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Abstract

Determining which features drive the treatment effect for individual patients has long been a complex and critical
question in clinical decision-making. Evidence from randomized controlled trials (RCTs) are the gold standard for
guiding treatment decisions. However, individual patient differences often complicate the application of RCT findings,
leading to imperfect treatment options. Traditional subgroup analyses fall short due to data dimensionality, type,
and study design. To overcome these limitations, we propose CODE-XAI, a framework that interprets Conditional
Average Treatment Effect (CATE) models using Explainable AI (XAI) to perform feature discovery. CODE-XAI
provides feature attribution at the individual subject level, enhancing our understanding of treatment responses. We
benchmark these XAI methods using semi-synthetic data and RCTs, demonstrating their effectiveness in uncovering
feature contributions and enabling cross-cohort analysis, advancing precision medicine and scientific discovery.

Introduction

Quantifying the influence of an intervention on a given result is a quintessential issue researchers face in numerous
high-stake applications [1, 2]. In medicine, healthcare professionals use available evidence to decide which treatments
could improve an individual patient’s health[2]. Randomized controlled clinical trials (RCTs) are the current gold
standard for determining treatment effects [3]. However, applying such evidence towards treatment decisions for
individual patients can be complicated by deviations in patient characteristics and clinical practice settings that differ
from the strictly controlled conditions enforced during RCTs. As a result, clinicians are left guessing if the treatment
identified in the RCT will benefit an individual patient when they differ in some way from those studied.

Attempts to understand why treatments are effective, and thus maximize their application, have traditionally
been relegated to secondary objectives of RCTs that lack the power to drive changes in clinical practice. Subgroup
analysis focuses on treatment outcome differences across patients based on observed covariates[2, 4, 5]. However, as
data dimensionality increases, the number of potential subgroups increases exponentially, quickly overwhelming their
application to patients and practice in the real world. [6, 7]. Subgrouping also typically relies on categorical variables
while many features are continuous, and converting continuous features to categorical variables can lead to loss of
important information, difficulty in determining the number and boundaries of categories, and risk of false discovery
[7]. Moreover, it requires balanced treatment and control allocation within each subgroup, complicating the analysis
of features or subgroups not accounted for in the original trial design [6, 8]. Finally, subgroup analysis fails to both
provide insights into how individual characteristics affect treatment efficacy and to allow cross-cohort comparisons,
even among groups with similar treatments or features.

To more effectively understand and quantify treatment effects, researchers have developed Conditional Average
Treatment Effect (CATE) models [9]. CATEmodels aim to adjust for imbalances between control and treatment groups
and leverage observed covariates to enhance the estimation of treatment effects. Numerous proposed approaches [10–
13] address the question of how the treatment affects the outcome. However, these methods are tailored for optimal
prediction, and do not inform robust feature or subgroup discovery. They fall short of answering two vital questions
related to why estimations drive specific outcomes: (1) which feature drives the treatment effect? and (2) why do
individual responses to treatments vary? Such factors differ across cohorts and are diverse and complex, so simply
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measuring the treatment effect is insufficient to identify them. Thus, the need to interpret these CATE models provides
a unique opportunity to answer these important questions.

To overcome these deficiencies, we propose CODE-XAI, a framework that discovers feature that drives treatment
effects by interpreting CATE models using Explainable AI (XAI) [14, 15].In particular, local explanation methods[16],
such as Integrated Gradient (IG) [17] and Shapley values [18, 19], can address the issue of which feature drives the
treatment effect for a given individual. These methods are favorable because they decompose the treatment effect
(i.e., CATE model’s output) into each feature’s contribution directly without grouping or feature conversion [20].
Additionally, they enable feature attribution on the individual level in a usable way, enhancing our understanding of
why certain individuals may respond more favorably to treatment than others.

