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Abstract: Humans display sexual dimorphism across many traits, but little is known about 

underlying genetic mechanisms and impacts on disease. We utilized single-cell RNA-seq of 480 

lymphoblastoid cell lines to reveal that the vast majority (79%) of sex-biased genes are targets of 15 

transcription factors that display sex-biased expression. Further, we developed a two-step 

regression method that identified sex-biased expression quantitative trait loci (sb-eQTL) across 

the genome. In contrast to previous work, these sb-eQTL are abundant (n=10,754; FDR 5%) and 

reproducible (replication up to π1=0.56). These sb-eQTL are enriched in over 600 GWAS 

phenotypes, including 120 sb-eQTL associated with the female-biased autoimmune disease 20 

multiple sclerosis. Our results demonstrate widespread genetic impacts on sexual dimorphism 

and identify possible mechanisms and clinical targets for sex differences in diverse diseases.  
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Humans display sexual dimorphism across a variety of traits. Anthropometric and 

physiological traits (e.g., body height, waist-to-hip ratio, etc.) are obvious examples of differences 

between males and females, but sex differences are also evident in the incidence, prevalence, 

severity, and treatment response in human disease. For example, females are more likely to 

develop autoimmune disease(1, 2) but show greater resistance to many infectious agents than 5 

males(3). Sex disparities are also apparent across cancers, with kidney(4), liver(5), skin(6), and 

laryngeal (7) cancers displaying a male bias, while breast and thyroid cancers (8) are more common 

in females. Phenotypic sex differences have been attributed to various factors including sex-

specific hormone activity, sex chromosome complement, sex and gender influences on behavior, 

and complex differences in environment. However, despite these widespread differences, little is 10 

known about the mechanisms and biological functions that underlie sexual dimorphism in humans. 

Previous studies have shown that gene expression differs by sex throughout the genome(9, 

10), and several genome-wide association studies (GWAS) have identified genetic variants that 

show sex-specific effects in human disease(11-14). However, while previous studies have 

identified genes with sex-biased expression (sb-Genes)(10, 15, 16), how well sb-Genes replicate 15 

across diverse datasets and the underlying molecular mechanisms of why individual genes display 

sex-biased expression are not well characterized. Further, recent attempts to link gene expression 

differences to single genetic variants through sex-biased expression quantitative trait loci (sb-

eQTL) discovery have reported few significant associations, with little replication across 

independent datasets(10, 17-19), leading to the dogma that sb-eQTL are very uncommon and 20 

tissue-specific(10). The lack of sb-eQTL previously discovered and replicated may be due to 

relatively small differences in the genetic control of gene expression by sex, low power in previous 

studies, or tissue-type specificity of genetic effects. 

Here, we performed single-cell RNA-seq of 240 male and 240 female lymphoblastoid cell 

lines (LCLs) to identify transcriptomic sex differences and sb-eQTL across the genome. We 25 

identified 1,200 sb-Genes, replicated these in multiple datasets across tissues, and categorized their 

effects by underlying mechanism. Notably, we were able to assign ~97% of all sb-Genes to 

mechanisms involving sex chromosome copy number or transcription factor expression. We then 

developed a two-step method to identify 10,754 sb-eQTL, ~30 times more than previous 

reports(10, 17-19). Finally, we investigated the potential contribution of these sb-eQTL in human 30 

traits and disease by integrating sb-eQTL and GWAS data for a variety of sex-biased traits and 

found sb-eQTL are enriched in GWAS summary statistics for >600 phenotypes collected in the 

NHGRI-EBI GWAS catalog, catalogs of plasma and urine metabolites, and infectious disease 

phenotypes. Examining sb-eQTL in these GWAS datasets revealed many individual loci with 

concordant effects on sex-biased gene expression and effects on sex-biased disease risk, revealing 35 

a genetic basis for sexual dimorphism in human disease. 

 

Sex-biased gene expression is reproducible and a subset is generalizable across tissues 

 Previous work in identifying sex-biased gene expression has identified thousands of genes 

displaying sex-biased expression (sb-Genes)(10, 16). The GTEx study examined conservation of 40 

sb-Genes across tissues and found largely tissue-specific effects, although a fraction of sb-Genes 

enriched for XCI-escapees were consistent across tissues. However, it is important to determine 

how well the sb-Genes identified in this ground-breaking work replicate across different 

individuals, particularly using a dataset with diverse genetic ancestry. Therefore, we sought to 

identify genes with sex-biased expression (sb-Genes) in a single cell type that would allow for 45 

testing replication in multiple datasets.  

 We previously developed a rapid and scalable pooled scRNA-seq method to uncover 

transcriptomic differences in a diverse cohort of 96 LCLs called scHi-HOST (single-cell high-
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throughput human in vitro susceptibility testing)(20). We expanded this method to 480 LCLs in 

twelve worldwide populations (Fig. 1A). Through integration of phased whole genome 

sequencing, we are able to deconvolute pooled transcriptomics to identify gene expression from 

each individual LCL, allowing for rapid screening of hundreds of cell lines. Importantly for this 

study, scHi-HOST was conducted with equal numbers of male and female LCLs, as defined by 5 

sex chromosome complement. Through this controlled method, we can isolate sex-specific 

transcriptomic signatures due to genetic differences without the impact of differential hormones 

and environmental conditions. In total, we sequenced 196,338 single cells that mapped to a single 

individual, with a mean of 409 cells per individual (Table S1; Fig. S1). As expected, we detected 

highly significant differences of X and Y chromosomal genes that matched the reported sex of 10 

these LCLs (Fig. S1C) but also observed significant changes in autosomal genes. In total, we 

discovered 1,200 genes with significant differential expression by sex (sb-Genes, FDR<0.05; Fig. 

