogenic Shock [930: 

CarShock]  22 (1.69%)  32 (18.71%)  1.0 

Hispanic or Latino or 

Spanish Ethnicity [185: 

Ethnicity] 9 (0.69%) 3 (1.75%) 1.0 

IABP-When Inserted 

[3730: IABPWhen]s    

Intraop 33 (2.54%) 27 (15.79%) 1.0 

Postop 2 (0.15%) 12 (7.02%) 1.0 

Preop 1264 (97.31%) 132 (77.19%) 0.6191 
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VD-Aortic Valve Disease 

Primary Etiology [1646: 

VDAoPrimEt]    

Bicuspid valve disease 

 100 (7.70%) 13 (7.60%) 0.4448 

Degenerative- Calcified 1011 (77.83%) 113 (66.08%) 0.2419 

Degenerative- Leaflet 

prolapse with or without 

annular dilatation 4 (0.31%) 0 1.0 

Endocarditis, native valve 

with root abscess 1 (0.08%) 1 (0.58%) 1.0 

Endocarditis, native valve 

without root abscess 16 (1.23%) 5 (2.92%) 1.0 

Endocarditis, prosthetic 

valve with root abscess 1 (0.08%) 3 (1.75%) 1.0 

Endocarditis, prosthetic 

valve without root abscess 6 (0.46%) 1 (0.58%) 1.0 

LV Outflow Tract 

Pathology, HOCM 2 (0.15%) 0 1.0 

LV Outflow Tract 

Pathology, Sub-aortic 

membrane 1 (0.08%) 0 1.0 
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Mixed Etiology 1 (0.08%) 0 1.0 

Primary Aortic Disease, 

Aortic Dissection 12 (0.92%) 8 (4.68%) 1.0 

Primary Aortic Disease, 

Atherosclerotic Aneurysm 4 (0.31%) 0 1.0 

Primary Aortic Disease, 

Loeys-Dietz Syndrome 0 1 (0.58%) 1.0 

Primary Aortic Disease, 

Marfan Syndrome 2 (0.15%) 0 1.0 

Quadricuspid valve disease 0 1 (0.58%) 1.0 

Reoperation - Failure of 

previous AV repair or 

replacement 6 (0.46%) 3 (1.75%) 1.0 

Rheumatic 1 (0.08%) 1 (0.58%) 1.0 

Heart Failure [911: 

HeartFail] 416 (32.02%) 110 (64.33%) 0.0858 

Aortic Valve 

Regurgitation [1585: 

AorticValveRegurg] 524 (40.34%) 91 (53.22%) 0.3573 

RF-Chronic Lung Disease 

[405: ChrLungD]    

Mild 222 (17.09%) 35 (20.47%) 0.7552 
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Moderate 53 (4.08%) 12 (7.02%) 1.0 

Severe 30 (2.31%) 11 (6.43%) 0.8491 

Status [1975: Status]    

Elective 610 (46.96%) 42 (24.56%) 0.2322 

Emergent 22 (1.69%) 19 (11.11%) 1.0 

Emergent Salvage 0 4 (2.34%) 1.0 

Urgent 667 (51.35%) 106 (61.99%) 1.0 

Classification-NYHA 

[915: ClassNYH]    

Class I 17 (1.31%) 0 1.0 

Class II 113 (8.70%) 26 (15.20%) 0.0088 

Class III 59 (4.54%) 21 (12.28%) 1.0 

Cass IV 18 (1.39%) 18 (10.53%) 1.0 

RF-Pneumonia [465: 

Pneumonia]    

Recent 38 (2.93%) 15 (8.77%) 0.7260 

Remote 171 (13.16%) 29 (16.96%) 0.5158 

RF-Tobacco Use [400: 

TobaccoUse]    

Current every day smoker 209 (16.09%) 42 (24.56%) 1.0 

Current some day smoker 21 (1.62%) 3 (1.75%) 1.0 
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Former smoker 518 (39.88%) 68 (39.77%) 0.6881 