To obtain reliable attribution scores from CODE-XAI, we employed an ensemble approach and introduced bench-
marking techniques that assess both CATE and XAI methods. Moreover, we propose a novel subpopulation analysis
using Shapley values on various baselines to uncover clinical feature interactions and resolve conflicting results across
different trials. We then tested CODE-XAI against the two most common hurdles present when applying RCT’s to real
world practice, differences in patient characteristics and alternative clinical practice settings. Finally, we demonstrate
that CODE-XAI can successfully distill RCT treatment effects to the level of the individual patient.
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Fig. 1 | Overview of the CODE-XAI Framework. (a) Concept figure of the framework. (b) Individual
explanations through XAI. (c) Treatment effect estimation: trade-offs between plugin estimates and conditional
average treatment effect (CATE). (d) Feature discovery analysis: subgroup analysis vs XAI methods. (e) CODE-
XAI overview, evaluation of CATE and explanation methods, and explanation of the selected model with ensemble
Shapley.
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Results

Benchmarking CATE and XAI on Real-World Clinical Data

We next examine the performance of both CATE models and their explanation in real-world datasets. We first train
CATE models for each cohort, including IST3[21], CRASH-2[22], ACCORD[23], and SPRINT[24], and we obtain
explanations with methods described in Section 0.2. Details of cohort description, datasets, and model implementa-
tions are in Appendix S1. We also conduct additional experiments in semi-synthetic environments to examine each
explanation method (S4.1).

Estimating Real-World Treatment Effect with Ensemble CATEs

To obtain an accurate explanation, we first train CATE models to emulate treatment effects from four well-known
randomized control trials [21–24]. We select the best-performing models according to their pseudo-outcome surrogate
(Appendix S4.2), finding that X-learner outperforms other models in IST-3, CRASH-2, and SPRINT, while DR-learner
performs best in ACCORD (Table S4).

Table 1 presents an ensemble estimate of the average treatment effect (ATE) for each cohort, including uncertainty
estimates. CATE estimates for IST-3 and CRASH-2 are consistent with their reported findings [21, 22]. Interestingly,
for the blood pressure control trials, i.e., SPRINT and ACCORD, the CATE model provides more optimistic estimates,
showing improvements of 1.6% and 1.2% in primary outcomes, respectively, compared to 0.54% and 0.22% reported
originally. The CATE estimation for SPRINT also demonstrates better ATE compared to ACCORD.

Cohort CATE Reported Findings

Average Treatment Effect (%)

CRASH-2 1.1 (0.2 - 1.9) 1.5
IST-3 2.0 (0.3 - 4.0) 2.0
SPRINT 1.6 (0.8 - 2.4) 0.54
ACCORD 1.2 (-0.3 - 2.4) 0.22

Table 1 | Comparison between estimated Average Treatment Effect (ATE) from CATE and reported primary outcomes
difference between treatment and control groups in four trials.

Enhanced Robustness in Explanations with Ensemble Models

We next demonstrate the importance of interpreting ensemble models over a single model. By measuring cosine
similarities between explanations (0.3), single-model explanations exhibit low similarity and high variance, with scores
of 0.13, 0.15, 0.15, and 0.21, as depicted in Figure 2(b-top). In contrast, ensemble explanations display greater
consistency and robustness. As shown in Figure 2(b-middle), the average explanation similarity (Shapley value)
within the ensemble increases from 0.6 with 10 models to 0.8 with 20 models, highlighting the enhanced reliability
and consistency of explanations achieved through the ensemble approach.

Benchmarking XAI Methods on Real-World Clinical Data

To examine the obtained explanation, a commonly used approach is an ablation study, where features are systematically
added or removed based on their importance ranking.[25]. However, individual-based ablation studies suffer from
baseline selection bias (S4.3) and are computationally expensive for ensemble models. Instead, we propose a distillation
technique (0.3) that focuses on global explanations, training student models on globally ranked features to emulate
the CATE model’s outputs across varying feature budgets (0.3).

As we show in Figure 2(c), both Shapley-mean and IG-mean consistently demonstrate lower distillation loss (mean
squared error) across the SPRINT, ACCORD, and IST-3 datasets under various feature budgets. In contrast, within
the CRASH-2 dataset, the performance of all methods is comparable except for Saliency, likely due to the dataset
containing only 10 features, simplifying the task of identifying influential features. Our proposed evaluation shows
that explanation methods with a population mean as the baseline outperform constant baselines.