1B; Table S2). Also as expected, the effect size of sex-bias was largest for Y chromosomal genes 

(mean |log2FC|=6.59, 3.56-7.96), followed by X chromosomal genes (mean |log2FC|=0.34, 0.04-

7.22), with autosomal genes showing the smallest effect (mean |log2FC|=0.02, 0.02-1.88; Fig. 1C). 15 

KEGG enrichment revealed sb-Gene functional enrichment in pathways involving immune 

responses and basic cellular functions (Fig. S1). 

 We assessed the level of replication of sb-Genes in an independent LCL dataset of 

comparable power (MAGE(21); n=635 LCLs) and across human tissues with the GTEx dataset 

(Fig. 1D). Autosomal and X chromosomal scHi-HOST sb-genes were tested for enrichment using 20 

a Fisher’s Exact Test, restricting analysis only to genes expressed in both LCLs and the tissue 

being compared. The greatest fold-enrichment was observed with the MAGE and GTEx LCLs. 

Whole blood and spleen, tissues with high lymphocyte counts, were also highly enriched for scHi-

HOST sb-Genes. Interestingly, we additionally detected enrichment across nearly all tested tissues. 

Thus, sex biased differences in gene expression are highly reproducible across three LCL datasets 25 

and a subset is generalizable across tissues. In total, 849 (71.5%) of tested scHi-HOST sb-Genes 

were reproduced in at least one other dataset, with a core subset of 21 primarily X chromosomal 

genes previously identified to escape XCI (10) showing sex-biased expression in all tested tissues. 

Interestingly, a single autosomal gene, DDX43, also showed conserved sex-biased expression in 

all tested tissues. This gene has previously been implicated in male fertility and 30 

spermatogenesis(22), and displays sex-biased methylation in newborn (23) and adult (24) 

individuals. 
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Figure 1. Sex-biased expression in LCLs is replicable and partly conserved across tissues. (A) 

Schematic of scHi-HOST pipeline. (B) Volcano plot of differential expression by sex colored by 

chromosomal location (FDR<0.05). (C) Sex-biased genes (FDR<0.05) displayed by chromosomal 

location. (D) Enrichment of sex-biased genes (FDR<0.05) across tissue types. 5 

 

Partitioning of sb-Genes by mechanism 

 The variable effect size of sb-Genes points to different underlying mechanisms of sex-

biased gene expression. The largest effects are due to the Y chromosomal genes that are entirely 

absent in females. We detected 14 Y chromosomal genes expressed in male LCLs. The next largest 10 

effect are genes that vary by copy number due to their presence on the X chromosome. In total, 92 

X chromosomal genes display significant sex-biased expression, none of which lie in the 

pseudoautosomal regions shared by the X and Y chromosomes. Of these, 78 have previously been 
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annotated as escaping X chromosome inactivation in at least one tissue (10) and display a larger 

sex difference in expression (mean |log2FC|=0.38) than both sex-biased autosomal genes (mean 

|log2FC|=0.02) and sex-biased X chromosomal genes not annotated as XCI-escapees (n=14, mean 

|log2FC|=0.15). In total, 7.7% of sb-Genes can be explained due to a direct difference in copy 

number. 5 

However, the vast majority of sb-Genes occur on the autosomes where they exhibit more 

modest effect sizes. One step upstream of these differences in gene expression is activation or 

repression by transcription factors (TFs), which have been previously shown to be involved in sex 

differences across mammalian lineages(25). Thus, we hypothesized that some fraction of the 

remaining sb-Genes could be traced to variable expression of upstream TFs that lead to 10 

downstream targets exhibiting sex-biased expression. To determine if TF expression is predictive 

of sex-biased expression, we utilized a deep neural network (DNN) model previously trained and 

evaluated using >100,000 randomly drawn RNA-seq samples from the ARCHS4 resource(26). 

This DNN predictor uses the combinatorial effects of TFs to predict the expression of all genes. 

We assigned TF expression in females as the baseline condition before applying the TF fold-15 

changes determined from the differential expression analyses described above. Through this 

approach, we discovered that DNN-predicted target expression (based on 1600 TFs) agreed with 

our empirical dataset (Spearman’s ρ=0.25, p=1.72×10-15). We further hypothesized that only 

significantly sex-biased TF expression would be sufficient to predict genome-wide sex-biased 

expression. We thus restricted the DNN prediction to only include effects of sex-biased TFs 20 

(n=127, FDR<0.05) and discovered that DNN-predicted expression still correlated with our 

empirical data (Spearman’s ρ=0.20, p=4.53×10-11). 

We then sought to identify and model the effects of the TFs that could be driving sex-

biased expression. TF enrichment analyses through ChEA3 (which ranks likely causal TFs based 

on RNA-seq co-expression and ChIP-Seq datasets(27)) revealed 608 TFs with significant 25 

(FDR<0.05) enrichment for sex-biased targets (Table S3) in at least one dataset. Out of these 

enriched TFs, 81 display sex-biased expression themselves (FDR<0.05). By investigating the 

targets of enriched TFs, we discovered that the majority (79%) of sb-Genes are targets of at least 

one enriched sex-biased TF. An additional 10% of sb-Genes are targets of non-sex-biased TFs that 

were also enriched for sb-Gene targets. Thus, ~89% of sb-Genes can be classified as possibly 30 

secondary to a difference in TF expression or activity (Fig. 2A). 

To further identify which TFs primarily contribute to sex-biased expression, we integrated 

enriched TFs with the DNN described above. By removing the effect of a single enriched TF at a 

time from the model, we were able to determine that the sb-Gene FOSL1 has the largest impact on 

sex-biased expression (Fig. 2B). FOSL1 encodes the Fos-like 1 (FOSL1, also called FRA1) protein 35 

which can act as both a transcriptional activator and repressor(28). ScHi-HOST transcriptomics 

revealed that FOSL1 displays significant male-biased expression (log2FC=0.37, p=7.39×10-6, Fig. 

