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Abstract

Understanding which features drive the treatment effect has long been a complex and critical question in clinical
decision-making. Significant advances have been made in estimating treatment effects, particularly with Conditional
Average Treatment Effect (CATE) models. These models account for confounding variables, e.g. age, and gender,
thereby capturing heterogeneity in treatment effects. However, identifying the specific features driving these effects
remains largely unexplored. To bridge these gaps, we propose CODE-XAI, a framework that interprets CATE models
using Explainable AI (XAI) to perform feature discovery. CODE-XAI provides feature attribution at individual and
cohort levels, enhancing our understanding of treatment responses. We benchmark these XAI methods using real-
world clinical data, demonstrating their effectiveness in uncovering feature contributions and enabling cross-cohort
analysis, advancing precision medicine and scientific discovery.

Introduction

Quantifying why an intervention affets a given result is a quintessential issue researchers face in numerous high-
stake applications [1, 2]. In medicine, healthcare professionals use available evidence to decide which treatments
could improve an individual patient’s health[2]. In this context, randomized controlled clinical trials (RCTs) are
considered the gold standard[3] for establishing the presence of a significant treatment effect of an intervention.
More precisely, RCTs establish the average treatment effect (ATE) of an intervention when applied to a well-defined
cohort of patients sharing similar characteristics. Treatment randomization is further used to effectively control for
potentially confounding variables, e.g. age, gender, or health status[3], thus isolating the treatment effect of the chosen
intervention.

Numerous frameworks and approaches, including those based on neural networks [4–8] have been developed to
address the challenge of treatment effect estimation. Among these frameworks are Conditional Average Treatment
Effect (CATE) models, which enhance treatment effect estimates by conditioning on observed covariates[2, 9]. Despite
making progress, these approaches are primarily evaluated on (semi)synthetic datasets that fail to capture the full
complexity of real-world disease dynamics [8]. More critically, these methods are tailored for optimal treatment effect
estimation, and fall short of answering two vital questions: (1) which feature drives the treatment effect? and (2) why
do individual responses to treatments vary? Such factors are diverse and complex and differ across cohorts, so simply
measuring the treatment effect is insufficient to identify them.

Attempts to understand why treatments differ for individuals or subgroups, and thus maximize their real world
application, have traditionally been relegated to secondary subgroup analyses of RCTs that lack the power to drive
changes in clinical practice [10]. Traditional subgroup analyses focus on ATE differences across patients based on
predefined covariates, for example, male versus female [2, 11, 12]. While providing cohort-level feature importance for
predefined covariates, subgroup analysis fails to provide insights into how treatments can affect individuals, or enable
cross-cohort comparisons [10]. Subgrouping also typically relies on categorical variables or categorizing continuous
variables because as data dimensionality increases or continuous variables are introduced, the number of potential
subgroups grows exponentially, making comparisons unwieldy [13]. Therefore, despite advances in modeling, limited
progress has been made in identifying the key features contributing to average treatment effects, thus limiting the
application of knowledge gained from RCTs to a wider range of situations and individual patients. [14, 15]. This
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knowledge chasm becomes particularly apparent during real world clincial decision making, where clinicians must
synthesize and apply average treatment effects derived from RCT cohorts towards individual patients, even when they
are different from those studied in the clinical trial.

To this end, we propose CODE-XAI, a framework that discovers feature that drives treatment effects by interpreting
CATE models using Explainable AI (XAI) [16, 17]. In particular, local explanation methods[18], such as Integrated
Gradient (IG) [19] and Shapley values [20, 21], can address the issue of which feature drives the treatment effect for
a given individual. These methods are favorable because they decompose the treatment effect (i.e., CATE model’s
output) into each feature’s contribution directly without grouping or feature conversion [22], Figure 1 (b). Additionally,
they enable feature attribution on the individual level in a usable way, enhancing our understanding of why certain
individuals may respond more favorably to treatment than others. At the cohort level, individual attributions can
be aggregated to provide a global explanation, allowing us to understand the impact of features on treatment effects.
Additionally, we employed an ensemble approach to enhance uncertainty quantification in treatment effects and ensure
reliable attribution scores.

