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Abstract 

Background: 
Of persons randomized to the placebo arm of Alzheimer’s Disease (AD) treatment trials, 40% do 
not show cognitive decline over 80 weeks of follow-up. Identifying and excluding these 
individuals from both arms of randomized clinical trials (RCTs) of AD has the potential to 
increase power to detect treatment effects. 
Objectives: We aimed to develop machine learning-based predictive models to identify persons 
unlikely to show decline on placebo treatment over 80 weeks. 
 
Method: 
We used the data from 1072 patients with mild dementia and biomarker evidence of amyloid 
burden from the placebo arm of EXPEDITION3 trial. Participants were identified as those who 
demonstrated Clinically Meaningful Cognitive Decline (CMCD, change in ADAS-Cog≥3) or 
Cognitive Stable (CS, change in ADAS-Cog<3) at final visit of the trial (week 80). Machine 
learning-based classifiers were trained to classify participants into CMCD vs. CS groups using 
combinations of demographics, neuropsychological tests (NP) and biomarkers, including APOE4 
genotype and volumetric MRI. The results were developed in 70% of the EXPEDITION3 
placebo sample (EXPtrain) using 5-fold cross-validation. Trained models were then used to 
classify the participants in an internal validation sample (EXPvalid) and an external matched 
sample from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.  
 
Result: 
Participants selected from the EXPEDITION3 trial were on average 72.7(±7.7) years old,  59% 
were female. CMCD was observed in 55.8% of participants of EXPEDITION3 at final visit. In 
the independent validation sample within the EXPEDITION3 data, all the models showed high 
sensitivity and modest specificity. Positive predictive values (PPVs) of models were at least 11% 
higher than base prevalence of CMCD observed at the end of the trial. The subset of matched 
ADNI participants (ADNIAD) were on average 74.5(±6.4) years old and 46% female. The models 
that were validated in ADNIAD also showed high sensitivity, modest specificity and PPVs of at 
least 15% higher than the base prevalence in ADNIAD.  
 
Conclusion: 
Our results indicate that predictive models have the potential to improve the design of AD trials 
through selective inclusion criteria for participants expected to decline and exclusion of those 
expected to remain stable. 
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1 Introduction 
 
The promise of Disease-Modifying Therapies (DMTs) for Alzheimer's Disease (AD) lies in their 
potential to delay or slow the clinical progression of by addressing disease pathologies before 
they reach a stage of irreversible cell death. These therapies aim to intervene in the underlying 
mechanisms of the disease, potentially altering their course and providing more effective 
treatment outcomes 1,2. Therefore, the primary outcome in randomized clinical trials (RCTs) of 
AD typically involves assessing changes in clinical and cognitive outcomes. One of the 
objectives of these trials is to show directional concordance by correlating the deceleration of 
cognitive and functional decline with alterations in biomarkers that index the core pathologies.  
 
Most clinical trials in AD have not been successful 3,4. Clinical trials fail for several reasons. 
Biological variability of the disease, such as the phenotypic heterogeneity in case of AD, can 
obscure the effects of a treatment 5,6. Biological heterogeneity in AD, the role of concomitant 
pathologies and comorbidities likely leads to variability in participant’s response to treatment. 
Many trials address this heterogeneity at the time of recruitment by imposing strict inclusion and 
exclusion criteria including family and personal clinical history,  clinical stage of the disease, and 
in-vivo biomarkers 7,8, adding to the complexity and cost of study enrollment9. Studies rarely 
consider the uneven rates of expected cognitive decline among eligible trial participants.  Prior 
work in the placebo arm of randomized trials and in observational studies show that up to half of 
patients with AD do not show meaningful cognitive decline over the course of 18 to 24 months 
even among individuals who are amyloid positive 10-12. If the study endpoint includes a reduction 
in the rate of decline on active treatment in comparison with placebo, inclusion of individuals 
likely to show no cognitive decline could be highly impactful on effect size and power.  
 