2C) and primarily male-biased sb-Gene targets (Fig. 2D).  

Three other sb-TFs (ZNF730, ZFX, ZNF726) notably affected DNN model fit. In each case, 

we broadly see concordant direction of effect in the sex-biased expression of the TF and the sb-40 

Gene targets (Fig. 2C, D). While little is known about ZNF730 and ZNF726, ZFX is a highly 

female-biased gene that escapes X chromosome inactivation and has previously been shown to 

drive X-responsive expression across the genome(29, 30). Thus, for ZFX, the mechanism for 

female-biased TF expression is copy number variation. Previous work has demonstrated that much 

of the effect of additional copies of the X chromosome are mediated by ZFX and that a homologous 45 

TF encoded on the Y, ZFY, activates a similar set of targets, with ZFX having a larger effect(30). 

In fact, FOSL1, ZNF730, and ZNF726 all display at least nominal significance for correlation of 

expression with the number of X chromosomes in individuals with 1 to 4 X chromosomes (Fig. 
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2E; data from(29, 30)). Notably for all 81 enriched sb-TFs that we identified, 49 (60.5%) are also 

correlated with X chromosome copy number (p<0.05; Table S4). Additionally, 29 sb-TFs (35.8%) 

are significantly differentially expressed in ZFX CRISPRi knockdown fibroblasts (p<0.05; Table 

S4), which supports previous work highlighting ZFX as a key transcriptional regulator of genome-

wide sex differences(30). However, the top autosomal sb-TFs previously discussed (FOSL1, 5 

ZNF730, ZNF726) are not significantly impacted during ZFX knockdown and display only limited 

correlation in expression (Table S4, Fig. S2). This suggests that the sex-biased expression of most 

TFs that appear to mediate the sex-biased expression of autosomal genes may arise secondary to 

the number of X chromosomes, although this effect may be ZFX-independent. 

Thus, through integration of ChIP-Seq signatures, coexpression datasets, and DNN 10 

modelling, we identified sb-TF expression as a likely mechanism for sex-biased expression across 

the genome and highlight four primary TFs driving these sex differences. Of these four, ZFX has 

higher expression in females due to females having two copies, while the sex-biased expression of 

the other three TFs can be traced back to X-chromosome copy number effects independent of ZFX.  

 15 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.03.24313025doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24313025
http://creativecommons.org/licenses/by-nd/4.0/


7 

 

 
Figure 2. Nearly all sb-Genes can be explained by differences in sex chromosomes and their 

impact on sex-biased transcription factors. (A) Partitioning of sex-biased genes by location on the 

sex chromosomes (1.2% are on the Y; 6.5% are X-chromosome inactivation (XCI) escapees) and 
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as enriched targets of transcription factors. (B) Ranking of ChEA3-enriched transcription factors 

by DNN score where removal of a single transcription factor affects the correlation of the model. 

Transcription factors are colored by sex-bias. (C) Differential expression of the top four enriched 

transcription factors by sex. P-value from Wilcox rank-sum test. (D) Volcano plot of scHi-HOST 

differential expression by sex results of all ChEA3 targets of each transcription factor. Orange and 5 

blue reflect significantly female- and male-biased targets respectively (FDR<0.05). (E) Expression 

of each transcription factor from LCLs with varying X chromosome copy number (data from(30)). 

(F) Linear modelling results per transcription factor where each target is plotted as a proportion of 

total sex difference removed by the model. Orange and blue reflect significantly female- and male-

biased targets respectively (FDR<0.05). 10 

 

Modeling and testing the effect of a TF on sex-biased expression throughout the genome 

We tested how well sb-Genes could be explained by the effects of sb-TFs through linear 

modeling and through examining experimental perturbation of sb-TF expression. First, the effects 

of each of the 81 enriched sb-TFs can be modeled based on two metrics from our dataset: 1) the 15 

relative expression in males vs. females for the TF (see Fig. 2C) and 2) the beta of the regression 

of TF on downstream target (see Fig. S2). Specifically, the expression level of the target gene can 

be modeled based on the relative increase in TF expression in one sex vs. the other (TFsexeffect) and 

the linear regression coefficient of the effect of TF expression level on target expression level 

within one sex (β) while accommodating the regression intercept (α) and residual (ε): 𝑇𝑎𝑟𝑔𝑒𝑡 =20 

𝛼 + 𝛽 × (𝑇𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 × 𝑇𝐹𝑠𝑒𝑥_𝑒𝑓𝑓𝑒𝑐𝑡) +  𝜀.  The effect of sex-biased expression can then be 

simply modeled as a set of linear equations for all downstream targets of that TF.  

We tested this model on the top four sb-TFs highlighted in the DNN models. We discovered 

that removing the sex difference in TF expression accounts for a mean of 11.8% of sex-biased 

expression in targets of FOSL1, ZNF730, and ZNF726 (Fig. 2F, Fig. S2). Modeling results for the 25 

sb-TF ZFX revealed that ZFX sex-biased expression still accounted for 6.7% of target sex 

differences, but the model tended to over- or under-correct expression (Fig. 2F, Fig. S3). This is 

likely due to the influence of ZFY, the Y chromosome homolog of ZFX. 

We then tested the same models in the independent MAGE dataset. We again show that 

remediating the sex differential expression of FOSL1 reduces the sex-bias in target expression 30 

(Fig. S2), with parallel results also found for ZNF730 and ZNF726.  

 Finally, for two of these top sb-TFs, RNA-seq datasets have been published, defining how 

gene expression is affected by RNAi knockdown of FOSL1 in Th17 cells (31) and CRISPRi 

knockdown of ZFX in fibroblasts(30). We determined that targets of FOSL1 that display sex-

biased expression in scHi-HOST are enriched in differentially expressed genes (FDR<0.1) during 35 

FOSL1 knockdown in Th17 cells (fold enrichment=1.87, Fisher’s Exact Test p=0.032; Table S5). 