In Table S6, we show the best methods and their top 5 features across different RCTs. In the CRASH-2 dataset,
the top 5 features identified by IG-mean as important factors to treatment effect are injury type, gender, age, and gcs
score; in contrast, Saliency ranks heart rate, respiratory rate, and capillary refill time as the top features.
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Fig. 2 | Results of Examining Ensemble Explanation.(a) Evaluation and Explanation generation procedure of
CODE-XAI. Ensemble CATE models are trained with patients’ data and different initializations. Features obtained
through CATEs and XAI methods are used for follow-up evaluation. (b): (top) Comparison of cosine similarity between
explanations from ensembles (40 models in an ensemble) and individual models.(middle) Model in an ensemble and
its cosine similarity between explanations. (bottom) Comparison of interaction p-value rank and Shapley value rank
with 95% confidence ellipses. (c) Knowledge distillation performance across datasets. The x-axis denotes the feature
count of student models, and the y-axis represents their performance metrics: Mean Squared Loss (MSE).
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Insights by Explaining CATE with Shapley Value

We now show how to use feature attributions obtained from CATE models to analyze clinical trials and their advantages
relative to traditional subgroup analysis. Since gradient-based attribution is difficult to interpret[17], we employ
Shapley value explanation methods to analyze clinical cohorts.

Global Feature Identification: Shapley Values versus RCT Findings

To assess the effectiveness of Shapley values in feature discovery, we compute the Spearman’s rank correlation [26]
between the global explanation from Shapley values and the features reported in original studies. For RCTs, we
employ reported interaction p-values as proxies for feature ranking [27].

As shown in Table 2 and Figure 2(b-bottom), a significant correlation between Shapley rankings and reported
features is observed, 0.8, 0.54, and 0.6 in CRASH-2, IST-3, and SPRINT, respectively, where CATE models accurately
predict treatment effects. However, the correlation is low, 0.05, in the ACCORD study. This is expected given that no
significant features have been reported[23], and the explanation would be less reliable when the CATE model struggles,
Table 1.

Dataset Correlation (Corr) p-value Number of Reported Features

CRASH-2 0.80 0.11 4
IST-3 0.54 0.09 10
SPRINT 0.60 0.12 6
ACCORD 0.05 0.90 7

Table 2 | Correlation between ranks based on Shapley Value and interaction p-values in RCT studies. A lower p-value
indicates a higher likelihood of a feature being a treatment effect modifier.

IST3: Analyzing Features’ Contribution to rt-TPA Treatment Effect through Shapley Value

Here, we analyze clinical features in IST-3, a clinical trial that assesses the efficacy of intravenous rt-PA in acute
ischaemic stroke patients. Compared to traditional subgroup analysis, which requires subgrouping and computing
risk or odds ratios, Shapley values enable direct analysis of feature impact at both individual and group levels. They
provide individual explanations [14, 18] by decomposing the total treatment effect into each feature’s contribution for
every individual.

In Figure 3 (b), the upper force plot shows an example patient who experienced an increased survival probability
of 11%, significantly above the ATE, which is 1.6%. The red bar indicates features that contribute positively to
the treatment effect, including a high NIHSS score, TACI, and usage of anti-platelet within 48 hours; the blue
bar indicates features that reduce the treatment effect, including atrial fibrillation history and higher systolic blood
pressure. Conversely, the individual in the bottom force plot, a male patient with low NIHSS scores and PACI, had a
treatment effect diminished by 11%.

On the cohort level, we analyze feature importance in IST3-trial by averaging their Shapley value across the
cohort. Results show that the NIH Stroke Scale (NIHSS), a neurological examination for stroke evaluation, is the most
influential feature affecting rt-TPA’s efficacy; see Figure 3(c). Further, without categorizations or creating numerous
subgroups, we can easily examine the impact of continuous features. The Shapley plot indicates that patients with
higher NIHSS, depicted by the red cluster, demonstrate a pronounced improvement in treatment outcomes when
administered TPA, in contrast to those with lower NIHSS scores, marked by the blue cluster. This observation is
consistent with prior research [21, 28], which also identified a significant interaction between NIHSS scores and tPA
treatment effectiveness.