Prev CAB [670: PrCAB]    

0.041215 904 (69.59%) 105 (61.40%) 0.7092 

1.0 10 (0.77%) 9 (5.26%) 1.0 

RF-Alcohol Use [480: 

Alcohol]    

2-7 drinks/week 841 (64.74%) 123 (71.93%) 0.8381 

<= 1 drink/week 223 (17.17%) 24 (14.04%) 0.0424 

>= 8 drinks/week 220 (16.94%) 19 (11.11%) 0.7386 

Cardiac Arrhythmia 

[945: Arrhythmia] 321 (24.71%) 69 (40.35%) 0.0908 

Heart Failure Timing 

[912: HeartFailTmg]    

Acute 103 (7.93%) 39 (22.81%) 0.4615 

Chronic 1136 (87.45%) 98 (57.31%) 1.0 

Both 60 (4.62%) 34 (19.88%) 0.7081 

Supplement 8 ablation study results 

Results after removing column “ABP Dia”: 
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Fold 

AU

C 

95% 

CI Sensitivity Specificity PPV NPV 

1 

0.78

49 

0.66

24 - 

0.88

57 

0.6286 0.8529 0.8148 0.6905 

2 

0.92

35 

0.84

96 - 

0.97

52 

0.8824 0.7714 0.7895 0.8710 

3 

0.99

39 

0.97

66 - 

0.9412 1.0000 1.0000 0.9444 
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 1.00

00 

4 

0.99

57 

0.98

44 - 

1.00

00 

0.9412 1.0000 1.0000 0.9444 

5 

1.00

00 

1.00

00 - 

1.00

00 

1.0000 1.0000 1.0000 1.0000 

avera

ge 

0.93

55 ± 

0.09

69 

0.89

46 − 

0.97

22 

0.8787 

95% CI: 

(0.750807847487

7022, 

1.0065030768820

458) 

0.9249 

95% CI: 

(0.831234038736

2035, 

1.0185138604234

603) 

0.9209 

95% CI: 

(0.825544826506

0731, 

1.0161705731040

631) 

0.8901 

95% CI: 

(0.784337133846

7693, 

0.9957959946734

56) 

 

Results after removing column “ABP Mean”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7345 

0.6093 

- 

0.8476 

0.5714 0.7941 0.7407 0.6429 

2 0.9084 

0.8316 

- 

0.9706 

0.8529 0.8286 0.8286 0.8529 

3 

0.9965 

 

0.9870 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9931 

0.9775 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 
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5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9237 

± 

0.1147 

 

0.8496 

95% CI: 

(0.7057, 0.9934) 

0.9245 

95% CI: 

(0.8333, 

1.0157) 

0.9139 

95% CI: 

(0.8069, 

1.0208) 

0.8667 

95% CI: 

(0.7479, 

0.9856) 

 

 

Results after removing column “ABP Sys”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7782 

0.6664 

- 

0.5143 0.8235 0.7500 0.6222 
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0.8908 

2 0.9235 

0.8563 

- 

0.9731 

0.8824 0.7714 0.7895 0.8710 

3 0.9853 

0.9515 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 

0.9948 

 

0.9818 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 0.9706 0.9714 1.0000 

average 

0.9334 

± 

0.0953 

0.8912 

- 

0.9728 

0.8499 

95% CI: 

(0.6811, 1.0187) 

0.9131 

95% CI: 

(0.8186, 1.0076) 

0.9022 

95% CI: 

(0.7950, 

1.0094) 

0.8713 

95% CI: 

(0.7426, 

0.9999) 

 

Results after removing column “AO Dia”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7697 

0.6532 

- 

0.8765 

0.5714 0.8824 0.8333 0.6667 

2 0.9235 

0.8421 

- 

0.9819 

0.9118 0.8571 0.8611 0.9091 

3 0.9983 

0.9928 

- 

1.0000 

0.8824 1.0000 1.0000 0.8947 

4 0.9922 

0.9768 

- 

0.9118 0.9706 0.9688 0.9167 
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1.0000 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9338 