Furthermore, to facilitate clinical translation, we first introduced benchmarking techniques that assess both CATE
and XAI methods and demonstrated that Shapley value [20], outperforms other local attribution methods. Using
Shapley values, the features identified by CODE-XAI aligned closely with key features reported in existing studies
on the cohort level. Moreover, we propose a novel subpopulation analysis on various baselines to uncover clinical
feature interactions and resolve conflicting results across different trials. We then tested CODE-XAI against the two
most common hurdles present when applying RCTs to real-world practice, differences in patient characteristics, and
alternative clinical practice settings, helping to decipher conflicting results from previous studies.
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Fig. 1 | Overview of the CODE-XAI Framework. (a) Concept figure of the framework. (b) Individual
explanations through XAI. (c) Treatment effect estimation: trade-offs between plugin estimates and conditional
average treatment effect (CATE). (d) Feature discovery analysis: subgroup analysis vs XAI methods. (e) CODE-
XAI overview, evaluation of CATE and explanation methods, and explanation of the selected model with ensemble
Shapley.
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Results

Benchmarking CATE and XAI on Real-World Clinical Data

We examine the performance of both CATE models and their corresponding explanation (feature attribution) in real-
world clinical data. We first train CATE models for each cohort, including IST3[23], CRASH-2[24], ACCORD[25],
and SPRINT[26], and we obtain explanations with methods described in Section 0.2. Details of cohort description,
datasets, and model implementations are in Appendix S1.

Estimating Real-World Treatment Effects with Ensemble CATEs

We first trained CATE models to estimate treatment effects using data from four well-known randomized control
trials: IST-3, CRASH-2, SPRINT, and ACCORD [23–26]. To ensure accurate explanations, we select the best-
performing models according to their pseudo-outcome surrogate (Appendix S4.2), finding that X-learner, a two-stage
regression estimator [27], outperforms other models in IST-3, CRASH-2, and SPRINT, while Doubly Robust Learner
(DR-Learner), a two-stage learner utilizing doubly robust estimation[7], performs best in ACCORD (Table S4).

In well-controlled RCTs, randomization minimizes confounding, so when there are no significant effect modifiers,
the average of CATE estimates should align with the average treatment effect (ATE) [2]. We therefore compared the
ensemble ATE estimates to the reported ATE in each trial. For IST-3 and CRASH-2, the CATE models produced
estimates closely aligned with the reported outcomes [23, 24] (see Table 1). However, in the blood pressure control
trials, i.e., SPRINT and ACCORD, the CATE models provided higher ATE estimates than those reported: 1.6% for
SPRINT and 1.2% for ACCORD, compared to 0.54% and 0.22%, respectively. Moreover, the analysis reveals that
SPRINT, which demonstrated the efficacy of intensive blood pressure control, and the ACCORD study, which showed
no significant treatment effects, align with the reported findings. These findings show that ensemble CATE models
capture treatment effects at the cohort level, particularly in trials with substantial treatment effects.

Cohort Predicted ATE (95% CI) Reported ATE (%)

CRASH-2 1.1 (0.2 - 1.9) 1.5
IST-3 2.0 (0.3 - 4.0) 2.0
SPRINT 1.6 (0.8 - 2.4) 0.54
ACCORD 1.2 (-0.3 - 2.4) 0.22

Table 1 | Comparison of predicted Average Treatment Effect (ATE) estimates from CATE models (with 95% confi-
dence intervals) and reported ATE values (primary outcome differences) across four clinical trials.

Enhanced Consistency in Feature Attributions through Ensemble Models

We next demonstrate the importance of interpreting ensemble models over single models. We compare cosine sim-
ilarities of feature attributions, i.e. Shapley value. for models trained with different random initializations. With
different random initialization, explanations from single models exhibit low similarity and high variance, with scores
of 0.13, 0.15, 0.15, and 0.21. In contrast, ensemble models provide more consistent and robust explanations, as shown
in Figure 2(b-top). The average similarity of Shapley values within the ensemble increases from 0.6 with 10 models
to 0.8 with 20 models, highlighting the enhanced reliability and consistency of feature attributions achieved through
the ensemble approach (Figure 2(b-middle)).