Notably, the second most impactful feature is the type or syndrome of the stroke. In Figure 3(c), rt-TPA exhibits
enhanced benefits for patients diagnosed with TACI and PACI, a finding consistent with the original IST-3 study and
reported in several stroke-related studies [29]. Our findings also reveal that factors such as receiving an anti-platelet
drug within 48 hours and infarction history significantly affect the effect of rt-TPA, which previous studies have also
discovered [29, 30].

IST-3: Subgroup Analysis with Shapley Value

We now extend the analysis to multiple features and identify subgroups that are more susceptible to rt-TPA treatment.
For instance, in Figure 3(c), we analyze gender and NIHSS and their combined influence on treatment effect. We
observe that with the same NIHSS scores, males and females exhibit different treatment efficacy. In male patients
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(red dots) with lower NIHSS scores (< 15), rt-TPA appears less effective, whereas its effectiveness increases in males
with higher NIHSS scores (> 15).

To obtain deeper insights into the contributions of specific features within a particular subgroup, we modify the
baseline used in Shapley value calculations (Section 0.3). We thereby compare male individuals or female individuals
to male or female baselines by adjusting our research question to: Which features are important for males or for
females compared to other males or females? In this case, the significance of gender is no longer present.

Within the male population, while the NIHSS score remains the most critical feature, the order of importance of
other features shifts; see Figure S10(b)). Conversely, when analyzing female patients against a female baseline, the
significance of NIHSS diminishes, and TACI emerges as the most influential feature, followed by anti-platelet usage,
Figure S10(b). Interestingly, although most feature trends remain consistent when using the population baseline, the
effects of pre-stroke anti-platelet therapy differ between genders. Its usage seems to counteract the benefits of rt-TPA
in males while enhancing its effects in female patients. This finding is consistent with several studies that emphasize
the positive impact of anti-platelet therapy on women, as reported by [31].

Fig. 3 | Analyzing the IST-3 Study with Shapley Values: (a) Decomposing feature contributions for an example
patient with Shapley value. (b) Shapley values for example individuals, where red indicates positive attributions and
blue represents negative attributions. (c) Combined Shapley values (left y-axis) and feature values pairs (x-axis and
right y-axis) of NIHSS with gender (top) and atrial fibrillation (bottom). For binary features, the red dot indicates
a feature value of 1, while blue indicates 0. (d) IST-3 summary plot showing features on the y-axis sorted by mean
absolute Shapley values and on the x-axis by their corresponding Shapley values. Colors indicate feature values, with
red for higher and blue for lower.
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Deciphering Treatment Effects When Patients are Different

A common reason why RCTs cannot be applied to more general populations is due to variation in patient characteristics
that influence treatment effects. To address this issue, We stress-tested CODE-XAI’s ability to identify key differences
in patient characteristics driving alternative treatment outcomes in the setting of intensive blood pressure management
using two notable RCTs. The SPRINT trial showed that intensive blood pressure management reduced cardiovascular
events and mortality in high-risk, non-diabetic patients, whereas the ACCORD trial found no significant benefit when
the same treatment was applied to patients with type 2 diabetes[23, 24].

Discrepancies in Predictive Features

We first compared the top features affecting treatment outcomes in both trials. Interestingly, despite overall similarities
between the cohorts, the top features affecting the treatment effect for each trial were quite different. In the SPRINT
trial, age was the most significant factor influencing blood pressure control, followed by gender, statin usage, chronic
kidney disease history (CKD), and cardiovascular (CVD) history; see Figure 4(a-bot). Conversely, in ACCORD, the
most significant feature affecting the treatment effect was a history of CVD, followed by gender, aspirin use, number
of antihypertensive medications, and an individual’s ethnicity.

Additionally, when examining the identified features’ clusters, the SPRINT trial showed a clear effect of feature
pairs, e.g., age and CVD history or age and gender Figure 4(c-bottom, d-bottom). However, such effects were absent
in the ACCORD trials. In some cases, the combined effect of features seems to be reversed, e.g., in glucose level and
aspirin usage; see Figure 4(b-top).

Analyzing ACCORD with a SPRINT Baseline

Using CODE-XAI, we directly addressed the question of Which features are important for ACCORD individuals
compared to the SPRINT population? We achieved this by simply substituting the baseline with an example individual
from the SPRINT cohort (S3.2).