± 

0.1015 

0.8929 

- 

0.9717 

0.8555 

95% CI: 

(0.7110, 0.9999) 

0.9420 

95% CI: 

(0.8827, 1.0013) 

0.9326 

95% CI: 

(0.8629, 

1.0024) 

0.8774 

95% CI: 

(0.7681, 

0.9868) 

 

Results after removing column “AO Mean”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7857 

0.6757 

- 

0.5714 0.8824 0.8333 0.6667 
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0.8836 

2 0.8975 

0.8268 

- 

0.9593 

0.8529 0.7714 0.7838 0.8438 

3 0.9939 

0.9792 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

4 0.9922 

0.9732 

- 

1.0000 

0.9412 0.9706 0.9697 0.9429 

5 0.9983 

0.9913 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

average 

0.9305 

± 

0.0951 

0.8892 

- 

0.9686 

0.8613 

95% CI: 

(0.7131, 1.0096) 

0.9249 

95% CI: 

(0.8386, 

1.0111) 

0.9174 

95% CI: 

(0.8283, 

1.0064) 

0.8792 

95% CI: 

(0.7654, 

0.9931) 

 

Results after removing column “AO Sys”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7899 

0.6756 

- 

0.8883 

0.5143 0.8529 0.7826 0.6304 

2 0.9202 

0.8590 

- 

0.9727 

0.8235 0.8286 0.8235 0.8286 

3 0.9983 

0.9920 

- 

1.0000 

0.9706 0.9412 0.9429 0.9697 

4 0.9888 

0.9703 

- 

1.0000 

0.8824 1.0000 1.0000 0.8947 
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5 0.9974 

0.9876 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

average 

0.9360 

± 

0.0926 

0.8969 

- 

0.9722 

0.8323 

95% CI: 

(0.6671, 0.9974) 

0.9245 

95% CI: 

(0.8539, 0.9952) 

0.9098 

95% CI: 

(0.8211, 

0.9985) 

0.8590 

95% CI: 

(0.7355, 

0.9824) 

 

Results after removing column “ART Dia”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7597 

0.6409 

- 

0.8681 

0.6000 0.8235 0.7778 0.6667 
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2 0.9118 

0.8350 

- 

0.9739 

0.8235 0.8000 0.8000 0.8235 

3 0.9888 

0.9611 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9965 

0.9866 

- 

1.0000 

1.0000 0.9118 0.9189 1.0000 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9282 

± 

0.1046 

0.8847 

- 

0.9684 

0.8671 

95% CI: 

(0.7213, 1.0128) 

0.9071 

95% CI: 

(0.8242, 0.9899) 

0.8993 

95% CI: 

(0.8061, 

0.9926) 

0.8818 

95% CI: 

(0.7586, 

1.0050) 

 

Results after removing column “ART Mean”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7672 

0.6467 

- 

0.8709 

0.5429 0.8235 0.7600 0.6364 

2 0.9101 

0.8227 

- 

0.9691 

0.8529 0.7429 0.7632 0.8387 

3 1.0000 

1.0000 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9827 

0.9488 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 
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5 0.9991 

0.9948 

- 

1.0000 

1.0000 0.9412 0.9444 1.0000 

average 

0.9275 

± 

0.1034 

0.8826 

- 

0.968 

0.8439 

95% CI: 

(0.6894, 0.9984) 

0.9015 

95% CI: 

(0.8014, 1.0017) 

0.8935 

95% CI: 

(0.7861, 

1.0009) 

0.8626 

95% CI: 

(0.7409, 

0.9842) 

 

Results after removing column “ART Sys”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7613 

0.6469 

- 

0.8784 

0.5714 0.7647 0.7143 0.6341 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.24312980doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24312980
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

2 0.9202 

0.8378 

- 

0.9755 

0.8235 0.8571 0.8485 0.8333 

3 0.9957 

0.9834 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9957 

0.9844 

- 

1.0000 

0.9412 0.9706 0.9697 0.9429 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 0.9706 0.9714 1.0000 

average 

0.9320 

± 

0.1035 

0.8905 

- 

0.9708 

0.8496 

95% CI: 