Benchmarking XAI Methods on Real-World Clinical Data

We then evaluated the performance of ensemble explanations using various local explanation methods. While abla-
tion studies, which systematically add or remove features [28], are common, they are computationally expensive for
ensembles. Instead, we evaluated the explanations using our proposed distillation benchmark test with global features
(Section 0.3). As shown in Figure 2(c), both Shapley-mean and IG-mean consistently demonstrate lower distillation
loss across the SPRINT, ACCORD, and IST-3 datasets under various feature budgets. In CRASH-2 dataset, the
performance of all methods is comparable except for Saliency. Our findings also suggest that the same explanation
method, when using a population mean as the baseline (e.g., Shapley-mean), provides more reliable results compared
to using constant baseline values (e.g., Shapley-0), as shown in Figure 2(c).

Additionally, We also present the best-performing methods and their identified top five features across different
datasets in Table S6. In the CRASH-2 dataset, IG-mean identifies injury type, gender, age, and GCS score as the most
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important factors influencing treatment effects, while Saliency highlights heart rate, respiratory rate, and capillary
refill time as the key features.

Fig. 2 | Results of Examining Ensemble Explanation.(a) Evaluation and Explanation generation procedure of
CODE-XAI. Ensemble CATE models are trained with patients’ data and different initializations. Features obtained
through CATEs and XAI methods are used for follow-up evaluation. (b): (top) Comparison of cosine similarity between
explanations from ensembles (40 models in an ensemble) and individual models.(middle) Model in an ensemble and
its cosine similarity between explanations. (bottom) Comparison of interaction p-value rank and Shapley value rank
with 95% confidence ellipses. (c) Knowledge distillation performance across datasets. The x-axis denotes the feature
count of student models, and the y-axis represents their performance metrics: Mean Squared Loss (MSE).
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Insights by Explaining Ensemble CATEs with Shapley Value

Here, we demonstrate how to leverage the best-performing feature attribution method, Shapley values, to analyze
clinical trials, highlighting its advantages over traditional subgroup analysis. For the remainder of this section, we
refer to aggregated Shapley values from ensemble CATE models simply as Shapley values.

Global Feature Identification: Shapley Values versus RCT Findings

To evaluate the effectiveness of Shapley values in cohort-level feature discovery, we compared feature rankings based
on Shapley values1 with those reported in the original studies using Spearman’s rank correlation [29]. For these
studies, reported interaction p-values2 were used as proxies for feature ranking [30]. Our findings show a significant
correlation between Shapley rankings and reported features, with values of 0.8, 0.54, and 0.6 for the CRASH-2, IST-
3, and SPRINT, respectively (Table 2). In contrast, the ACCORD study shows a low correlation (0.05), which is
expected, as no significant features were reported [25]. We also conduct additional experiments to demonstrate that
Shapley value outperforms other local attribution methods in identifying key features in semi-synthetic environments
(Appendix S4.1).

Dataset Correlation (Corr) p-value Number of Reported Features

CRASH-2 0.80 0.11 4
IST-3 0.54 0.09 10
SPRINT 0.60 0.12 6
ACCORD 0.05 0.90 7

Table 2 | Correlation between ranks based on Shapley value and interaction p-values across RCTs.

IST3: Analyzing Features’ Contribution to rt-TPA Treatment Effect through Shapley Value

Here, we analyze clinical features in IST-3, a clinical trial that assesses the efficacy of intravenous rt-PA in acute
ischaemic stroke patients. Unlike traditional subgroup analysis, which requires dividing patients into subgroups and
calculating risk or odds ratios, Shapley values allow direct analysis of feature impact at both individual and cohort
levels. Shapley values provide individual-level explanations [16, 20] by breaking down the total treatment effect into
contributions from each feature for every patient (Figure 3(a)).

In Figure 3(b), the upper force plot shows an example patient who experienced a treatment effect of 11%, signifi-
cantly above the average treatment effect (ATE) of 1.6%. The red bars represent features that contribute positively
to the treatment effect, including a high NIHSS score, TACI, and usage of anti-platelet within 48 hours; the blue
bars indcate features that reduce the treatment effect, including atrial fibrillation history and higher systolic blood
pressure. Conversely, the lower force plot shows a male patient with low NIHSS scores and PACI syndrome, whose
treatment effect decreased by 11%.