Upon reassessing the top features from both cohorts and reanalyzing the feature rankings, we observed that
fasting glucose (fpg) emerged as a prominent feature in ACCORD, but it ranked 14th among the 18 clinical features
in SPRINT ; see Figure S11 (a). By identifying fasting glucose as a key treatment effect, CODE-XAI correctly and
independently identified the underlying key patient characteristic, i.e. the presence of diabetes, most likely driving
the difference in treatment effect between the two trials. Moreover, CODE-AXI independently provided a clear and
usable treatment metric (fasting glucose) for clinicians seeking to manage blood pressure in diabetic patients.

To further investigate the impact of glucose on the effectiveness of blood pressure control in the ACCORD study,
we analyzed the treatment uplift using qini scores and uplift scores (S2.2.1) among patients with varying glucose
levels. As we show in Figure 4 (f-left) and Table S7, the uplift score and qini score for the original ACCORD was
3.8× 10−3 and 2.2× 10−3, respectively, significantly lower than the SPRINT studies, i.e., 7.5× 10−2 and 3.9× 10−2,
respectively. However, when excluding patients with glucose levels exceeding 300 mg/dL (the maximum observed
value in the SPRINT cohort), the average treatment effect of ACCORD increased by 39.5% for the uplift score and
36.3% for the qini score.

Using CODE-XAI, we thus unravel these conflicting results in trials. Our analysis highlights variances in glucose
levels as a potential explanatory factor for the observed disparities in treatment outcomes between the two studies.

Applying CODE-XAI across Clinical Practice Settings.

Here, we test the ability of CODE XAI to identify important features in treatment effects when a proven treatment
is applied to a different clinical setting. For this test, we used the treatment of traumatic bleeding after injury using
tranexamic acid (TXA), a drug that is used to stabilize blood clots to reduce bleeding after injury. Strong randomized
data favor the use of TXA for trauma victims at risk of significant bleeding if given at hospital admission and within 3
hours of injury[22]. Time from injury has emerged as having an important effect on TXA efficacy. So clinical practice
has steadily crept towards using this drug at the scene of injury or during transport (pre-hospital), despite the lack
of randomized evidence for its efficacy in this alternative practice setting. In this scenario, we asked CODE-XAI to
identify which features were most important for trauma patients when TXA was given in the hospital setting vs. when
TXA was given pre-hospital. Using data made available from CRASH-2 study investigators [22] and our local trauma
center registry, we asked CODE-XAI to identify features that determine TXA efficacy when administered in these
different clinical practice settings (Appendix S1.3). We then validated the feature selected by CODE-XAI in the new
pre-hospital setting by computing the treatment effect gain. We also compared it to features identified during a more
recent randomized controlled trial of TXA when given specifically in the pre-hospital setting[32].
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Fig. 4 | (a) Top 3 features based on mean absolute Shapley values in the ACCORD and SPRINT studies. The
upper plots show results from the model trained with overlapped subsets, while the lower plots are from separately
trained models.; Shapley scatter plots for feature pairs in separately trained models: (b) glucose and aspirin, (c) age
and history of CVD, and (d) age and gender, with SPRINT results on top and ACCORD results on the bottom. (e)
Analysing Accord with SPRINT baseline and its top contributing features. (f) Uplift score for SPRINT and ACCORD
(left); CRASH-2 and Harborview trauma registry(right). (*) denotes datasets excluding individuals with glucose levels
greater than 300 mg/dL in ACCORD and patients older than 45 y/o in the Harborview trauma registry.
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We first compared the top features based on their Shapley values. As shown in Figure S13(a-left), in the pre-hospital
settings, the top features were time-to-injury, GCS score, trauma type, and a new effect, age. We then examined the
treatment effects among different age groups. As shown in Figure 4(f-right) and Table S7, the uplift score and qini
score for our pre-hospital cohort are 5 × 10−4 and −5 × 10−4, respectively. Surprisingly, after excluding patients
older than 45 y/o in the pre-hospital settings, the scores increase to 5 ×10−3 and 8 ×10−4, respectively. This finding
indicates that, in the pre-hospital setting, CODE-XAI is identifying age as a new and potentially crucial correlate of
TXA efficacy. This result was validated by similar emergence of age as a new treatment effect for TXA efficacy from
the PATCH study, a randomized controlled trial of TXA administered to injured patients in the pre-hospital clinical
setting [32]. This result highlights the ability of CODE-AXI to identify important treatment effects when randomized
clinical trial data are applied towards different clinical practice settings.

