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ABSTRACT

Background: Malaria Early Warning Systems(EWS) are predictive tools that often use climatic and 

environmental variables to forecast malaria risk and trigger timely interventions. Despite their 

potential benefits, the development and implementation of malaria EWS face significant challenges 

and limitations. We reviewed the current evidence on malaria EWS, including their settings, 

methods, performance, actions, and evaluation.

Methods: We conducted a comprehensive literature search using keywords related to EWS and 

malaria in various databases and registers. We included primary research and programmatic reports 

focused on developing and implementing Malaria EWS. We extracted and synthesized data on the 

characteristics, outcomes, and experiences of Malaria EWS.

Results: After reviewing 5,535 records, we identified 30 studies from 16 countries that met our 

inclusion criteria. The studies varied in their transmission settings, from pre-elimination to high 

burden, and their purposes, ranging from outbreak detection to resource allocation. The studies 

employed various statistical and machine-learning models to forecast malaria cases, often 

incorporating environmental covariates such as rainfall and temperature. The most common mode 

used is the time series model. The performance of the models was assessed using measures such as 

the Akaike Information Criterion( AIC), Root Mean Square Error (RMSE), and adjusted R squared(R 2). 

The studies reported actions and responses triggered by EWS predictions, such as vector control, 

case management, and health education. The lack of standardized criteria and methodologies 

limited the evaluation of EWS impact.

Conclusions This review provides a comprehensive overview of the current status of Malaria EWS, 

highlighting the progress, challenges, and gaps in the field. The review informs and guides 

policymakers, researchers, and practitioners in enhancing EWS and malaria control strategies. The 

review also underscores the need for further research on the integration, sustainability, and 

evaluation of Malaria EWS usage and harmonized methods to ease review. 

Keywords:  Malaria, Early Warning System, Elimination, surveillance

INTRODUCTION 
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The fight against malaria has reached a critical phase. Despite remarkable strides in reducing the 

global malaria burden from 2000 to 2015, progress has stalled since 2016, especially in high-burden 

countries within sub-Saharan Africa [1–3].  This stagnation signals an urgent need for innovative 

tools and strategies to reinvigorate the push toward the World Health Organization’s (WHO) 2030 

targets for malaria elimination[4]. For these elimination targets to not merely be aspirational, there 

is a need to deploy new or effective vector control measures, diagnostic tools, antimalarial 

medications and social behaviour change communication. A transformation of malaria surveillance 

systems is equally important, shifting from passive reporting to dynamic systems capable of tracking 

hotspots, forecasting outbreaks, and evaluating the effectiveness of interventions [5].

Malaria Early Warning Systems (EWS) are embedded within these enhanced surveillance systems, 

critical for forecasting and mitigating potential outbreaks. By synthesizing data on intervention 

strategies, environmental conditions, and resistance patterns, EWS equips health authorities and 

policymakers with the means to respond effectively to upcoming threats. This proactive approach is 

vital for reducing the strain on healthcare infrastructure and saving lives. As countries edge closer to 

malaria elimination, the frequency of outbreaks is expected to increase due to the ‘heterogeneous’ 

nature of transmission [6,7].  This heterogeneity, driven by disparities in intervention uptake, climate 

variability, and resistance among vectors and parasites, necessitates robust EWS to navigate and 

control the evolving landscape of malaria transmission[8] 

An effective malaria EWS is a powerful predictive tool, enabling public health officials, governments, 

and stakeholders to take informed, preemptive actions to prevent impending outbreaks. Integrating 

data on intervention uptake, climatic conditions, vector and parasite resistance, and other critical 

factors is essential [9]. However, the implementation and development of EWS face significant 

challenges. Diverse methodologies to predict future malaria risk present two distinct scenarios: 

some EWSs provide reasonable certainty (reliability associated with the warning information 

provided) but inadequate lead time (duration between issuing a warning or alert and the onset of 

the event) for action. In contrast, others offer good lead time but with modest certainty in 

predictions. Striking a balance between accurate forecasts and timely response is complex yet crucial 

in developing effective Malaria EWS [10,11]. 