Similarly, we identified significant enrichment of sex-biased targets in differentially expressed 

genes (FDR<0.1) following ZFX knockdown (fold enrichment=1.25, Fisher’s Exact Test 

p=0.001).   

Thus, our categorization of sb-Genes appears accurate following computational and 40 

experimental testing. Modeling the effects of sb-TFs based on our scHi-HOST dataset accurately 

predicts the expression of downstream target genes in two independent datasets and experimental 

knockdown supports these findings. The largest sex differences in gene expression are secondary 

to copy number variation, while most sex differences are found in autosomal genes and can be 

traced back to sex-biased TFs, some of which are influenced by copy number of the sex 45 

chromosomes. 
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Identification of sb-eQTL with a two-step approach 

 While the large effects seen with sb-Genes on the X and Y are easily explained by their 

variation in copy number, and our evidence indicates that many of the smaller autosomal 

differences are secondary to these differences, some of these smaller differences might also be due 

to sb-eQTL. However, previous work has identified limited evidence of sb-eQTL through genome-5 

wide interaction models(17, 32) or difference in slopes methods(19).  These methods support the 

discovery of large-effect sb-eQTL but are hampered by low power due to high multiple-testing 

burden. In addition, previous studies that have identified sb-eQTL have sampled populations with 

primarily European ancestry, further limiting discoveries of functional genetic variation. 

Therefore, we developed a two-step pipeline in the diverse scHi-HOST cohort that reduces the 10 

multiple-test burden by first restricting analyses to eQTL that are significant in males or females 

separately before testing for sex interaction (Fig. 3A). We identified 364,480 eQTL in females and 

375,445 eQTL in males in 6,721 and 6,923 eGenes (target genes of eQTL) respectively (q<0.05). 

Interestingly, we identified 7 eQTL on the Y chromosome for the eGene TTTY14, demonstrating 

the first example of genome-wide significant eQTL on the human Y chromosome (Fig. S4)(33). 15 

Combined, there were 502,384 unique eQTL for 9,042 eGenes. We then tested all unique eQTL 

for a SNP × Sex interaction and identified 10,754 sb-eQTL for 1,282 eGenes (FDR<0.05), 

including 35 X-chromosomal genes (Table S6). The majority (76.4%) of discovered sb-eQTL 

display a significant effect in only one sex, although differences in amplification (22.4%) as well 

as rare instances of reverse effect between sexes (1.2%) is also evident (Fig. 3B). The majority of 20 

sb-eQTL are present in intronic regions, although several are also found in 3’ and 5’ UTRs and 

other annotated regulatory regions of the genome (Fig. S4). 

Crucially, we detect moderate replication of sb-eQTL in an independent LCL dataset 

(MAGE, π1=0.20, Fig. S4). However, with a more stringent FDR threshold (FDR<0.01), this 

replication increased dramatically (π1=0.56; Fig. S4), suggesting that while small effect sb-eQTL 25 

are difficult to detect in replication datasets, those with strong effects can be found across datasets. 

We then tested if sb-eQTL are associated with global changes in sex-biased expression. We 

identified a minor overall overlap of sb-eGenes and sb-Genes (7.4%), although this enrichment 

was not significant (Fisher’s Exact Test p=1). Thus, in contrast to prior studies, we demonstrate 

that sb-eQTL are abundant throughout the genome and reproducible. However, they do not explain 30 

the majority of sex-biased gene expression in the human genome. 

Examining the distribution of sb-eGenes across the genome, chromosomes 8 and 19 

displayed a significantly increased proportion of sb-eGenes to non sb-eGenes (Fig. 3C). We asked 

whether differences in the abundance of specific transcription factor binding sites might contribute 

to the skewed genomic distribution. TF motif enrichment analyses revealed that sb-eQTL were 35 

significantly enriched in ZFX binding motifs (FDR=2.49×10-4; Fig. 3D, Table S5)(34), and in 

ZFX ChIP-Seq peaks in K-562 cells (FDR=2.77×10-9; Table S5)(35). Further, the density of ZFX 

ChIP-Seq peaks was correlated with the proportion of sb-eGenes on each chromosome (Fig. 3E). 

Therefore, differences in the abundance of ZFX binding sites may contribute to differences in the 

density of sb-eQTL among chromosomes. Further, the fact that ZFX expression is inherently sex-40 

biased suggests that SNPs residing in ZFX binding sites can result in downstream sex differences 

across the genome. 
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Figure 3. sb-eQTL are abundant throughout the genome but are of small effect size. (A) Two-step 

regression pipeline for the efficient discovery of sb-eQTL. (B) Significant sb-eQTL classified into 

three main modes of action. (C) Proportion of sb-eGenes to total eGenes by chromosome. *: 

p<0.05 two-proportion z-test. (D) Enrichment of sb-eQTL in transcription factor motif-altering 5 
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sites. (E) Correlation of ZFX ChIP-seq consensus peaks normalized by chromosome lengths to 

proportion of sb-eGenes to total eGenes with Pearson’s correlation values. 

 

sb-eQTL underlie some sex-bias in human traits 

 Although most sex-biased gene expression is not due to sb-eQTL, we hypothesized that 5 

the cases where it does occur might underlie some of the sex differences seen in human phenotypes 

and disease risk. This is most pronounced in autoimmunity where diseases such as systemic lupus 

erythematous and multiple sclerosis (MS) display severe sex-bias. To identify sb-eQTL associated 

with human disease risk, we utilized the genetic architecture tool iCPAGdb(36). iCPAGdb 

integrates the NHGRI-EBI GWAS catalog (37)  with large datasets of plasma (38) and urine (39) 10 

metabolites and cellular host-pathogen phenotypes (40) to determine shared genetic factors. 