Discussion

Using explainable AI (XAI) in the life sciences continues to expand [33–35], however, its application, robustness,
validity, and trustworthiness remain largely unexplored [25, 36–38]. We demonstrate that providing a deeper un-
derstanding of CATE dynamics with XAI can extend the capability of RCT’s to unveil real world clinical insights
and support physicians to make better-informed decisions. In doing so, we present a framework, CODE-XAI, that
rigorously explains these models, overcoming the hurdles involved in applying randomized controlled trial data toward
real-world use in a robust and explainable way.

We first showcase that ensemble CATE models can reliably estimate treatment effects using real-world clinical
data by comparing with factual outcomes and benchmarking pseudo-outcomes for model selection [39]. We then
demonstrate that an ensemble explanation is more robust than the best single model. However, since examining
explanations from an ensemble is not straightforward, we highlight the importance of global explanations and propose
using knowledge distillation to benchmark feature attribution methods. This differentiates our method from those
reliant on unrealistic assumptions regarding oracle accessibility in real-world scenarios [38], benchmark tests susceptible
to inherent biases [15], or evaluations that are inefficient for ensemble models [25].

A natural use case of CODE-XAI is to analyze driving features for treatment effects across various trials in
healthcare. We demonstrate how to use the ensemble Shapley value to analyze well-known RCTs [21–24]. Compared
to traditional analysis, our approach provides not only subgroup analysis but individual analysis without the need to
analyze millions of strata [5]. By analyzing individual features, we observe how a single feature can have varying effects
on treatment outcomes (Figure 3). Such explanations of patient response differences can be particularly useful for
clinical practitioners making individual treatment decisions. Similarly, with features at hand, we identify subgroups
that would respond better to certain treatments in real-world settings (Figure 4), which can help researchers identify
scientific insights that require further investigation.

CODE-XAI can also untangle conflicting results between trials and identify crucial covariates. We analyze two well-
known trials, ACCORD [23] and SPRINT [24], which both evaluated blood pressure control but showed conflicting
results, presumably due to differences in trial subject characteristics. Notably, we observe that glucose plays a
significant role in the treatment effect, thus independently identifying the key difference between subjects enrolled in
the two trials, i.e., the presence of diabetes. In addition, fasting glucose was identified as an important and clinically
relevant treatment effect for clinicians to consider when expanding intensive blood pressure control to real world
populations. We also investigated how CODE-XAI could inform important treatment effects when translating RCT
knowledge across differing clinical practice settings. When examining TXA efficacy across in- and out-of-hospital
practice settings, CODE-XAI identified age as a vital treatment effect explaining differences in efficacy. These results
suggest that CODE-XAI can help clinicians identify key variations between study cohorts that explain outcome
differences despite seemingly overlapping demographics, treatments, and outcomes.

However, the effectiveness of explanations is limited by the performance of the CATE models. Though these models
work well in controlled settings such as RCTs, it is difficult to obtain a reliable CATE model from observational studies
with imbalanced treatment assignments. In the presence of unobserved confounders, the identifiability assumption
would be violated, invalidating CATE model efficacy [9, 39] and leading to biased explanations [38]. Therefore, a
promising research direction involves developing methods to impute robust attribution scores to mitigate selection
bias. Additionally, some works incorporate causal knowledge to enhance the accuracy of feature attribution [40], but
this assumption is often impractical in real-world experiments.