The sustainability of investments in malaria EWS is a significant challenge, with funding often being 

reactive to the occurrence of an outbreak or disaster. This pattern can undermine the long-term 

effectiveness and maintenance of these systems. For an EWS to be successfully integrated into 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.24313035doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24313035
http://creativecommons.org/licenses/by/4.0/


4

malaria surveillance, there is a need for improved infrastructure, capacity building, and collaboration 

among stakeholders, including the community, researchers, and policymakers. These improvements 

are crucial for the effective functioning and utilization of EWS in malaria prevention and control 

efforts [12].

The Roll Back Malaria initiative established a framework for malaria EWS in 2001, guiding their 

development and implementation [13]. However, progress in establishing EWS in Africa has been 

limited over the past two decades. The first systematic review of malaria EWS, conducted by Zinszer 

and colleagues in 2012, focused on forecasting methodologies, predictors, and model evaluations 

but did not address other critical aspects such as actions following early warning predictions, 

performance evaluation, and integration into existing systems for scalability and sustainability [14]. 

Subsequent reviews have also been specific in scope [15,16], highlighting the need for a 

comprehensive and updated review that covers more dimensions of malaria EWS and employs a 

rigorous, systematic approach to synthesize and analyze the evidence.

This current review aims to summarize the status of malaria EWS, focusing on settings, methods, 

performance, actions, and evaluation. It seeks to provide insights into the progress, challenges, 

lessons learned, successes, and limitations of Malaria EWS. The goal is to inform future strategies 

and enhance the effectiveness of EWS in detecting and responding to malaria outbreaks.

In this review, we set out to answer the following questions  

1. What are the transmission settings and methods used when malaria EWS are developed?

2. What are the performance, usability, and feasibility of the malaria EWS piloted, developed, 

and implemented?

3. What actions have been documented following malaria EWS predictions?

4. What are the approaches to evaluating a malaria EWS’s performance, effect, and impact?

 METHODS

This review focused on developing and implementing malaria EWS for populations affected by or at 

risk of malaria, including all age groups and demographics. These systems, either standalone or 
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integrated into broader programs, utilized routinely collected data or data from studies and 

surveillance systems to predict future malaria risks. Instead of comparing these systems with specific 

alternatives, as would be the case in a traditional systematic review, we assessed various 

characteristics of each malaria EWS. The outcomes evaluated included predictions or forecasts of 

malaria cases, disease, mortality, and anti-malarial drug resistance. We incorporated primary 

research published in peer-reviewed journals and available online programmatic reports.

Eligibility criteria

The studies included met the following inclusion and exclusion criteria. 

Inclusion criteria:

 Primary research in a peer-reviewed journal

 Published or available online programmatic reports

 Developing a prediction model for the prediction and or of malaria cases, deaths,  drug 

resistance

 Malaria is the disease of interest.

o Specific outcomes include malaria cases, disease, death, and antimalarial drug 

resistance.

 Presents the development, evaluation, or other experiences of an EWS in a standalone 

setting or as part of a program.

Exclusion criteria:

 Studies focus solely on general malaria trends, risk factors, or predictors without examining 

or forecasting the specific outcomes related to EWS.

  Studies focusing on malaria in non-human subjects, such as animal or in vitro studies.

 Any study that does not explicitly address a prediction model, including the development, 

evaluation, or other experiences with EWS.

 Studies that do not present predictions or forecasted outcomes for malaria cases, disease, 

death/mortality, and antimalarial drug resistance.

 Unpublished research, non-peer-reviewed journals

Information sources

We used the EBSCOhost platform, which gave us access to several major databases: Medline 

Complete, Global Health, CNHL Complete, and Green File.