Briefly, iCPAGdb overlaps lead SNPs from the integrated GWAS data with SNPs from a user-

submitted list, accounts for linkage between signals, and calculates enrichment. We discovered 

that 617 phenotypes significantly overlap with our sb-eQTL (FDR<0.05, Table S7). The most 

enriched phenotypes consist of highly sex-biased anthropometric traits such as height and body 15 

mass index (Fig. 4A). Specifically, for height, out of 2984 GWAS loci, 69 are or are in linkage 

disequilibrium (r2>0.4) with leading sb-eQTL, a highly significant enrichment based on Fisher’s 

exact test in iCPAGdb (p=1.46×10-69).  

 For each sb-eQTL associated with a human trait, we would predict that the association 

would be stronger in the sex with the larger eQTL effect. Therefore, we tested this prediction using 20 

UK Biobank sex-stratified GWAS data(41). We discovered 458 sb-eQTL (63 sb-eGenes) with 

genome-wide significant association (p<5×10-8) with height in either males or females and an 

additional 254 associated sb-eQTL (44 sb-eGenes) at the suggestive threshold of p<1×10-5. We 

can also detect improved colocalization of eQTL and GWAS loci by utilizing sex-stratified 

analyses. We identified a sb-eQTL (rs12948394) associated with expression of the gene SOCS3 25 

(Fig. 4B) and with body height (male p=9.67×10-8, female p=7.68×10-4). Upon sex-stratified 

colocalization analysis of scHi-HOST eQTL (Fig. 4C) and UK Biobank body height (Fig. 4D), 

we found strong colocalization in males (PP4=0.93) but not in females (PP4=0.05), suggesting 

that the effect of SOCS3 expression on height is a male-specific effect. 

 30 
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Figure 4. sb-eQTL are associated with human phenotypes in a sex-biased manner. (A) iCPAGdb 

enrichment of sb-eQTL in human phenotypes. (B) sb-eQTL rs12948394 shows association with 

SOCS3 expression in males but not in females. (C) LocusZoom plots of female and male eQTL 

results demonstrate an association peak only in males. (D) LocusZoom plots of female and male 5 

UKBB body height GWAS results revealed a peak that colocalized with the eQTL signal only in 

males. 

 

 When results were restricted to disease susceptibility risk, we identified 132 significant 

enrichments with sex-biased autoimmune diseases predominantly enriched (FDR < 0.05, Fig. 5A). 10 

Due to the high enrichment of sb-eQTL in MS susceptibility loci (fold-enrichment=56.5, FDR= 

4.54×10-19) and the relevance of lymphoblastoid cells to this disease (as EBV infection of B cells 

has been demonstrated to play a causal role(42, 43)), we further investigated sb-eQTL effects in 

MS. Through integration of MS GWAS data from the International Multiple Sclerosis 

Consortium(44), we identified 80 sb-eQTL (16 sb-eGenes) with genome-wide significant 15 

association with MS, and an additional 40 (9 sb-eGenes) with suggestive association. We identified 

a variant on chromosome 8 (rs1466526) that is associated with sex-biased expression of the nearby 

gene ZC2HC1A (Fig. 5B), where the effect is larger in female individuals than male. This gene 

has previously been implicated with MS through integration of GWAS and eQTL data(45). 
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Because this genetic variant is an example of a sex difference in amplification, we hypothesized 

that we would see similar colocalization of GWAS signals with sex-stratified eQTL. We 

discovered that this GWAS variant does significantly colocalize with both female (PP4=0.93) and 

male (PP4=0.91) eQTL (Fig. 5C) as well as sex-combined eQTL (Fig. S5). In addition, we 

identified a variant on chromosome 10 (rs1790120) that shows association with expression of 5 

DDX55 in only male individuals (Fig. 5D) and is associated with reduced risk of MS (Fig. 5E, 

p=3.98×10-8, OR=0.90). We then tested the sex-stratified eQTL and sex-combined MS GWAS for 

colocalization at this locus and found significant colocalization only in male individuals 

(PP4=0.90) and not in female individuals (PP4=0.06) suggesting a protective effect of DDX55 

expression in MS pathogenesis. With sex-combined eQTL, we do not see significant colocalization 10 

(PP4=0.68, Fig. S5), highlighting the importance of integrating sex-stratified analyses into 

genome-wide discoveries. Although DDX55 has not previously been implicated with MS 

pathogenesis, other DEAD-box helicases have been shown to have a protective effect(46-48).  
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Figure 5. sb-eQTL are associated with disease-risk loci, particularly in autoimmunity. (A) 

iCPAGdb enrichment of sb-eQTL in human disease-risk loci. (B) sb-eQTL rs1466526 displays 

greater association with ZC2HC1A expression in females than in males. (C) LocusZoom plots of 

female and male eQTL as well as sex-combined multiple sclerosis GWAS results for the region 5 
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surrounding ZC2HC1A. (D) sb-eQTL rs1730120 shows association with DDX55 expression in 

males but not in females. (E) LocuzZoom plots of female and male eQTL as well as sex-combined 

multiple sclerosis GWAS results for the region surrounding DDX55. 

 

Discussion 5 

We identified sex-biased gene expression across the genome with 9% of genes displaying 

significant sex-bias. The largest sex differences in gene expression are the product of copy number 

variation due to the sex chromosomes, but these account for only 8% of sb-Genes in this study. 

However, the vast majority (79%) of sex-biased genes are targets of at least one sex-biased 

transcription factor, suggesting a possible mechanism of global sex differences in gene expression. 10 

One such enriched transcription factor, ZFX, is known to escape X chromosome inactivation and 

suggests that sex chromosome copy number is the underlying mechanism leading to sex-biased 

expression of ZFX targets. In fact, sex chromosome number may also underlie the sex-biased 

expression of autosomal TFs and drive sex-biased expression of targets. Thus, our data 

demonstrate that much of the observed sex-biased expression of human genes can be traced 15 

directly or indirectly to the number of X chromosomes, although our model cellular data represents 

cell-autonomous sex differences and does not account for the influence of sex hormones. 