To conclude, we present a new approach to performing clinical feature discovery by explaining CATE models with
XAI. We propose evaluation methods to assess CATE models with XAI in real-world clinical trial. Our framework,
CODE-XAI, demonstrates several advantages compared to traditional subgroup analysis, including individual expla-
nation, subpopulation analysis, and cross-cohort examinations. In an era where precision medicine and individualized
treatments are taking center stage, understanding the nuances of treatment effects is more crucial than ever.
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Methods

This section describes: (1) CATE models, (2) XAI methods and ensemble explanation, and (3) evaluation of ensem-
ble explanation. We include detailed descriptions of these topics in Appendix S1 (dataset), S2 (potential outcome
framework), and S3 (explanation methods).

0.1 CATE Models

0.1.1 Model Design, Evaluation, and Cross Examination

Under the potential outcome framework [9] (S2), meta-learners [38] represent a class of nonparametric CATE estima-
tion methods. These methods approach treatment effect estimation for binary treatments as an imputation problem
for missing counterfactual outcomes. They simplify the task by decomposing it into multiple sub-regression problems,
often termed pseudo-outcomes [2], which can be solved using any standard supervised machine learning (ML) methods.

CATE estimation methods include T-Learner [2], X-learner[41], DR-learner[13], and R-learner[42]. These methods
estimate CATE by learning nuisance functions η to identify the optimal τ∗

τ∗ = argmin
τ̂

E(x,y)∼D[(τ̂ − Ŷ pseudo
η̃ )2], (1)

where Ŷ pseudo
η̃ is pseudo-outcome loss depending on the learner and D is the training distribution.

This work uses a diverse range of CATE models, including meta-learners such as S-learner, T-learner, X-learner,
DR-learner, and R-learner as well as representation learners like Dragonnet[43], TARNets[44], CFR[11], and DR-CFR.
See Appendix S2.1.1 for further details regarding the structures, training procedures, and implementation of these
models.

To evaluate CATE models, we employ pseudo-outcome surrogate criteria (S2.2) with a 5-fold validation technique.
Additionally, to assess model performance across different cohorts, we utilize the Qini curve and Uplift curve (S2.2.1),
which base model evaluation on observed treatment outcomes.

0.2 Explaning CATEs with Feature Attribution Methods

Once the best-performing models were identified, we used explainability (XAI) methods[14] to obtain feature contri-
butions, i.e., explanations, for CATE treatment effects. XAI methods decompose model output into each feature’s
contribution on the individual level with respect to a baseline; they effectively address the specific question: What is
the contribution of each feature for an individual compared to the average person within a specific cohort? Specifically,
we choose methods for CATE models that meet specific criteria (S3.1), including Integrated Gradients[17] and Shapley
values[18].

Integrated Gradients (IG). IG assigns importance to input features by approximating the integral of a model’s
gradients from a baseline input to the actual input [17]. For a given trained CATE model τ , the IG attribution for an
explicand x, a variable xi, and a baseline x′ is:

IGi(x, x
′, τ) = (xi − x′

i)

∫ 1

α=0

∂τ(x′ + α(x− x′))

xi
dα (2)

Typically, the zero vector serves as the baseline, denoted as x′ = 0. This means feature contributions are measured
relative to their absence.

Shapley Value. The Shapley value, a concept derived from cooperative game theory, offers a unique approach to
feature attributions[18]. For any prediction model, it assigns each feature an importance value by averaging all possible
combinations of feature presence or absence. Mathematically, for a CATE model τ , the exact Shapley value for a
feature xi is defined as:

Φi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[τ(xS∪{i})− τ(xS)], (3)

where N is the set of all features and S is any subset of N that does not include feature xi.
However, computing the exact Shapley value can be computationally intensive, especially for models with a large

number of features. Therefore, in practice, an approximation method like Shapley Value Sampling [19], Baseline
Shapley[45] or KernelSHAP[18] is often used. This work experiments with various methods, including Vanilla Gradient
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(Saliency), Integrated Gradient (IG) with 0 as the baseline (IG-0), Integrated Gradient (IG) with population mean as
the baseline (IG-mean), Baseline Shapley with 0 as the baseline (Shapley-0), and Baseline Shapley with the population
mean as the baseline (Shapley-mean). Additional detail about these methods is in Appendix S3.