Figure 3(d) illustrates individual feature attributions and each feature’s global ranking across cohorts, showing that
the NIH Stroke Scale (NIHSS), a neurological exam for stroke evaluation, is the most influential factor affecting rt-PA
efficacy. Without categorizations or creating numerous subgroups, we can easily examine the impact of continuous
features. For example, Shapley value indicates that patients with higher NIHSS, depicted by the red cluster, contribute
to treatment effects positively when administered TPA, in contrast to those with lower NIHSS scores, marked by the
blue cluster. This observation is consistent with prior research [23, 31], which also identified a significant interaction
between NIHSS scores and tPA treatment effectiveness.

Additionally, the second most impactful feature is the type or syndrome of the stroke. As shown in Figure 3(d),
rt-TPA exhibits enhanced benefits for patients diagnosed with TACI and PACI, a finding consistent with the original
IST-3 study and reported in several stroke-related studies [32]. Our findings also reveal that factors such as receiving
an anti-platelet drug within 48 hours and infarction history significantly affect the effect of rt-TPA, which previous
studies have also discovered [32, 33].

IST-3: Subgroup Analysis with Shapley Value

We now extend the analysis to multiple features and identify subgroups that are more susceptible to rt-TPA treatment.
For instance, in Figure 3(c), we analyze gender and NIHSS and their combined influence on treatment effect. We

1For each feature, we aggregated the absolute values of local attributions across all individuals in the cohort and took the average to
obtain the global (cohort) explanation.

2A lower interaction p-value indicates a higher likelihood of a feature being a treatment effect modifier.
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observe that with the same NIHSS scores, males and females exhibit different treatment efficacy. In male patients
(red dots) with lower NIHSS scores (< 15), rt-TPA appears less effective, whereas its effectiveness increases in males
with higher NIHSS scores (> 15).

To obtain deeper insights into the contributions of specific features within a particular subgroup, we modify the
baseline used in Shapley value calculations (Section 0.3). We thereby compare male individuals or female individuals
to male or female baselines by adjusting our research question to: Which features are important for males or for
females compared to other males or females? In this case, the significance of gender is no longer present.

Within the male population, while the NIHSS score remains the most critical feature, the order of importance of
other features shifts; see Figure S10(b)). Conversely, when analyzing female patients against a female baseline, the
significance of NIHSS diminishes, and TACI emerges as the most influential feature, followed by anti-platelet usage,
Figure S10(b). Interestingly, although most feature trends remain consistent when using the population baseline, the
effects of pre-stroke anti-platelet therapy differ between genders. Its usage seems to counteract the benefits of rt-TPA
in males while enhancing its effects in female patients. This finding is consistent with several studies that emphasize
the positive impact of anti-platelet therapy on women, as reported by [34].

Fig. 3 | Analyzing the IST-3 Study with Shapley Values: (a) Decomposing feature contributions for an example
patient with Shapley value. (b) Shapley values for example individuals, where red indicates positive attributions and
blue represents negative attributions. (c) Combined Shapley values (left y-axis) and feature values pairs (x-axis and
right y-axis) of NIHSS with gender (top) and atrial fibrillation (bottom). For binary features, the red dot indicates
a feature value of 1, while blue indicates 0. (d) IST-3 summary plot showing features on the y-axis sorted by mean
absolute Shapley values and on the x-axis by their corresponding Shapley values. Colors indicate feature values, with
red for higher and blue for lower.
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Deciphering Treatment Effects When Patients are Different

A common reason why RCTs cannot be applied to more general populations is due to variation in patient characteristics
that influence treatment effects. To address this issue, We stress-tested CODE-XAI’s ability to identify key differences
in patient characteristics driving alternative treatment outcomes in the setting of intensive blood pressure management
using two notable RCTs. The SPRINT trial showed that intensive blood pressure management reduced cardiovascular
events and mortality in high-risk, non-diabetic patients, whereas the ACCORD trial found no significant benefit when
the same treatment was applied to patients with type 2 diabetes[25, 26].

Discrepancies in Predictive Features

We first compared the top features affecting treatment outcomes in both trials. Interestingly, despite overall similarities
between the cohorts, the top features affecting the treatment effect for each trial were quite different. In the SPRINT
trial, age was the most significant factor influencing blood pressure control, followed by gender, statin usage, chronic
kidney disease history (CKD), and cardiovascular (CVD) history; see Figure 4(a-bot). Conversely, in ACCORD, the
most significant feature affecting the treatment effect was a history of CVD, followed by gender, aspirin use, number
of antihypertensive medications, and an individual’s ethnicity.