Beyond the effects of the X chromosome, the initial mechanism of sex-bias of autosomal 

genes may have additional contributing factors, such as differential chromatin accessibility 

between biological sexes(32). In addition, a small portion of sex-biased genes (10%) are not targets 20 

of sex-biased transcription factors. These examples of sex-biased expression may be due to 

additive effects of multiple transcription factors or a possible amplification of minor sex 

differences in transcription factor expression. Lastly, not included in this study was the 

consideration of transcription-associated RNA-binding proteins or large-scale 3D-genome 

structure which may explain some residual sex differences in gene expression. But beyond 25 

categorizing sex-biased transcriptional effects, we have modeled the effects of the most important 

sex-biased TFs on their target genes and experimentally examined their effects in loss-of-function 

transcriptomic datasets. In combining this categorization of sex-biased effects with modeling and 

empirical testing, we move to the level of molecular detail necessary to understand why individual 

genes have sex-biased expression and how this might be manipulated to impact human health. 30 

While it is well-accepted that sb-Genes are abundant throughout the genome, with many 

conserved across tissues(10), the existence and relevance of sb-eQTL is much more contentious. 

In contrast to previous reports, we identified extensive evidence of sex differences in cis-acting 

genetic regulation (10,754 sb-eQTL) that replicated in an independent LCL dataset. Due to their 

subtle effects, sb-eQTL are difficult to identify in genome-wide analyses. Previous studies have 35 

mainly tested genome-wide for SNP × sex interaction(17, 32), considered sex differences in effect 

size(19, 49), or only considered variants with sex-combined association with gene expression(10). 

The prior approaches suffer from large multiple correction burden while the latter is biased towards 

eQTL with sex-differences in amplification. Our utilization of a two-stage pipeline reduces 

multiple testing burden while focusing analysis on expression-associated variants. In addition to 40 

increased power, the two-stage approach allows for well-powered detection of all three kinds of 

sb-eQTL, and in our analysis, sb-eQTL that display an effect only in one sex are the most common. 

Our finding that sb-eQTL identified in this way are abundant and replicable across datasets sets a 

precedent for using this method across other tissues and disease contexts.  

Enrichment of sb-eQTL in ZFX binding sites again suggests sex chromosome complement 45 

number and transcription factor activity as an underlying mechanism of genome-wide sex 

differences. This is supported by ZFX binding sites predicting sex-biased eQTL distribution across 

the genome. However, there are additional factors that may impact sb-eQTL activity that were not 
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investigated including differential chromatin accessibility and additional RNA-binding 

transcriptional regulators. Further investigation is required to identify tissue-specific and 

conserved regulation. In addition, this data represents only a single timepoint and does not consider 

how sex differences change during development or in response to stimuli to impact human biology. 

While not accounting for large-scale differences in sex-biased gene expression, sb-eQTL 5 

provide additional context for complex traits and diseases and may even reveal mechanisms that 

explain sex differences in disease risk and severity. Indeed, we identified sb-eQTL that show 

stronger association with human traits and better colocalization preferentially in one sex. In MS, a 

highly female-biased autoimmune disease, we identified sex-bias in a known risk gene 

(ZC2HC1A) as well as discovered a novel gene connection (DDX55). Further stratification of 10 

genome-wide discoveries by sex will continue to reveal novel biological mechanisms and support 

the inclusion of sex as a biological variable. These results serve as a blueprint to discover 

mechanisms of sex differences across the genome and can even be applied more broadly to 

uncovering any gene × environment interaction that affects human health. 

 15 

METHODS 

Lymphoblastoid cell lines 

240 male and 240 female 1000 Genomes LCLs from 12 worldwide populations (Table S1) 

were purchased from the Coriell Institute. LCLs were maintained at 37°C in a 5% CO2 atmosphere 

and grown in RPMI 1640 media (Invitrogen) supplemented with 10% fetal bovine serum (FBS), 20 

2 mM glutamine, 100 U/mL penicillin-G, and 100 mg/mL streptomycin. Equal numbers of pooled 

LCLs are stored in liquid nitrogen vapor phase. 

 

Single-cell transcriptomics 

Equal numbers of LCLs were pooled and added to a 24-well non-tissue culture treated plate 25 

in PBS with 0.4% BSA, Mg2+, Ca2+, 100 U/mL penicillin-G, and 100 mg/mL streptomycin. 

Uninfected controls from the previously described infection (20) were spiked after 3 h with 500 

µL of the LCL growth media described above. After 24 h, pooled cells were collected, spun down, 

and resuspended in PBS with 0.04% BSA for single-cell cDNA library preparation. This process 

was repeated three times with 48 LCLs used in both scHi-HOST Neo (previously scHH-EIK 30 

in(20)) and scHi-HOST Morpheus (previously scHH-LGC in(20)) and 384 LCLs used in scHi-

HOST Trinity (not previously described; Table S1). 

Cell counts and viability were collected on a Guava EasyCyte HT system by 7-AAD 

staining before dilution to a solution of 1 million cells/mL with intended capture of 10,000 

cells/well for scHi-HOST Neo and Morpheus and to 1.25 million cells/mL with intended capture 35 

of 20,000 cells/well for scHi-HOST Trinity. The 10x Chromium Single Cell 3’ platform version 

3.1 (Pleasanton, CA) was used to generate individual barcoded cDNA libraries for each well 

following the manufacturer’s protocol. Briefly, the 10x Chromium Controller separates individual 

cells into nanoliter-scale gel beads in emulsion (GEMS) where cell-specific barcoding and oligo-

dT-primed reverse-transcription occurs. For scHi-HOST Neo, 13,675 uninfected droplets were 40 

captured in 1 Chromium well. For scHi-HOST Morpheus, 36,716 uninfected droplets were 

captured across 2 Chromium wells. For scHi-HOST Trinity, 85,558 uninfected droplets were 

captured across 4 Chromium wells. 