Search strategy

 Keywords

"malaria" as Medical Subject Headings (MeSH) teams and as a keyword
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AND 

"early warning" OR "prediction" OR "forecasting" as MeSH terms

And as accessible text terms truncated as follows predict* OR forecast* OR "early warn*"

Limiters

 Published between January 2012- 30 June 2023( there was a prior review done before 

2012[14])

 Online full text available

 Peer reviewed

 Human

Data management

Study selection

The Rayyan tool was used to manage the extracted studies. Two reviewers (DM and JG) 

independently screened all retrieved studies' titles and abstracts and excluded irrelevant studies 

based on eligibility criteria. The full-text screening was conducted for all potentially eligible studies 

to assess for eligibility based on the inclusion and exclusion criteria. Any disagreements between 

reviewers were resolved through discussion. 

Data extraction and management

Data extraction used a pre-designed standard data extraction form developed in-house. This form 

included vital information such as the author(s), year of publication, study location, study year, study 

setting, study design, and EWS description parameters.

Risk of bias assessment

The risk of bias in the included studies was not formally assessed because the scope of this review 

did not encompass a full systematic approach, which typically necessitates such an evaluation. 

However, inclusion and exclusion criteria were strictly applied to maintain the integrity and 

reliability of the findings.

Data synthesis

The synthesis of data from the included studies was structured to provide a comprehensive 

understanding of malaria EWS. This process included a summary of the characteristics of the studies, 

including the methodology, population, geographic location, and primary findings. A thorough 

narrative synthesis was done to align with the specific objectives of the review, providing an in-
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depth analysis and synthesis of key findings. These included: (1) Exploration of the settings and 

methods used in developing each malaria EWS, data sources, prediction modeling, and technological 

platforms, (2) Operational aspects of the malaria EWS, focusing on effectiveness, user experience, 

implementation challenges, and sustainability in diverse contexts, (3) Actions and responses 

triggered by EWS predictions with identification of successful practices, challenges, and coordination 

among various stakeholders, and (4) Review of methodologies and criteria used to evaluate EWS' 

performance, effect, and impact. 

RESULTS 

Following our search, we retrieved 5,535 records from the databases (Table 1). No additional records 

were identified from the programmatic reports registers. After 980 duplicate records were removed, 

titles and abstracts of the remaining 5,535 records were screened. After excluding ineligible articles, 

we identified 57 studies for a detailed full-text evaluation of their eligibility. During full-text review, 

we excluded 27 that did not meet the inclusion criteria. The narrative provided in this review is 

derived from a synthesis of 30 articles (Figure 1).

Table 1 Number of studies identified through each database search (including duplicates)

Database Number of studies identified

Medline Complete 4399

Global health 1291

CNHL Complete 473

Green File 70

Others 0

Figure 1 Review Flow diagram

All data collated can be found in supplementary file 1.The review identified studies from 18 

countries, with India contributing the largest proportion and accounting for seven studies in total. 

South Africa and Kenya followed, as illustrated in Figure 2 below.

Figure 2 Frequency plot showing the countries where included studies were conducted

Settings where malaria EWS were developed
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Our systematic review identified a range of papers on Malaria EWS across varied transmission 

settings. These settings include seasonal transmission areas such as Afghanistan [17] and 

Pakistan[18], where EWS models predict malaria trends based on climatic fluctuations. We also 

reviewed papers from highly heterogeneous regions like Ethiopia[19] and Kenya [22], where EWS 

focuses on a high transimmision setting of the country. Perennial transmission settings are 

represented by several studies from India[20–26] and other areas[27,28], demonstrating year-round 

prediction systems. Some malaria EWS papers covered regions nearing malaria elimination, such as 

South Africa [29–32], focusing on detecting residual transmission [33]. Other aspects included 

regions with high transmission during rainy seasons [34], provinces with malaria epidemics in 

China[35], areas with stable transmission [36] and those with low risk [37]. Some studies focused on 

specific challenges, such as the re-emergence of malaria in border regions in China[38], and 

leveraging indigenous knowledge in high-risk zones in Zimbabwe [39](Figure 3).