Additionally, when examining the identified features’ clusters, the SPRINT trial showed a clear effect of feature
pairs, e.g., age and CVD history or age and gender Figure 4(c-bottom, d-bottom). However, such effects were absent
in the ACCORD trials. In some cases, the combined effect of features seems to be reversed, e.g., in glucose level and
aspirin usage; see Figure 4(b-top).

Analyzing ACCORD with a SPRINT Baseline

Using CODE-XAI, we directly addressed the question of Which features are important for ACCORD individuals
compared to the SPRINT population? We achieved this by simply substituting the baseline with an example individual
from the SPRINT cohort (Appendix S3.2).

Upon reassessing the top features from both cohorts and reanalyzing the feature rankings, we observed that
fasting glucose (fpg) emerged as a prominent feature in ACCORD, but it ranked 14th among the 18 clinical features
in SPRINT ; see Figure S11 (a). By identifying fasting glucose as a key treatment effect, CODE-XAI correctly and
independently identified the underlying key patient characteristic, i.e. the presence of diabetes, most likely driving
the difference in treatment effect between the two trials. Moreover, CODE-AXI independently provided a clear and
usable treatment metric (fasting glucose) for clinicians seeking to manage blood pressure in diabetic patients.

To further investigate the impact of glucose on the effectiveness of blood pressure control in the ACCORD study,
we analyzed the treatment uplift using qini scores and uplift scores (Appendix S2.2.1) among patients with varying
glucose levels. As we show in Figure 4 (f-left) and Table S7, the uplift score and qini score for the original ACCORD
was 3.8×10−3 and 2.2×10−3, respectively, significantly lower than the SPRINT studies, i.e., 7.5×10−2 and 3.9×10−2,
respectively. However, when excluding patients with glucose levels exceeding 300 mg/dL (the maximum observed value
in the SPRINT cohort), the average treatment effect of ACCORD increased by 39.5% for the uplift score and 36.3%
for the qini score.

Using CODE-XAI, we thus unravel these conflicting results in trials. Our analysis highlights variances in glucose
levels as a potential explanatory factor for the observed disparities in treatment outcomes between the two studies.

Applying CODE-XAI across Clinical Practice Settings.

Here, we test the ability of CODE XAI to identify important features in treatment effects when a proven treatment
is applied to a different clinical setting. For this test, we used the treatment of traumatic bleeding after injury using
tranexamic acid (TXA), a drug that is used to stabilize blood clots to reduce bleeding after injury. Strong randomized
data favor the use of TXA for trauma victims at risk of significant bleeding if given at hospital admission and within 3
hours of injury[24]. Time from injury has emerged as having an important effect on TXA efficacy. So clinical practice
has steadily crept towards using this drug at the scene of injury or during transport (pre-hospital), despite the lack
of randomized evidence for its efficacy in this alternative practice setting. In this scenario, we asked CODE-XAI to
identify which features were most important for trauma patients when TXA was given in the hospital setting vs. when
TXA was given pre-hospital. Using data made available from CRASH-2 study investigators [24] and our local trauma
center registry, we asked CODE-XAI to identify features that determine TXA efficacy when administered in these
different clinical practice settings (Appendix S1.3). We then validated the feature selected by CODE-XAI in the new
pre-hospital setting by computing the treatment effect gain. We also compared it to features identified during a more
recent randomized controlled trial of TXA when given specifically in the pre-hospital setting[35].
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Fig. 4 | (a) Top 3 features based on mean absolute Shapley values in the ACCORD and SPRINT studies. The
upper plots show results from the model trained with overlapped subsets, while the lower plots are from separately
trained models.; Shapley scatter plots for feature pairs in separately trained models: (b) glucose and aspirin, (c) age
and history of CVD, and (d) age and gender, with SPRINT results on top and ACCORD results on the bottom. (e)
Analysing Accord with SPRINT baseline and its top contributing features. (f) Uplift score for SPRINT and ACCORD
(left); CRASH-2 and Harborview trauma registry(right). (*) denotes datasets excluding individuals with glucose levels
greater than 300 mg/dL in ACCORD and patients older than 45 y/o in the Harborview trauma registry.
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We first compared the top features based on their Shapley values. As shown in Figure S13(a-left), in the pre-hospital
settings, the top features were time-to-injury, GCS score, trauma type, and a new effect, age. We then examined the
treatment effects among different age groups. As shown in Figure 4(f-right) and Table S7, the uplift score and qini
score for our pre-hospital cohort are 5 × 10−4 and −5 × 10−4, respectively. Surprisingly, after excluding patients
older than 45 y/o in the pre-hospital settings, the scores increase to 5 ×10−3 and 8 ×10−4, respectively. This finding
indicates that, in the pre-hospital setting, CODE-XAI is identifying age as a new and potentially crucial correlate of
TXA efficacy. This result was validated by similar emergence of age as a new treatment effect for TXA efficacy from
the PATCH study, a randomized controlled trial of TXA administered to injured patients in the pre-hospital clinical
setting [35]. This result highlights the ability of CODE-AXI to identify important treatment effects when randomized
clinical trial data are applied towards different clinical practice settings.