(0.7023, 0.9969) 

0.9126 

95% CI: 

(0.8257, 0.9995) 

0.9008 

95% CI: 

(0.7961, 

1.0055) 

0.8659 

95% CI: 

(0.7407, 

0.9909) 

 

Results after removing column “CVP”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7277 

0.6019 

- 

0.8446 

0.5714 0.8529 0.8000 0.6591 

2 0.9168 

0.8487 

- 

0.9724 

0.8235 0.8571 0.8485 0.8333 

3 0.9939 

0.9766 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

4 0.9931 

0.9754 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 
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5 0.9991 

0.9948 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

average 

0.9230 

± 

0.1154 

0.8795 

- 

0.9634 

0.8555 

95% CI: 

(0.7065, 1.0044) 

0.9420 

95% CI: 

(0.8724, 1.0116) 

0.9297 

95% CI: 

(0.8439, 

1.0154) 

0.8759 

95% CI: 

(0.7585, 

0.9933) 

 

Results after removing column “ETC02”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.8185 

0.7100 

- 

0.9160 

0.6286 0.8235 0.7857 0.6829 
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2 0.9126 

0.8260 

- 

0.9706 

0.8529 0.8000 0.8056 0.8485 

3 0.9991 

0.9948 

- 

1.0000 

1.0000 0.9706 0.9714 1.0000 

4 0.9965 

0.9877 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9421 

± 

0.0867 

0.9037 

- 

0.9773 

0.8845 

95% CI: 

(0.7485, 1.0206) 

0.9188 

95% CI: 

(0.8322, 1.0054) 

0.9125 

95% CI: 

(0.8182, 

1.0068) 

0.8952 

95% CI: 

(0.7779, 

1.0125) 

 

Results after removing column “Core Temp”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7571 

0.6325 

- 

0.8638 

0.5429 0.8235 0.7600 0.6364 

2 0.9269 

0.8527 

- 

0.9807 

0.9118 0.8857 0.8857 0.9118 

3 0.9844 

0.9464 

- 

1.0000 

0.9706 0.9706 0.9706 0.9706 

4 0.9888 

0.9671 

- 

0.9412 1.0000 1.0000 0.9444 
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1.0000 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9267 

± 

0.1045 

0.8797 

- 

0.9689 

0.8733 

95% CI: 

(0.7088, 1.0377) 

0.9360 

95% CI: 

(0.8673, 1.0047) 

0.9233 

95% CI: 

(0.8334, 

1.0132) 

0.8926 

95% CI: 

(0.7639, 

1.0214) 

 

Results after removing column “ECG HR”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.6899 0.5453 0.6000 0.7647 0.7241 0.6500 
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- 

0.8159 

2 0.9218 

0.8483 

- 

0.9750 

0.8529 0.8000 0.8056 0.8485 

3 0.9948 

0.9792 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9870 

0.9583 

- 

1.0000 

0.8824 1.0000 1.0000 0.8947 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9144 

± 

0.1314 

0.8662 

- 

0.9582 

0.8494 

95% CI: 

(0.7180, 0.9808) 

0.9129 

95% CI: 

(0.8079, 1.0180) 

0.9059 

95% CI: 

(0.7903, 

1.0216) 

0.8624 

95% CI: 

(0.7477, 

0.9771) 

 

Results after removing column “Esoph Temp”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7521 

0.6285 

- 

0.8632 

0.5429 0.7941 0.7308 0.6279 

2 0.9311 

0.8663 

- 

0.9782 

0.8824 0.7714 0.7895 0.8710 

3 0.9948 

0.9826 

- 

1.0000 

0.8824 1.0000 1.0000 0.8947 

4 0.9853 

0.9558 

- 

1.0000 

0.9706 0.9412 0.9429 0.9697 

5 1.0000 1.0000 1.0000 0.9706 0.9714 1.0000 
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- 