Figure 3 Countries where the included studies were done and their malaria transmission setting

Approaches to Developing EWS

Several approaches were used to develop malaria EWS (Table 2). We broadly classified the models 

into statistical models, machine learning models, and indigenous knowledge. Statistical approaches 

typically rely on predefined models where covariates are carefully selected based on prior 

knowledge and are explicitly included in the model structure to explain the relationship between 

variables. These models often assume a specific distribution for the data and emphasize 

interpretability, allowing for clear inferences about the effects of each covariate. In contrast, 

machine learning approaches often focus on predictive performance rather than interpretability, 

using algorithms that can automatically select, transform, and weigh covariates in complex ways 

without requiring prior assumptions about the data's distribution. While statistical models typically 

convey uncertainty through confidence intervals and p-values, machine learning models often rely 

on techniques such as cross-validation and bootstrapping to estimate uncertainty, though these 

estimates may not always be directly interpretable.

Most of the studies (12) used statistical models, primarily using time series analysis such as 

AutoRegressive Integrated Moving Average (ARIMA) [17,21,40]. Some studies used variations of 

ARIMA, such as Seasonal AutoRegressive Integrated Moving Average (SARIMA) and Seasonal 

AutoRegressive Integrated Moving Average with Exogenous Regressors (SARIMAX), to account for 

seasonal adjustments and exogenous variables[23,36] . As demonstrated in the paper by Panzi and 
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colleagues, Multimodal approaches were employed to construct malaria EWS models integrating 

various statistical methods[41]. 

Other studies utilized regression models to quantify the relationship between variables[42] or 

correlation models to identify the strength of associations[20]. Some studies applied dynamic 

systems theories and process models to predict malaria trends. For instance, dynamic systems 

theories, such as the theory of critical slowing down[43], were used to anticipate shifts in malaria 

transmission under varying conditions. Similarly, process-based models [24] were employed to 

simulate the complex interactions between environmental factors and malaria dynamics, providing 

insights into how the disease may evolve.

We identified nine studies that utilized machine learning models for EWS development. Studies done 

by Harvey and colleagues and by Martineau and colleagues applied supervised learning methods, 

including Gaussian Processes and Random Forests, to predict malaria epidemics[32,34]. Neural 

networks, particularly Long Short-Term Memory (LSTM) models, were used in four studies by 

Kamana Santosh, Barboza, and Haddway for their effectiveness in handling large datasets and 

complex patterns, such as climate change effects and city-specific malaria trends[25,38,44]. 

Additional approaches included the use of the Waikato Environment for Knowledge Analysis (WEKA) 

by Mohapatra et al. [22] for classifier selection and a combination of Generalized Linear Models 

(GLM), Ensemble Methods (EM), and Support Vector Machines (SVM) by Brown and colleagues 

[27]for data-driven predictions in dense populations. Techniques like fuzzy association rule mining 

by Buczak et al. [37] and Bayesian networks by Haddway and colleagues [33] were also used. One 

study, the Gwanda District study in Zimbabwe[39], utilized Indigenous Knowledge Systems for their 

malaria EWS. 

Table 2 Approaches to the development of EWS.