cDNA samples from scHi-HOST Neo were single-indexed and sequenced on an Illumina 

HiSeq system with a target depth of 50,000 reads per barcoded droplets. Reads were sequenced 45 

with read 1 length of 150 base pairs (bp) and read 2 length of 150 bp. This resulted in a mean depth 

per cell of 37,815 reads. scHi-HOST Morpheus samples were dual-indexed and sequenced on one 

Illumina NovaSeq S4 flow cell with target depth 100,000 reads per barcoded droplet. Reads were 
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sequenced with read 1 length of 28 bp and read 2 length of 150 bp resulting in a mean depth per 

cell of 67,415 reads. Lastly, cDNA samples from scHi-HOST Trinity were dual-indexed and 

sequenced on a NovaSeq S4 flow cell with target depth of 50,000 reads per droplet. Reads were 

sequenced with read 1 length of 28 bp and read 2 length of 150 bp which resulted in a mean depth 

per cell of 69,933 reads. 5 

 

Single-cell RNA-seq alignment and LCL assignment 

As previously described(20), we processed all raw sequencing results using the 10X 

Genomics CellRanger 7.0.1 with default parameters unless otherwise indicated. Reads from each 

sample were mapped to GRCh38. For the single-indexed scHi-HOST Neo, we used the 10X 10 

Genomics Index-hopping-filter to removed index-hopped reads 

(https://github.com/10XGenomics/index_hopping_filter) before mapping to the human genome. 

To remove possible ambient RNA contamination, we used CellBender (50) v.0.3.0 with –fpr 0.01 

and –epohcs 150. CellBender uses a deep generative model to learn a background noise profile to 

delineate cell-containing and empty droplets and provide noise-free gene count quantification.  15 

We then used Demuxlet (51) to assign each barcoded read from cell-containing droplets to 

an LCL. Demuxlet utilizes a CellRanger bam file with barcoded sample reads and a VCF 

containing all autosomal genotypes (obtained from the 1000 Genomes Project, NYGC 30x high-

coverage release) to computational deconvolute each droplet into its corresponding LCL identity. 

After assigning each droplet to its corresponding LCL, CellBender gene counts were pseudobulked 20 

by sum to produce gene counts for each LCL. To reduce any batch effects in expression between 

the scHi-HOST Neo, Morpheus, and Trinity datasets, we conducted ComBat-seq(52) correction 

and merged all LCL gene counts into the combined dataset scHi-HOST Matrix which was used 

for all downstream analyses. 

 25 

Sex-biased differential expression 

The R package “DESeq2” (53)was then used to perform all differential expression 

analyses. Feature counts were normalized according to the DESeq2 default “Median of Ratios” 

method which accounts for differences in sequencing depth and RNA composition between 

samples. Genes with at least 5 normalized counts across 10% of individuals were retained for 30 

further analyses. Differentially expressed genes by sex were then discovered in DESeq2 with LCL 

population as an additional covariate to account for possible population effects. KEGG pathway 

enrichment was conducted using the R package “clusterProfiler”(54). 

A parallel analysis was conducted to discover sb-Genes in the MAGE dataset(21). Raw 

counts from individuals not included in scHi-HOST Matrix were normalized as described above 35 

with LCL population as a covariate. Sb-Genes in GTEx were previously discovered using a linear 

model with covariates accounting for known sample and donor characteristics, as well as surrogate 

variables that capture hidden factors of expression variability(10). 

 

Transcription factor enrichment and deep neural network modeling 40 

Transcription factor enrichment of sb-DEGs was accomplished in ChEA3 (27) through the 

utilization of two co-expression datasets (ARCHS4 (55) and GTEx(56)) and two ChIP-Seq 

datasets (ENCODE (57) and Literature(27)). Briefly, the overlap of sb-DEGs and known TF 

targets from these distinct datasets was compared and enrichment calculated with a Fisher’s Exact 

Test. Enriched TFs were then prioritized for additional analyses based on the Chea3 Mean Rank 45 

Score. 

The deep neural network (DNN) model developed by Magnusson, et al. (26)was used to 

predict gene expression from TF expression. This neural network was trained on the ARCHS4 
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expression database (55) using two hidden layers with 250 hidden nodes each. Using this model, 

we predicted sex-biased expression in scHi-HOST Matrix from TF expression and female/male 

fold-change results from the above DESeq2 analyses. We then compared the predicted values of 

sb-Genes to observed quantifications using Spearman’s correlation. To determine if sb-TFs are 

sufficient to predict sb-Gene expression, we retained only those TFs with significant sex-biased 5 

expression (n=127) and repeated the model as outlined above. Lastly, to prioritize TFs that highly 

impact sex-biased expression, we iteratively removed the effect of one TF at the time and evaluated 

the difference in model performance. 

 

Transcription factor linear modeling 10 

We utilized linear models to determine the effect of removing the observed sex-bias in TF 

expression on target genes. We tested all sb-Genes annotated as targets of a particular TF in Chea3 

for co-expression by generating a linear model of target expression as a function of TF expression. 

Target and TF expression matrices were generated as outlined above in the DESeq2 differential 

expression analyses. We then modeled how the removal of sex differential TF expression would 15 

impact expression of those targets with significant (p<0.05) co-expression. We utilized a model 

based on the relative increase in TF expression in one sex vs. the other (TFsexeffect) and the linear 

regression coefficient of the effect of TF expression level on target expression level within one sex 

(β) while accommodating the regression intercept (α) and residual (ε): 𝑇𝑎𝑟𝑔𝑒𝑡 = 𝛼 +

𝛽 × (𝑇𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 × 𝑇𝐹𝑠𝑒𝑥_𝑒𝑓𝑓𝑒𝑐𝑡) +  𝜀. To determine which targets were most impacted by sb-TF 20 

expression, we compared the modulated log2(M/F) fold changes of each target to the baseline 

values. 