1.0000 

average 

0.9292 

± 

0.1060 

0.8866 

- 

0.9683 

0.8556 

95% CI: 

(0.6956, 1.0157) 

0.8955 

95% CI: 

(0.8032, 0.9877) 

0.8869 

95% CI: 

(0.7823, 

0.9915) 

0.8727 

95% CI: 

(0.7441, 

1.0012) 

 

Results after removing column “Naso Temp”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.8168 

0.7042 

- 

0.9071 

0.5429 0.8824 0.8261 0.6522 

2 0.9294 

0.8589 

- 

0.8824 0.8286 0.8333 0.8788 
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0.9814 

3 0.9991 

0.9948 

- 

1.0000 

0.8824 1.0000 1.0000 0.8947 

4 0.9888 

0.9690 

- 

1.0000 

0.9412 0.9706 0.9697 0.9429 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9433 

± 

0.0848 

0.9054 

- 

0.9777 

0.8497, 95% CI: 

(0.6934, 1.0061) 

0.9363, 95% 

CI: (0.8687, 

1.0039) 

0.9258, 95% CI: 

(0.8481, 

1.0035) 

0.8737, 95% CI: 

(0.7575, 

0.9899) 

 

Results after removing column “Pulse Rate”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.8353 

0.7289 

- 

0.9207 

0.6000 0.9118 0.8750 0.6889 

2 0.9387 

0.8648 

- 

0.9874 

0.8824 0.8286 0.8333 0.8788 

3 1.0000 

1.0000 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9983 

0.9919 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9511 

± 

0.0788 

0.9171 

- 

0.9816 

0.8671, 95% CI: 

(0.7308, 1.0034) 

0.9481, 95% CI: 

(0.8806, 1.0155) 

0.9417, 95% 

CI: (0.8705, 

1.0129) 

0.8862, 95% CI: 

(0.7821, 

0.9903) 

 

Results after removing column “ST generic V”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7084 

0.5837 

- 

0.8202 

0.5143 0.7059 0.6429 0.5854 

2 0.9345 

0.8693 

- 

0.9813 

0.9118 0.8000 0.8158 0.9032 

3 0.9957 

0.9844 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9888 

0.9637 

- 

1.0000 

0.9412 0.9706 0.9697 0.9429 
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5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9220 

± 

0.1219 

0.8802 

- 

0.9603 

0.8558, 95% 

CI: (0.6855, 

1.0261) 

0.8953, 95% CI: 

(0.7773, 1.0133) 

0.8857, 95% CI: 

(0.7491, 

1.0222) 

0.8701, 95% CI: 

(0.7269, 

1.0133) 

 

 

Results after removing column “bypass”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7176 

0.5862 

- 

0.8387 

0.4571 0.8529 0.7619 0.6042 

2 0.9319 0.8647 0.8235 0.8286 0.8235 0.8286 
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- 

0.9816 

3 0.9974 

0.9896 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

4 0.9836 

0.9427 

- 

1.0000 

0.7941 1.0000 1.0000 0.8293 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9223 

± 

0.1192 

0.8766 

- 

0.9641 

0.8091, 95% CI: 

(0.6196, 0.9985) 

0.9363, 95% CI: 

(0.8595, 1.0131) 

0.9171, 95% 

CI: (0.8158, 

1.0184) 

0.8467, 95% 

CI: (0.7091, 

0.9842) 

 

Results after removing column “xclamp”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7580 

0.6361 

- 

0.8583 

0.5714 0.8235 0.7692 0.6512 

2 0.9269 

0.8493 

- 

0.9831 

0.8529 0.8000 0.8056 0.8485 

3 0.9957 

0.9852 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

4 0.9913 

0.9739 

- 

1.0000 

0.9412 0.9412 0.9412 0.9412 
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5 0.9983 

0.9922 

- 

1.0000 

0.9706 0.9706 0.9706 0.9706 

average 

0.9299 

± 

0.1054 

0.8873 

- 

0.9683 

0.8555, 95% 

CI: (0.7110, 

0.9999) 