Approach Category Methods Used Studies/References

Statistical Correlation Dhiman (2017)

Statistical Dynamic 

System

Harris (2020)

Statistical Geostatistical 

model

Colborn (2018)

Statistical Process Roy (2015)
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Statistical Regression Bouma (2016), Sewe (2017), Verma (2018)

Statistical Time series Adeola (2014), Anwar (2015), Ebhuoma (2016), Hussien 

(2017), Karuri (2018), Kifle (2019), Kumar (2020), 

Mopuri (2023), Riaz (2023), Wang (2023), Zinszer 

(2023)

Statistical Time series, 

Multimodel

Panzi (2022)

Statistical Time series, non 

linear

Kim YoonHee (2019), Ratnam (2019)

Machine Learning General 

Machine 

Learning

Mohapatra (2021)

Machine Learning Neural 

Networks

Barboza (2016), HADDAWY (2020), Kamana (2022), 

Santosh (2022)

Machine Learning Rule based Buczak (2015)

Machine Learning Supervised 

Learning

Harvey (2021)

Indigenous 

Knowledge

Community 

EWS

Macherera (2016)

Conveying uncertainty of predictions

Seven studies incorporated measures of uncertainty in their predictions, primarily using confidence 

intervals. Anwar and colleagues [17] predicted malaria cases in Afghanistan from January 2014 to 

September 2015, providing confidence intervals to express the uncertainty in their forecasts. 

Similarly, Roy [27], Karuri [33], Ebhuoma [39], and Zinszer [47] included confidence intervals in their 

predictions. Panzi [44] also used confidence intervals in forecasting malaria cases in the Democratic 

Republic of the Congo (DRC) from 2020 to 2030. In contrast, Colborn [31] employed non-exceedance 

probabilities, an alternative method for representing predictive uncertainty. This distinction 

highlights the different approaches to quantifying and communicating uncertainty across these 

studies. The models that did not include uncertainty are mostly used machine-learning models

Covariates and Data Sources
A range of covariates was used in the included studies (Table 3). Standard covariates across the 

studies include environmental factors such as rainfall, temperature, and humidity, alongside 

vegetation indices like normalized difference vegetation index (NDVI) that measures vegetation 
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health and density and enhanced vegetation index (EVI), which is helpful in areas with dense 

vegetation. Some studies have considered demographic data and specific climate indices like the 

Oceanic Niño Index (ONI). A few studies did not include covariates, relying solely on malaria case 

reports. Additionally, the identified studies have utilized various data sources, including public health 

reports, national disease control databases, health facility data, and satellite-derived data. 

Table 3 The covariates included in the models and data sources.

Year Author Covariates Data Source

2016 Anwar Rainfall, NDVI, EVI, NDWI Ministry of Public Health 

Reports (2005-2015)

2021 Harvey Not included Integrated e-Diagnostic 

Approach (IeDA) Database

2022 Kamana Temperature Chinese Centre for Disease 

Control and Prevention

2019 Wang Temperature, humidity, air 

pressure,vapor pressure, moisture level, 

wind velocity, precipitation, sunshine 

duration, days with daily precipitation

Yunnan Province Malaria 

Data (2011-2017)

2022 Panzi Rainfall, temperature, humidity, wind 

speed

DRC Epidemiological 

Surveillance Directorate 

Database

2016 Bouma Sea surface temperature over the Pacific 

and Indian Oceans

Malaria Case Reports (1982-

2005)

2017 Dhiman Monthly Oceanic Nino Index (ONI) CBHI & NVBDCP Data (1994-

2015)

2014 Kumar Rainfall, temperature, wind Speed, 

humidity

Public Health Data (2006-

2013)

2021 Mohapatra Rainfall, temperature, humidity, 

topography

Directorate of Public Health 

Services, Odisha Data 

(2002-2017)
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2020 Mopuri Rainfall, temperature, NDVI NVBDCP, Visakhapatnam 

Data (2001-2016)

2015 Roy Rainfall, population National Institute of Malaria 

Research Data

2020 Santosh Temperature, rainfall, age, sex, 

vegetation index

RoutineEpidemiological 

Data (1995-2018)

2018 Verma Not included Data obtained via Google 

Search

2020 Harris Not included Hospital Case Reports 

(1965-2002)

2016 Karuri Rainfall Pediatric Malaria Admission 

Data (1990-2011)

2019 Kifle Rainfall Malaria Incidence Data 

(2012-2016)