To apply this insight to the design of clinical trials requires that we identify and exclude these 
individuals, who are unlikely to decline, from enrollment. In this study, our primary objective 
was to use data from the placebo arm of a phase III RCT to develop machine learning (ML) 
predictive models to identify and exclude individuals anticipated not to  show cognitive decline 
by the end of the trial, based on their baseline characteristics. We used data from the placebo arm 
data from EXPEDITION3, a phase III RCT of Solanezumab for development and internal 
validation of models and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for 
external validation of our findings. It has been shown that individualized predictions from ML 
models, particularly using imaging markers, can be used to inform sample size calculations or to 
considerably improve statistical power for detecting treatment effects 13. Using similar 
approaches, we performed plasmode simulations of treatment effects using randomized subsets 
of EXPEDITION3 placebo arm data informed by our imaging-based predictive models to 
compare the statistical power with the classical modelling that does not include any predictors.  
Additionally, we investigated whether incorporating 6-month change in cognition enhanced the 
models’ performance. We discuss how our findings hold implications for the development of 
models capable of enriching AD trials, paving the way for more increased success of future 
trials. 
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2 Methods 
2.1 Design and Participants of the Studies 
We used data from a clinical trial EXPEDITION3 (clinicalTrials.gov number NCT01900665) 
and the ADNI study whose recruitment was designed to simulate a clinical trial 14. 
EXPEDITION3 was a placebo-controlled phase-3 global clinical trial for Solanezumab, a 
humanized monoclonal antibody that increases clearance of soluble Aβ from the brain. The trial 
was conducted by Eli Lilly and Company with a primary objective of decreasing cognitive 
decline in mild dementia due to AD. The trial was conducted across 198 sites in 11 countries 
with institutional review board approval at each institution and a written informed consent from 
all participants. The data used in this study was from the placebo arm of the trial. 
  
For external validation, we use data from ADNI, an ongoing cohort with the cycles ADNI-1, 
ADNI-GO, ADNI-2, and ADNI-3 across numerous  participating institutions. Data used in this 
study were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see 
www.adni-info.org. ADNI was approved by the institutional review boards at all the 
participating institutions. Written informed consent was obtained by or on behalf of all the 
participants at each site. 
 
2.1.1 EXPEDITION3 – Placebo Arm Population 
EXPEDITION3 trial included participants aged 55 to 90 years old, with mild AD without 
depression, besides other inclusion and exclusion criteria. Participants who were in need, were 
allowed to receive therapy - including treatments for symptoms of dementia 
(acetylcholinesterase inhibitors and memantine) and nondrug treatments to ensure that they 
continued receiving the standard of care for Alzheimer’s disease. The recruitment and study 
methods of were described elsewhere 12. Mild AD at screening was determined by a score of 16 
to 26 in the Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate 
better cognition 15) accompanied by florbetapir positron emission tomography (PET) scan or 
cerebrospinal fluid (CSF) result consistent with the presence of amyloid pathology. The absence 
of depression was defined as a Geriatric Depression Scale (GDS; score range: 0–15, higher 
scores indicate more severe depression 16) score of less than or equal to 6 (on the staff-
administered short form). Data from 894 participants who were in the placebo arm of the trial 
and successfully completed the EXPEDITION3 trial were utilized for this study. 
 
2.1.2 Mild AD without depression in ADNI 
ADNI, across all 4 cycles, included participants predominantly in the same age group as 
EXPEDITION3. ADNI also has most of the neuropsychological instruments that were used in 
the screening of EXPEDITION3, including MMSE and GDS. The amyloid pathology in brain in 
ADNI is also measured by similar florbetapir (AV45) PET processing methods used by 
EXPEDITION3. We selected the subset of ADNI participants (ADNIAD) who had scores of 
MMSE and GDS in the range of inclusion criteria of EXPEDITION3 and those who had amyloid 
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burden determined by amyloid PET or CSF, with the diagnosis of Dementia at baseline. A total 
of 107 participants from ADNI who had 2 years of follow up data were eligible for this study. 
 
2.1.3 Study Outcomes 
The primary outcome measure of EXPEDITION3 trial was change from baseline in Alzheimer's 
Disease Assessment Scale (higher scores indicating greater cognitive impairment) 17 – a 14 Item 
Cognitive Subscore 18 (ADAS-Cog14; score range, 0–90) whereas the secondary outcomes 
included the change from baseline in the 11 item score of the same (ADAS-Cog11; score range, 
0–70). The cognitive assessments in ADNI included ADAS-Cog11 and a 13-item subscore of 
ADAS across all the phases and participant visits. We chose ADAS-Cog11 as our primary 
outcome of interest in this study, as this measure was available across both the EXPEDITION3 
and ADNI datasets.  
 