Discussion

Estimating treatment effects in medicine is a critical area of research [8]. However, understanding the impact of
individual features on treatment effects remains largely explored, particularly in terms of their application and ro-
bustness.[14, 28, 36, 37]. We demonstrate that providing a deeper understanding of CATE dynamics with XAI can
extend the capability of RCT’s to unveil real world clinical insights and support physicians to make better-informed
decisions. In doing so, we present a framework, CODE-XAI, that rigorously explains these models, overcoming the
hurdles involved in applying randomized controlled trial data toward real-world use in a robust and explainable way.

We first demonstrate that ensemble CATE models can reliably estimate treatment effects using real-world clinical
data, comparing them with factual outcomes and benchmarking pseudo-outcomes for model selection [8]. Next, we
show that ensemble explanations are more robust than explanations derived from the best single model. To benchmark
feature attribution, we propose using knowledge distillation via global explanation to evaluate these methods. This
differentiates our method from explanation evaluations that are inefficient for ensemble models [28], or those that rely
on unrealistic assumptions about oracle accessibility in real-world scenarios [14]

A natural use case of CODE-XAI is to analyze driving features for treatment effects across various trials in
healthcare. We demonstrate how to use the ensemble Shapley value to analyze well-known RCTs [23–26]. Compared
to traditional analysis, our approach provides not only subgroup analysis but individual analysis without the need to
analyze millions of strata [12]. By analyzing local attributions, we observe how individual features can have varying
effects on treatment outcomes (Figure 3). Such explanations of patient response differences can be particularly useful
for clinical practitioners making individual treatment decisions. Similarly, with features at hand, we identify subgroups
that would respond better to certain treatments in real-world settings (Figure 4), which can help researchers identify
scientific insights that require further investigation.

CODE-XAI can also untangle conflicting results between trials and identify crucial covariates on the cohort level.
We analyze two well-known trials, ACCORD [25] and SPRINT [26], which both evaluated blood pressure control
but showed conflicting results, presumably due to differences in trial subject characteristics. Notably, we observe
that glucose plays a significant role in the treatment effect, thus independently identifying the key difference between
subjects enrolled in the two trials, i.e., the presence of diabetes. In addition, fasting glucose was identified as an
important and clinically relevant treatment effect for clinicians to consider when expanding intensive blood pressure
control to real world populations. We also investigated how CODE-XAI could inform important treatment effects
when translating RCT knowledge across differing clinical practice settings. When examining TXA efficacy across in-
and out-of-hospital practice settings, CODE-XAI identified age as a vital treatment effect explaining differences in
efficacy. These results suggest that CODE-XAI can help clinicians identify key variations between study cohorts that
explain outcome differences despite seemingly overlapping demographics, treatments, and outcomes.

However, the effectiveness of explanations is limited by the performance of the CATE models. While these models
are effective in controlled environments such as RCTs, their reliability diminishes when faced with unobserved con-
founders in observational studies. Such confounders can lead to violations of plausibility assumptions, undermining
the efficacy of CATE models [8, 9] and resulting in biased explanations [14]. Therefore, a promising research direc-
tion involves developing methods to impute robust attribution scores to mitigate the impact of these confounders.
Additionally, integrating causal knowledge with domain expertise has been demonstrated to enhance the accuracy of
feature attributions [38].