0.9071, 95% 

CI: (0.8283, 

0.9858) 

0.8973, 95% 

CI: (0.8068, 

0.9878) 

0.8712, 95% 

CI: (0.7559, 

0.9864) 

 

Results after removing column “Blood Temp”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7790 

0.6654 

- 

0.8810 

0.6000 0.7647 0.7241 0.6500 

2 0.9151 0.8414 0.8529 0.8286 0.8286 0.8529 
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- 

0.9730 

3 0.9991 

0.9948 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

4 0.9913 

0.9682 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9339 

± 

0.0978 

0.8939 

- 

0.9708 

0.8671, 95% CI: 

(0.7272, 1.0069) 

0.9187, 95% CI: 

(0.8190, 1.0183) 

0.9105, 95% 

CI: (0.7984, 

1.0227) 

0.8787, 95% 

CI: (0.7563, 

1.0009) 

 

Results after removing column “Sp02”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7563 

0.6264 

- 

0.8689 

0.5714 0.7941 0.7407 0.6429 

2 0.9361 

0.8697 

- 

0.9799 

0.8529 0.8286 0.8286 0.8529 

3 0.9939 

0.9805 

- 

1.0000 

0.9412 0.9706 0.9697 0.9429 

4 0.9879 

0.9628 

- 

1.0000 

0.9118 0.9706 0.9688 0.9167 
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5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9308 

± 

0.1058 

0.8879 

- 

0.9698 

0.8555, 95% CI: 

(0.7087, 1.0022) 

0.9128, 95% CI: 

(0.8302, 0.9953) 

0.9016, 95% 

CI: (0.8035, 

0.9996) 

0.8711, 95% 

CI: (0.7500, 

0.9921) 

 

Results after removing column “ST generic II”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7773 

0.6457 

- 

0.8812 

0.5714 0.8824 0.8333 0.6667 

2 0.9202 

0.8471 

- 

0.7941 0.8286 0.8182 0.8056 
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0.9762 

3 0.9905 

0.9670 

- 

1.0000 

0.9118 1.0000 1.0000 0.9189 

4 0.9905 

0.9687 

- 

1.0000 

0.9118 0.9706 0.9688 0.9167 

5 0.9974 

0.9893 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

average 

0.9301 

± 

0.0995 

0.8836 

- 

0.9715 

0.8261, 95% CI: 

(0.6918, 0.9603) 

0.9363, 95% 

CI: (0.8687, 

1.0039) 

0.9241, 95% 

CI: (0.8445, 

1.0036) 

0.8505, 95% CI: 

(0.7489, 0.9521) 

 

Results after removing column “PA Dia”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7815 

0.6706 

- 

0.8741 

0.5714 0.8235 0.7692 0.6512 

2 0.9017 

0.8157 

- 

0.9604 

0.8235 0.8000 0.8000 0.8235 

3 0.9948 

0.9792 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

4 0.9870 

0.9642 

- 

1.0000 

0.9412 0.9118 0.9143 0.9394 

5 0.9991 

0.9948 

- 

1.0000 

1.0000 0.9706 0.9714 1.0000 

average 

0.9282 

± 

0.0973 

0.8849 

- 

0.9669 

0.8613, 95% CI: 

(0.7076, 1.0151) 

0.9012, 95% CI: 

(0.8241, 0.9783) 

0.8910, 95% 

CI: (0.8012, 

0.9808) 

0.8771, 95% 

CI: (0.7518, 

1.0025) 

 

Results after removing column “PA Mean”: 
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Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7286 

0.6064 

- 

0.8471 

0.5143 0.8529 0.7826 0.6304 

2 0.9345 

0.8778 

- 

0.9807 

0.8235 0.8286 0.8235 0.8286 

3 0.9983 

0.9921 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

4 0.9896 

0.9688 

- 

1.0000 

0.9118 0.9706 0.9688 0.9167 
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5 1.0000 