Longitudinal cognitive change was defined by the change in ADAS-Cog11 scores from baseline 
to the end of trial. The variability of ADAS-cog11 scores across visits can exceed the annual rate 
of change in trials, which is potentially attributable to measurement error and to genuine 
variation in cognitive performance from day to day 19-21. To minimize the effects of such 
variations on our model outcome, we calculated the change from baseline at both the final as 
well as one of the visits leading up to the final visit of the studies. In addition to considering the 
statistically significant changes in cognition, we wanted to ensure that the change is clinically 
relevant. Although any decline in cognition is undesirable from a patient’s point of view, a 
clinically meaningful cognitive decline (CMCD) had been suggested if there is a decline of 3 or 
more points on ADAS-cog11 22. This will mitigate the impact of minor variations in cognitive 
performance  inherent in ADAS-cog11, the primary measure for cognitive decline, on the 
model's performance, consistent with findings from prior research. 22,23.  Thus, we defined the 
primary outcome of our study to be whether a participant shows CMCD or not (CMCD: ADAS-
Cog11Week80 – ADAS-Cog11baseline ≥ 3).  In the case of ADNI, there were follow up visits of 
participants every 3 months, 6 months and annually. We calculated the same outcome in ADNI 
at the 2 years  follow up visit from the baseline visit (CMCD: ADAS-Cog112yrs – ADAS-
Cog11baseline ≥ 3). 
  

2.2 Other study measures and features 
We designed the study to explore if we can predict the participants who would show cognitive 
decline by the end of the study duration using the baseline measures. Since the goal of this study 
is to better inform clinical trials towards enrichment strategies, we try to utilize the maximum 
information available from the screening visits which includes multiple neuropsychological 
measures and volumetric imaging measures of several brain regions. The following measures are 
considered in the current study: 

- Demographics (D) : age, sex, years of education 
- Genetics (A): apolipoprotein E (APOE) ε4 alleles (0, 1, 2) 
- Volumetric MRI measures (M): Entorhinal Cortex, Hippocampus, Inferior Parietal, 

Superior and Middle Temporal Cortices 
- Clinical characteristics (NP) : GDS, Clinical Dementia Rating Sum of Boxes (CDR-SB) 

24 
- Cognitive measures (NP) : ADAS-Cog11, MMSE 
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- Functional measures (NP) : Alzheimer’s Disease Cooperative Study–Activities of Daily 
Living (ADCS-ADL) scale (score range, 0–78, with lower scores indicating worse 
functioning) 25, Functional Activity Questionnaire (FAQ) 26 

 
Except ADCS-ADL, all the measures were available in both in the EXPEDITION3 trial as well 
as in ADNIAD dataset.  
 

2.3 Predictive models of cognitive stability 
 
2.3.1 Machine Learning models 
We used a set of Machine Learning (ML) models to learn the characteristics of both the groups - 
participants who showed CMCD and those who did not. Each model included some or all  of the 
measures listed in Section 2.2 (D, A, M, NP). ML models are known to be more suitable to 
handle high-dimensional data where classical multivariate statistical models might be susceptible 
to noise, especially when the sample size is small 27. ML models have also been proven to be 
effective tools for predictions of outcomes in AD.  More details on the benefits of ensemble ML 
methods, that produce output by combining the low-level, simpler predictive models on subsets 
of features, are described elsewhere 28 29. We chose one ensemble ML model – Random Forest 
Classifier, and another supervised learning algorithm Linear Discriminant Analysis (LDA) to 
classify CN and CMCD groups.  
 
The development and validation of the models was done using the scikit-learn libraries in Python 
(3.9). All the models were assessed in terms of their Sensitivity of classifying actual CMCD (%), 
Specificity of classifying cognitively stable participants (%), Positive Predictive Value (PPV,%), 
Negative Predictive Value (NPV,%) within 95% confidence interval (CI) and finally the area 
under the ROC curve (AUC), all in comparison to the base prevalence of percentage of the 
population that showed CMCD.  
 
2.3.2  Predictive models of cognitive decline in EXPEDITION3 
We developed models that could predict whether a participant in the placebo arm of 
EXPEDITION3 would show CMCD at the end of Week 80 of the trial. To finetune the ML 
models, we trained the models using 70% of the data (EXPtrain) using 5-fold cross-validation. 
Trained models were used to classify the participants in independent sample, the remaining 30% 
of the data (EXPvalid). The performances of the models were evaluated using the change in 
cognition at the end of Week 80 (as described in Section 2.1.3). 
 