To conclude, we present a new approach to performing clinical feature discovery by explaining CATE models with
XAI. We propose evaluation methods to assess CATE models with XAI in real-world clinical trial. Our framework,
CODE-XAI, demonstrates several advantages compared to traditional subgroup analysis, including individual expla-
nation, subpopulation analysis, and cross-cohort examinations. In an era where precision medicine and individualized
treatments are taking center stage, understanding the nuances of treatment effects is more crucial than ever.
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Methods

This section describes (1) CATE models, (2) XAI methods and ensemble explanation, and (3) evaluation of ensem-
ble explanation. We include detailed descriptions of these topics in Appendix S1 (dataset), S2 (potential outcome
framework), and S3 (explanation methods).

0.1 CATE Models

0.1.1 Model Design, Evaluation, and Cross Examination

Under the potential outcome framework [9] (S2), meta-learners [14] represent a class of nonparametric CATE estima-
tion methods. These methods approach treatment effect estimation for binary treatments as an imputation problem
for missing counterfactual outcomes. They simplify the task by decomposing it into multiple sub-regression problems,
often termed pseudo-outcomes [2], which can be solved using any standard supervised machine learning (ML) methods.

CATE estimation methods include T-Learner [2], X-learner[27], DR-learner[7], and R-learner[39]. These methods
estimate CATE by learning nuisance functions η to identify the optimal τ∗

τ∗ = argmin
τ̂

E(x,y)∼D[(τ̂ − Ŷ pseudo
η̃ )2], (1)

where Ŷ pseudo
η̃ is pseudo-outcome loss depending on the learner and D is the training distribution.

This work uses a diverse range of CATE models, including meta-learners such as S-learner, T-learner, X-learner,
DR-learner, and R-learner as well as representation learners like Dragonnet[40], TARNets[41], CFR[5], and DR-CFR.
See Appendix S2.1.1 for further details regarding the structures, training procedures, and implementation of these
models.

To evaluate CATE models, we employ pseudo-outcome surrogate criteria (S2.2) with a 5-fold validation technique.
Additionally, to assess model performance across different cohorts, we utilize the Qini curve and Uplift curve (S2.2.1),
which base model evaluation on observed treatment outcomes.

0.2 Explaning CATEs with Feature Attribution Methods

Once the best-performing models were identified, we used explainability (XAI) methods[16] to obtain feature contri-
butions, i.e., explanations, for CATE treatment effects. XAI methods decompose model output into each feature’s
contribution on the individual level with respect to a baseline; they effectively address the specific question: What is
the contribution of each feature for an individual compared to the average person within a specific cohort? Specifically,
we choose methods for CATE models that meet specific criteria (S3.1), including Integrated Gradients[19] and Shapley
values[20].

Integrated Gradients (IG). IG assigns importance to input features by approximating the integral of a model’s
gradients from a baseline input to the actual input [19]. For a given trained CATE model τ , the IG attribution for an
explicand x, a variable xi, and a baseline x′ is:

IGi(x, x
′, τ) = (xi − x′

i)

∫ 1

α=0

∂τ(x′ + α(x− x′))

xi
dα (2)

Typically, the zero vector serves as the baseline, denoted as x′ = 0. This means feature contributions are measured
relative to their absence.

Shapley Value. The Shapley value, a concept derived from cooperative game theory, offers a unique approach to
feature attributions[20]. For any prediction model, it assigns each feature an importance value by averaging all possible
combinations of feature presence or absence. Mathematically, for a CATE model τ , the exact Shapley value for a
feature xi is defined as:

Φi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[τ(xS∪{i})− τ(xS)], (3)

where N is the set of all features and S is any subset of N that does not include feature xi.
However, computing the exact Shapley value can be computationally intensive, especially for models with a large

number of features. Therefore, in practice, an approximation method like Shapley Value Sampling [21], Baseline
Shapley[42] or KernelSHAP[20] is often used. This work experiments with various methods, including Vanilla Gradient
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(Saliency), Integrated Gradient (IG) with 0 as the baseline (IG-0), Integrated Gradient (IG) with population mean as
the baseline (IG-mean), Baseline Shapley with 0 as the baseline (Shapley-0), and Baseline Shapley with the population
mean as the baseline (Shapley-mean). Additional details about these methods are in Appendix S3.