 

Enrichment of sb-targets in transcription factor knockdown datasets 

We utilized raw counts from FOSL1 and scrambled control RNAi (72hr) in Th17 cells 25 

from GSE174809 (31) to identify enrichment of sb-targets. We then calculated differential 

expression in DESeq2 using default parameters in genes with at least 5 raw counts in at least 3 

replicates. For ZFX CRISPRi knockdown, we utilized DESeq2 differential expression results 

previously published in(30). 

 30 

Sex-biased eQTL discovery 

Sex-biased eQTL were discovered through a two-step linear regression method executed 

in the enhanced version of FastQTL (58) utilized in the GTEx studies(10, 59). First, scHi-HOST 

Matrix counts in each sex separately and sex-combined were normalized through the median of 

ratios method in DESeq2. Genes with at least 6 unnormalized counts across 20% of individuals 35 

were retained for eQTL discovery. Gene counts were then further normalized using rank-based 

inverse normal transformation as previously described(59). To account for population structure, 

we utilized the top 5 genotypic principal components (PCs) from the autosomal genome as 

covariates. In addition, the top 15 probabilistic estimation of expression residuals (PEER) factors 

(60) were used to account for hidden confounding variables in the expression matrix. PEER factors 40 

were tested for collinearity with known covariates such as known genotypic PCs and sex (sex-

combined analysis only). Cis-eQTL in each sex were discovered through the nominal mode of 

FastQTL using the covariates described above and a window of 1 Mb from the transcriptional start 

site (TSS) of each gene. The adaptive permutation mode (--permute 1000 10000) of FastQTL with 

the same covariates was used to account for multiple tests within each gene. Multiple test 45 

correction across the genome was then conducted using the Storey’s Q (61) method on the top 

eQTL for each gene to determine a significance threshold (q<0.05) for each gene. 
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All unique significant cis-eQTL from each sex were then tested for a SNP × sex interaction 

through the interaction mode of FastQTL. Because the interaction mode does not support adaptive 

permutation, multiple test correction for tests within a gene was conducted using eigenMT(62), 

which estimates the number of unique tests per gene based on linkage blocks. Multiple test 

correction across all tested genes was then conducted using the Benjamini-Hochberg FDR method 5 

on the top sb-eQTL for each gene to determine a significance threshold (FDR<0.05) for each gene. 

 

Enrichment of sb-eQTL in transcription factor motifs and binding sites 

We utilized the SNP2TFBS database (34) to identify TFs impacted by sb-eQTL. The 

SNP2TFBS database estimates a SNP’s effect on TF binding based on a position weight matrix 10 

(PWM) model from JASPAR database motifs(63). We identified enrichment of sb-eQTL in TF 

ChIP-Seq peaks through human blood cell ChIP-Seq datasets collected in ChIP-Atlas(35). We 

utilized 100 permutations to estimate background signatures and a peak threshold of q<1×10-5. 

Lastly, for targeted investigation of ZFX involvement with sb-eQTL, we downloaded ENCODE-

processed ZFX ChIP-Seq peaks for K562 (ENCFF840NZE), HCT116 (ENCFF858YWR), C42B 15 

(ENCFF160AXQ), and MCF7 (ENCFF861DOL) cells(64-66). We then called consensus peaks as 

overlapping regions found in at least 2 cell types using the R package “DiffBind”(67). 

 

Phenotype association of sex-biased eQTL 

To investigate possible phenotypic associations of sb-eQTL, we utilized the command-line 20 

execution of the interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb(36)). 

Briefly, iCPAGdb trims an input list of SNPs (here sb-eQTL) to leading variants based on linkage 

disequilibrium information from 1000 Genomes European populations(68). These variants were 

then queried against cataloged GWAS variants from the NHGRI-EBI GWAS catalog(37), urine 

(39) and plasma metabolites(38), and Hi-HOST infectious disease phenotypes(40). Both direct 25 

overlap and overlap with SNPs in linkage disequilibrium (r2>0.4) with lead variants were 

considered. Enrichment of query SNPs within GWAS phenotypes was calculated based on 

observed vs. expected overlap and significance calculated with Fisher’s Exact Test. Phenotypes 

with an enrichment FDR<0.05 were considered to share significant genetic architecture with sb-

eQTL. Phenotypes were filtered to include only single effect phenotypes and behavioral GWAS 30 

were removed due to their likelihood to be biased by misreporting(69). 

 

Colocalization of phenotype-associated sex-biased eQTL 

We applied Giambartolomei et al.’s colocalization analysis (COLOC), using the R package 

“coloc” (70)to determine if GWAS and eQTL signals were due to the same causal SNP. COLOC 35 

uses a Bayesian framework to calculate the posterior probabilities that two traits are not associated 

in the locus of interest (PP0), only one trait is associated in the locus (PP1 and PP2), both traits are 

associated at the locus but with different, independent causal variants (PP3), or both traits are 

associated with a single causal variant in the locus (PP4). For GWAS summary statistics, we 

filtered SNPs within a 400 kilobase (kb) window from the SNP of interest. For eQTL datasets, we 40 

filtered all eQTL for a candidate eGene and then filtered SNPs within a 400 kb window from the 

SNP of interest. We ran the COLOC “coloc.abf” function using the default prior parameters, 

p1=1×10-4, p2=1×10-4, and p12=1×10-5 for all analyses. PP4 between 0.700 to 0.900 was 

interpreted as likely to share a single causal variant, while PP4>0.900 was interpreted as sharing a 

single causal variant. The PP4/PP3 measured the intensity of the colocalization signal with values 45 

>5.00 indicating further support for colocalization and >3.00 suggesting likely colocalization(71, 

72). LocusZoom plots were created using “locuszoomr”(73). 
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