2017 Sewe LSTs (Day and night), precipitation Siaya District Hospital 

Admission Data (2003-

2013)

2018 Colborn Not included NMCP Routine Data

2020 Brown Demographics, temperature, rainfall Hospital Routine Data

2023 Riaz Not included MOH Routine Data

2019 Adeola Rainfall, NDVI, EVI, NDWI Malaria Case Observations 

(2013-2017)

2018 Ebhuoma Rainfall, Temperature, Wind Speed, 

Humidity

Health Facility & Satellite-

Derived Data

2019 Kim YoonHee 

and Ratnam

Temperature, precipitation Malaria Case Data in 

Vhembe, Limpopo (1998-

2015)

2022 Martineau Sea surface temperature over the Pacific 

and Indian Oceans

Malaria Institute, Tzaneen 

Data (1998-2020)

2017 Hussien None used Routine Incidence Data

2016 Haddway Environmental variables, time lagged 

effects

Community Reports & 

Environmental Data
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2015 Zinszer Rainfall, temperature, vegetation, 

clinical data

Health Facility & Satellite-

Derived Data

2016 Macherera Insects, plant phenology, animals, 

weather, cosmological indicators

Community Reports & 

Indigenous Environmental 

Indicators

2022 Barboza Not included Not included

2015 Buczak Rainfal, Tempereture , social data, 

intervention data

Korea Centers for Disease 

Control and Prevention 

website for the period from 

2004–2013.

NDVI: Normalized Difference Vegetation Index

EVI: Enhanced Vegetation Index

NDWI: Normalized Difference Water Index

IeDA: Integrated e-Diagnostic Approach

DRC: Democratic Republic of the Congo

LST: Land Surface Temperature

CBHI: Community-Based Health Insurance

NVBDCP: National Vector Borne Disease Control Programme

NMCP: National Malaria Control Program

MOH: Ministry of Health

Assessments of EWS model performance 

Table 5 below summarises the EWS assessment methods used. Commonly used metrics for assessing 

performance were the Root Mean Square Error (RMSE) , [18,31,35,38], Mean Absolute Error (MAE)  

[23,27,38,42] and R Squared (R2) value [19,21,24], alongside more complex statistical tools like the 

Akaike Information Criterion (AIC)[17,18,23] and Bayesian Information Criterion (BIC)[45]. Some 

studies have focused on precision measures such as accuracy, sensitivity, and specificity. In contrast, 

others have utilized auto-correlation functions and error estimation methods. In general, the models 

provided good predictability based on the methods used. 

Table 4 Assessing the performance of the EWS models.

Year Author Methods for Assessing Performance
2016 Anwar Autocorrelation function, Akaike Information Criterion (AIC), Root 

Mean Square Error (RMSE), Adjusted R2
2021 Harvey Two-tailed precision
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2022 Kamana RMSE, Mean Absolute Error (MAE)
2019 Wang RMSE, Mean Absolute Scaled Error (MASE), Mean Absolute Deviation 

(MAD)
2022 Panzi MASE, Autocorrelation Function (ACF), The Box-Pierce test
2016 Bouma R Squared (R2)
2017 Dhiman Not specified
2014 Kumar R Squared (R2), ACF
2021 Mohapatra Root Mean Square Error (RMSE), Accuracy, Kappa, Receiver Operating 