0.2.1 Ensemble-based CATE Estimation and Explanation

Despite the progress in CATE models based on neural networks, their stability in real-world datasets remains an issue
due to the inherent randomness encountered during model initialization and training [43]. To address this, we employ
an ensemble approach [44] within CODE-XAI. We train individual CATE models τi(x) with different random seeds
i. The ensemble CATE estimator, τe, and its ensemble explanation, ϕj , for a feature, j, and an explicand, x, can be
computed as:

τe(x) =
1

N

N∑
i=1

τi(x) s.t. ϕj(τe, x) =
1

N

N∑
i=1

ϕj(τi, x), (4)

where N is the number of models in an ensemble. This method enhances both the model’s and explanation’s stability
by averaging out variability.

0.3 Examining Explainability Methods on CATEs

In this section, we introduce methods that assess the explanations of CATE.

Explanation Robustness Assessment

To evaluate the effect of the number of single models in an ensemble on explanation stability, we first train L ensembles,
each with k single models, and then calculate the pairwise cosine similarity of their explanations. Given feature
attributions ϕ(·) for the lth ensemble, τke,l, composed of k single models, the average cosine similarity cos (θk) is:

cos (θk) =
1

L(L− 1)

L∑
l=1

L∑
j ̸=l

ϕ(τke,l) · ϕ(τke,j)
∥ϕ(τke,l)∥2∥ϕ(τke,j)∥2

. (5)

Examining Ensemble Explanation via Knowledge Distillation

Though ablation studies offer a convenient way to inspect explanation methods, their choice of the baseline can
potentially favor particular explanation methods[17, 45]. To address this, we introduce an evaluation approach rooted
in knowledge distillation[46], wherein the student model is coached to emulate the behavior of the teacher model.
However, retraining models using local explanation rankings is resource-intensive given the myriad combinations
of feature subsets[28]. We circumvent this by retraining with a global explanation ranking. Intuitively, an optimal
explanation method should also highlight impactful features on a global level. To quantify the efficacy of an explanation
method, we propose using the knowledge distillation loss, EKD. Formally, this evaluation is defined as

EKD =
1

N

N∑
i=1

(τ̂s(X
k
i )− ỹi)

2, where τ̂s = argmin
θ

L(τ(Xk; θ), ỹ) (6)

where τ̂s is a student model, L is the training loss depending on the types of CATE, Xk represents the top k features
ranked by their average absolute attribution scores across training samples, and ỹ is the output from the ensemble
(teacher) model, τ̂(X). If the identified features are predictive of the treatment effect, EKD would be low in the testing
set.

Our approach shares similarities with the Remove-and-Retrain (ROAR) method; however, in our setting, ROAR
requires retraining every model in an ensemble whenever a feature is removed, imposing a heavy computational
cost[28]. In contrast, our approach requires only a single student model at every removing step, significantly enhancing
computational efficiency. Notably, knowledge distillation is the only way to obtain comparable model performance
for an ensemble, as shown in [47]. This approach also bypasses the dilemma when selecting a baseline [17, 45].
Additionally, feature contribution on a global (cohort) level facilitates human evaluation[26, 48].
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Global Feature Identification

Alternatively, if the ground-truth explanation or important feature is available, we propose computing Spearman’s
rank correlation[29] rankings derived from the explanation methods and the oracle. Specifically, in the context of the
treatment effect, we consider interaction p-values [30] as ground truth. A lower p-value indicates a higher likelihood
of a feature being an important factor in the treatment effect. To evaluate an explanation method in identifying
important features on the global level, we propose computing Spearman’s rank correlation[29]

ρ(g(τ̂ , ϕ), g(p)), (7)

where ρ is the Spearman’s rank correlation, g(τ̂ , ϕ) denotes the global ranking according to the explanation method
ϕ and model τ̂ , and g(p) indicates the ranking based on interaction p-values.

Data availability

The generation process for synthetic datasets is available on GitHub at https://github.com/AliciaCurth/CATENets.
The IST-3 dataset is publicly accessible at https://datashare.ed.ac.uk/handle/10283/1931. The CRASH-2
dataset can be accessed at https://freebird.lshtm.ac.uk/index.php/available-trials/, with treatment
allocations available upon request. Both the ACCORD and SPRINT datasets are available upon request at https:
//biolincc.nhlbi.nih.gov/home/.

Code availability

The code for training, inference, and evaluation of the CATE models and XAI methods used in this study will be
made publicly available on GitHub upon publication. The code is distributed under the BSD 3-Clause License. The
model weights are provided and intended for non-commercial use only.
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