0.2.1 Ensemble-based CATE Estimation and Explanation

Despite the progress in CATE models based on neural networks, their stability in real-world datasets remains an issue
due to the inherent randomness encountered during model initialization and training [46]. To address this, we employ
an ensemble approach [47] within CODE-XAI. We train individual CATE models τi(x) with different random seeds
i. The ensemble CATE estimator, τe, and its ensemble explanation, ϕj , for a feature, j, and an explicand, x, can be
computed as:

τe(x) =
1

N

N∑
i=1

τi(x) s.t. ϕj(τe, x) =
1

N

N∑
i=1

ϕj(τi, x), (4)

where N is the number of models in an ensemble. This method enhances both the model’s and explanation’s stability
by averaging out variability.

0.3 Examining Explainability Methods on CATEs

In this section, we introduce methods that assess the explanations of CATE.

Explanation Robustness Assessment

To evaluate the effect of the number of single models in an ensemble on explanation stability, we first train L ensembles,
each with k single models, and then calculate the pairwise cosine similarity of their explanations. Given feature
attributions ϕ(·) for the lth ensemble, τke,l, composed of k single models, the average cosine similarity cos (θk) is:

cos (θk) =
1

L(L− 1)

L∑
l=1

L∑
j ̸=l

ϕ(τke,l) · ϕ(τke,j)
∥ϕ(τke,l)∥2∥ϕ(τke,j)∥2

. (5)

Examining Ensemble Explanation via Knowledge Distillation

Though ablation studies offer a convenient way to inspect explanation methods, their choice of baseline can potentially
favor particular explanation methods[15, 48]. To address this, we introduce an evaluation approach rooted in knowledge
distillation[49], wherein the student model is coached to emulate the behavior of the teacher model. However, retraining
models using local explanation rankings is resource-intensive given the myriad combinations of feature subsets[25]. We
circumvent this by retraining with a global explanation ranking. Intuitively, an optimal explanation method should
also highlight impactful features on a global level. To quantify the efficacy of an explanation method, we propose using
the knowledge distillation loss, EKD. Formally, this evaluation is defined as

τ̂s = argmin
θ

L(τ(Xk; θ), ỹ) where EKD =
1

N

N∑
i=1

(τ̂s(X
k
i )− ỹi)

2, (6)

where τs is a student model, Xk represents the top k features ranked by their average absolute attribution scores
across training samples, and ỹ is the output from the ensemble (teacher) model, τ̂(X). If the identified features are
predictive of the treatment effect, EKD would be low in the testing set.

Our approach shares similarities with the Remove-and-Retrain (ROAR) method; however, in our setting, ROAR
requires retraining every model in an ensemble whenever a feature is removed, imposing a heavy computational
cost[25]. In contrast, our approach requires only a single student model at every removing step, significantly enhancing
computational efficiency. Notably, knowledge distillation is the only way to obtain comparable model performance
for an ensemble, as shown in [50]. This approach also bypasses the dilemma when selecting a baseline [15, 48].
Additionally, feature contribution on a global (cohort) level facilitates human evaluation[24, 51].

Global Feature Identification

Alternatively, if the ground-truth explanation or important feature is available, we propose computing Spearman’s
rank correlation[26] rankings derived from the explanation methods and the oracle. Specifically, in the context of the
treatment effect, we consider interaction p-values [27] as ground truth. A lower p-value indicates a higher likelihood
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of a feature being an important factor in the treatment effect. To evaluate an explanation method in identifying
important features on the global level, we propose computing Spearman’s rank correlation[26]

ρ(g(τ̂ , ϕ), g(p)), (7)

where ρ is the Spearman’s rank correlation, g(τ̂ , ϕ) denotes the global ranking according to the explanation method
ϕ and model τ̂ , and g(p) indicates the ranking based on interaction p-values.

Data availability

The generation process for synthetic datasets is available on GitHub at https://github.com/AliciaCurth/CATENets.
The IST-3 dataset is publicly accessible at https://datashare.ed.ac.uk/handle/10283/1931. The CRASH-2
dataset can be accessed at https://freebird.lshtm.ac.uk/index.php/available-trials/, with treatment
allocations available upon request. Both the ACCORD and SPRINT datasets are available upon request at https:
//biolincc.nhlbi.nih.gov/home/.
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