Characteristics (ROC) Value
2020 Mopuri RMSE, Mean Absolute Percentage Error (MAPE), MAE, R2, AIC
2015 Roy Accuracy, R Squared (R2)
2020 Santosh Accuracy, Sensitivity, Precision
2018 Verma Correlation
2020 Harris Not specified
2016 Karuri AIC, Root Mean Squared Error of Estimation (RESE), ACF
2019 Kifle R Squared (R2), Bayesian Information Criterion (BIC)
2017 Sewe RMSE, MAE
2018 Colborn RMSE
2020 Brown MAE, Mean Squared Error (MSE)
2023 Riaz RMSE, MAPE, MAE, R2, AIC
2019 Adeola Regions: Mupumalanga, KwazuluNatal, Limpopo
2018 Ebhuoma Standardized Mean Square Error (SMSE), Spearman's correlation
2019 Kim YoonHee 

and Ratnam
Specificity, Sensitivity, RMSE

2022 Martineau Accuracy, Specificity, Sensitivity, Precision
2015 Buczak Model Positive Predictive Value (PPV) and Sensitivity: 0.842 and 0.681
2017 Hussien AIC, MAE
2016 HADDAWY Not specified
2015 Zinszer Not specified
2016 Macherera Not specified
2022 Barboza Not specified

Outbreak detection

Outbreak detection methodologies varied across the studies. Harvey and colleagues defined a 

malaria outbreak occurrence as the point at which the case rate surpassed the five-year mean for 

the same period plus two standard deviations, providing a statistically significant signal of an 

outbreak[34]. Roy and colleagues [24] utilized a binary classifier to predict large outbreaks, defining 

an outbreak occurrence as the point when the probability exceeded a set threshold, which was then 

validated against actual data. Harris and colleagues determined outbreaks by a substantial increase 

in cases, specifically when the count exceeded the previous months’ numbers by more than two and 

a half times [43]Lastly, Colborn and colleagues used exceedance probabilities (EPs) of relative risk to 

define outbreak thresholds, offering a probabilistic approach to outbreak detection [46].

Actions following early warning predictions and incorporation into routine practice
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In two studies, malaria EWS development went beyond development, and a report was included on 

incorporating the EWS into routine practice. For instance, they successfully integrated their malaria 

EWS into the district-level routine practice, streamlining the outbreak detection and response 

process, including the distribution of bed nets, indoor residual spraying, and larviciding [34]. 

Similarly, the EWS approach by Macherela at the ward level demonstrates the system’s adaptability 

and effectiveness in local settings, improved community awareness, and facilitated education 

campaigns [39].

DISCUSSION

The importance of malaria forecasting within the public health area cannot be overstated. The 

origins of malaria EWS can be traced to rudimentary forecasting methods pioneered by health 

practitioners in the 1900s who forecasted malaria using weather data[48]. These have evolved into 

more sophisticated models to support control and elimination efforts[14]. Our review identified 

5,535 records, including 30 studies that have enriched our understanding of malaria early-warning 

systems.  Through these findings, we lay the groundwork for assessing the current practices and 

gaps within malaria forecasting and EWS development.

Forecasting methods should be scrutinized for their underlying assumptions, strengths, and 

weaknesses, with accuracy evaluations conducted on out-of-sample data. We acknowledge 

numerous forecasting methods, but it is of value to leverage standard forecasting measures to 

enable cross-study comparisons. Our review found that time series forecasting methods, particularly 

regression-based approaches, are advantageous due to their flexibility and intuitive appeal. 

However, their limitations include a tendency to overlook serial autocorrelation in errors, potentially 

leading to bias in predictor effects and underestimated standard errors. Such models' residuals 

should be examined for autocorrelation[49,50]. We also identified studies that use ARIMA models, 

which can manage serial autocorrelation in the data, with their extended variants like SARIMA and 

ARIMAX providing additional predictive and forecast capabilities. However, these models require a 

substantial amount of data and examination of residuals to avoid misleading cross-correlation 

functions, which still need to be manually done in some cases[51]. Other complex methods in the 

machine-learning space have also been used. Studies reviewing the use of machine learning models 

in malaria EWS show their versatility across various ecosystems and capability to achieve greater 

accuracy but point to the need for their standardization to allow for assessment across models[52] 
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The current landscape of malaria forecasting is quite strong, mainly due to a solid foundation in 

methodology. Looking ahead, the focus should shift towards enhancing the performance of these 

models, refining their user interface, and automating their functions to facilitate their adoption by 

stakeholders within malaria-affected countries. To this end, it is essential to prioritize the 

development of intuitive platforms that can be seamlessly integrated into existing health systems' 

workflows. An example is the EPIDEMIA system used in the Amhara region of Ethiopia, which utilizes 

near-real-time environmental data and patient records to provide updated malaria risk maps and 

forecasts. Such systems allow health officials to make timely decisions and improve intervention 

strategies based on current data rather than historical trends[53,54]