Plasmode simulations of treatment effects using predictive models 
To compare the statistical power of different approaches using our predictive models to a more 
classical analysis in a clinical trial setting, we conducted plasmode simulations, where 
hypothetical trial data is generated from the available EXPEDITION3 placebo arm data. First, 
the available EXPEDITION3 placebo arm data was divided into two halves at random – one for 
training the predictive models and the other for performing the plasmode simulations (Npl). In 
each of the simulations, the hypothetical trial data consists of random placebo and treatment 
groups of same sample size drawn from non-overlapping subsets of Npl. A classical analysis of 
treatment effects can be performed using linear regression for a continuous outcome similar to 
previously described ANOVA-CHANGE models 30.   
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We considered two approaches to incorporate our predictive models in either trial enrollment or 
post-study analyses and evaluated the added value of our predictive models in terms of 
increasing the power for detecting treatment effects. (I) Using the predictive models to inform 
the trial enrollment and (II) Using the individualized prediction of clinical trial outcome from the 
predictive models as a prognostic variable in post-study analyses.  
 
Approach I – Using Predictive Model to Guide Enriched Enrollment: In each simulation, we 
simulated two hypothetical clinical trials: one with enriched enrollment, whose sample consisted 
only the subset of participants in Npl that were predicted to show CMCD (NCMCD) using their 
baseline MRI data and our predictive models; the other without enriched enrollment, whose 
sample of the same size (NCMCD) is randomly drawn from Npl. Given a desired treatment effect 
size, a constant treatment effect is added to participants randomized to the treatment arm in both 
simulated trials. The same random noise was added to both simulated trials to ensure variation 
across simulations. We used the unadjusted analysis (Equation 1, Supplementary Method 1) to 
test for null effect for both trials. The powers based on the two enrollment strategies were 
compared for a range of treatment effect sizes. 
  
Approach II – Using Predictive Model to Construct Prognostic Variable: In each simulation, 
we simulated a hypothetical clinical trial with sample randomly drawn from Npl, with a constant 
treatment effect size and random noises added as in Approach I. We considered two analyses to 
test for null effect: one being the unadjusted analysis Equation 1 (Supplementary Method 1); 
the other being an adjusted analysis (Equation 2, Supplementary Method 1) that incorporates 
as prognostic variable a predictor that captures the individual’s prognosis of showing CMCD at 
the end of 2 years, which is obtained by slightly modifying the output of our predictive models. 
For each analysis, we obtained through simulation the smallest n to achieve 80% power. The 
smallest sample sizes for the two analyses were compared for a range of treatment effect sizes. 
 
The plasmode simulations were carried out using R studio. A more detailed account of the 
simulations is available in Supplementary Method 1 as well as in previously described work 13.  
 
2.3.3 Predicting cognitive decline using short-term change in cognition 
With the available longitudinal data from follow up visits in both EXPEDITION3 and ADNIAD, 
we calculated the near-term change in cognition (∆ADAS-cog and ∆FAQ) from baseline at 
Week 28 in the case of EXPEDITION3 and 6-month follow up visit in ADNIAD. We trained and 
validated a new model - D+A+NP+M+Δcog6m, by adding ∆ADAS-cog and ∆FAQ to the 
measures used in the D+A+ NP+M model, in the EXPEDITION3 data, as described in Section 
2.3.2. We then assessed this new model with the outcome of CMCD comparing it to the 
cognition status at the 2 years follow up in ADNIAD.  
 
2.3.4 External validation of predictive models using ADNI study data 
To further validate the robustness of the models in predicting cognitive decline in individuals 
using baseline characteristics, we used the models trained and finetuned models on the same 
EXPtrain  subset and assessed the performance on a completely independent dataset ADNIAD 

evaluated against the change in cognition at the end of the 2 years follow up visit of the 
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participants. Figure 1 provides an overview of the study design and details of the training and 
validation procedures. 
 

2.4 Data Availability 
Data used in these analyses are from the Eli-Lilly trial: EXPEDITION3 (ClinicalTrials.gov 
Identifier: NCT01900665). Eli-Lilly makes patient-level data available from Lilly-sponsored 
studies on marketed drugs for approved uses following approval by regulators in the US and EU 
and after the primary manuscript describing the results has been accepted for publication, 
whichever is later. Lilly is one of several companies that provide this access through the website 
clinicalstudydatarequest.com. Qualified researchers can submit research proposals and request 
anonymized data to test new hypotheses. Lilly's data-sharing policies are provided on the 
clinicalstudydatarequest.com site under the Study Sponsors page. 
 