1.0000 

- 

1.0000 

1.0000 1.0000 1.0000 1.0000 

average 

0.9283 

± 

0.1142 

0.8890 

- 

0.9656 

0.8382, 95% CI: 

(0.6699, 1.0064) 

0.9304, 95% 

CI: (0.8575, 

1.0033) 

0.9150, 95% CI: 

(0.8239, 1.0061) 

0.8640, 95% CI: 

(0.7373, 0.9907) 

 

Results after removing column “PA Sys”: 

 

Fold AUC 

95% 

CI Sensitivity Specificity PPV NPV 

1 0.7395 

0.6157 

- 

0.8502 

0.5714 0.8235 0.7692 0.6512 

2 0.9202 
0.8395 

- 

0.8235 0.8857 0.8750 0.8378 
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0.9788 

3 1.0000 

1.0000 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 

4 0.9905 

0.9688 

- 

1.0000 

0.9412 1.0000 1.0000 0.9444 

5 0.9991 

0.9948 

- 

1.0000 

0.9706 1.0000 1.0000 0.9714 
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0.9265 

± 

0.1127 

0.8841 

- 

0.9658 

0.8555, 95% CI: 

(0.7065, 1.0044) 

0.9418, 95% CI: 

(0.8694, 1.0143) 

0.9288, 95% 

CI: (0.8374, 

1.0203) 

0.8753, 95% CI: 

(0.7553, 0.9952) 

 

Results from Unbalanced Data: 

 

we tried the same model with the unbalanced dataset with about 1299 patients in the control cohort with 

no adverse events and 171 patients in the cases cohort with at least one adverse event, for which Mean 

AUC of 0.93, Mean Sensitivity of 0.64, Mean Specificity of 0.99, Mean PPV of 0.86, Mean NPV of 0.95 

was achieved. 
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Figure 3 - Area under the curve for the FC + LSTM model with unbalanced classes  

 

 

Fold AUC 95% CI Sensitivity Specificity PPV NPV 

1 0.7122 

0.6054 - 

0.8134 

0.2571 0.9653 0.5000 0.9058 

2 0.9499 

0.9091 - 

0.9832 

0.6471 0.9885 0.8800 0.9554 

3 0.9811 

0.9624 - 

0.9945 

0.6765 0.9962 0.9583 0.9593 

4 0.9915 

0.9749 - 

0.9997 

0.7059 1.0000 1.0000 0.9630 

5 0.9994 0.9980 - 0.9118 0.9962 0.9688 0.9885 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.24312980doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24312980
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

1.0000 

Table 4 - performance of the model across all 5 folds in unbalanced dataset 
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19 

-21% 
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0.74

59 
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6 

-24% 
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Glossary 

1. ACE: angiotensin-converting enzyme  

2. ADP: adenosine diphosphate  

3. ARB: angiotensin-receptor blocker 

4. ASCD: Adult Cardiac Surgery Database  
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5. AUC: Area under the curve 

6. AVR: aortic valve replacement  

7. CABG: coronary artery bypass grafting surgery 

8. CAD: coronary artery disease 

9. CBA: Catheterization-based assist device  

10. CI:  Confidence interval 

11.  CVA: Cerebrovascular accident  

12. CVD: Cardiovascular disease 

13. CTICU: Cardiothoracic Intensive Care Unit  

14. DSWI: Deep sternal wound infection 

15.  ECMO: Extracorporeal membrane oxygenation 

16. FTR: Failure to rescue  

17. IABP: Intra- aortic balloon pump  

18. ICD: Implantable cardioverter-defibrillator 

19. LAD: Left anterior descending artery 

20. MMC: Maine Medical Center  

21. NPV:  Negative predictive value  

22. NQF: National Quality Forum  

23. PAD: Peripheral arterial disease  

24. PCI = percutaneous coronary intervention 

25. POLOS: Postoperative length of stay  

26. PPV:  Positive predictive value  

27. ROC: Receiver operating curve  

28. STS: Society of Thoracic Surgeons  

29. TIA: Transient ischemic attack 
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