There is also a clear need to streamline these models to operate with (near) real-time data, enabling 

dynamic responses to evolving malaria trends. This could include developing adaptive algorithms 

that learn and improve from each prediction cycle, thereby increasing the accuracy and reliability of 

the forecasts. We also think fostering open-source communities around these models can accelerate 

innovation, allowing for collective problem-solving and sharing of best practices[55].

Another critical area is customizing these models to account for local environmental variables, socio-

economic factors, and intervention strategies, which are crucial determinants of malaria 

transmission. As we move forward, it is also essential to consider the scalability of these models, 

ensuring they can be deployed in various settings, from rural clinics to national public health centers. 

We must also invest in capacity building, providing training and support to local health practitioners 

and decision-makers to leverage these tools effectively. This approach will increase the reach of 

malaria EWS and empower local actors to take charge of malaria mitigation efforts in their 

communities[56].

In addition to refining existing malaria forecasting models, there is an urgent need to expand the 

EWS scope to predict not just the incidence of malaria but also critical outcomes like mortality rates 

and the emerging threats of antimalarial drug or insecticide resistance [57].  We found this to be a 

crucial gap in our review. The capacity to forecast these outcomes would be a significant leap 

forward, enabling health systems to allocate resources for immediate case management and long-

term strategic planning. Predictive models that can, for example, anticipate the spread of drug-

resistant strains could inform more effective malaria treatment policy decisions and guide research 

into new treatments. This broadening of focus will ensure that forecasting models remain relevant 

and potent tools in the evolving landscape of malaria control and prevention efforts.
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The review found few documented actions following early warning predictions for malaria. These 

actions could range from mobilizing public health resources and the preemptive distribution of anti-

malarial medications and bed nets to targeted vector control measures such as indoor residual 

spraying and larviciding. They could also be community awareness and education campaigns often 

intensified to improve prevention and early treatment-seeking behaviors.[34,39] 

Despite the recognized importance of Malaria EWS, the literature needs to be more extensive in 

terms of their evaluations of their performance, effect, and impact after implementation. Such 

evaluations are necessary to ascertain the true efficacy of these systems. With assessment protocols 

and outcome data, refining EWS, tailoring them to specific environments, and justifying their 

adoption within routine health practices becomes easier. It is also essential to establish a 

standardized operational definition of an outbreak[58]. The diverse definitions used across studies 

make it challenging to compare methods or determine which is more effective. This variability arises 

from the different approaches to defining an outbreak, whether it be a specific threshold of cases, 

expert judgment, or complex data models. Without a standard definition, each study may define an 

outbreak differently, leading to inconsistencies in model evaluation and interpretation[58]

CONCLUSION

For malaria forecasts to be actionable in public health and clinical settings, they must be accurate 

(while acknowledging uncertainty), have appropriate spatial and temporal resolution, and consider 

the operational context, including the availability of data and the technical skill required for model 

application. Using different forecasting methods on identical datasets, coupled with exploring a 

broader array of predictors, including transmission-reducing interventions and standardized forecast 

accuracy measures, will assist in refining malaria forecasting models. The future of malaria 

forecasting hinges on making the existing models more precise, user-friendly, and automated while 

ensuring they are adaptable, scalable, and accessible to health professionals across the spectrum of 

malaria-affected regions. Through these initiatives, we can enhance the global malaria response and 

move closer to the ultimate goal of malaria elimination
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