3 Results 
3.1 Baseline Characteristics 
Figure 2A depicts the change in ADAS-cog11 in the placebo population across different weeks 
into the trial. Within the placebo arm, 498 participants (56%) showed cognitive decline during 
the 80 weeks of placebo treatment (Figure 2B). The decliner group had a slightly lower average 
age (71.8±7.8 years) compared to the stable group (73.8±7.3 years). In both the decliner  and 
stable groups, 64% of the participants were carriers of at least one APOE ε4 allele. Of all 
participants, 59% were female, with 61% of the decliner group and 58% of the stable group 
being female. The average baseline ADAS-cog11 score for all participants was 18.2(±6.5), with 
the decliner group having a slightly higher average score (18.8±6.9) compared to that of the 
stable group (17.6±5.9). The average baseline MMSE (Mini-Mental State Examination) score for 
all participants was 22.8(±2.9), with the decliner group having a slightly lower average score 
(22.3±2.9) compared to that of stable group (23.4±2.7). The data from the ADNIAD included 107 
participants, with 81% of them being APOE ε4 allele carriers and 48% female. 53% of ADNI 
subset showed CMCD. In the ADNIAD subset, the average baseline ADAS-cog11 score 
(15.4±6.6) was lower and the average baseline MMSE score (24.3±1.6) than that of the 
EXPEDITION3 population. Table 1 summarizes all the characteristics across EXPEDITION3 
and ADNIAD populations.  
 

3.2 Performance of predictive models of cognitive decline 
Training: The performances of 3 models - D+A+M, D+A+NP and D+A+M+NP – trained with 
5-fold cross-validation on EXPtrain(N=574) using the LDA method are summarized in Table 2. 
The D+A+NP model showed a moderate performance across all metrics, with an AUC of 0.63 
(±0.04). The D+A+M model had an AUC of 0.71 (±0.04) with a sensitivity of 72.5% (95%CI: 
68.8-76.2) and a PPV of 69.3% (95%CI: 65.5-73.1) while the base prevalence (BP) of Decliners 
was 54.4%. Incorporating both M and NP features in the D+A+NP+M model had similar results 
as those of the D+A+M model with an AUC of 0.71 (±0.04), a sensitivity of 72.1% (95%CI: 
68.4-75.8 and a PPV of 67.8% (95%CI: 64.0-71.6). All the models, when evaluated using the RF 
method, showed similar or lower performances compared to those with the LDA method 
(Supplementary Table 1).   
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Internal Validation: We assessed the performance of these trained models on the independent 
dataset EXPvalid (N=246, see Table 2). The D+A+NP+M model, which combined baseline 
neuropsychological and volumetric MRI measures, had better overall performance with an AUC 
of 0.61 (±0.03), better than the D+A+NP (AUC of 0.57±0.03) and D+A+M (AUC of 0.59±0.03) 
models. The D+A+NP+M model also had better performances across all the other metrics 
compared to those of the D+A+NP and D+A+M models with a sensitivity of 69.1% (95%CI: 
63.3-74.9) and a PPV of 65.3% (95%CI: 59.4-71.2, BP: 56.5%). The models when using the RF 
method, had slightly lower performances individually, with the model D+A+NP+M performing 
better than the individual D+A+NP and D+A+M models (Supplementary Table 2). 
 
Predicting CMCD using short-term change in cognition: We trained a new model on EXPtrain 
using the LDA method, D+A+NP+M+Δcog6m - by combining the ∆ADAS-cog and ∆FAQ 
together with the D+A+M+NP model, the model showed the highest performance (see Table 3), 
an AUC of 0.83 (±0.04), a sensitivity of 74.5% (95%CI: 70.9-78.1) and a PPV of 77.1% 
(95%CI: 73.7-80.5). When validated on EXPvalid, the D+A+NP+M+Δcog6m model again showed 
the higher performance across all the metrics than the rest of the models with an AUC of 0.74 
(±0.03), a sensitivity of 73.4% (95%CI: 67.9-78.9), and a PPV of 79.1% (95%CI: 74.0-84.2, BP: 
56.5%). A similar improvement of performance was seen using the RF method, by the addition 
of Δcog6m to the D+A+NP+M model (Supplementary Table 3). 
 
External Validation in ADNIAD: We then validated the two best performing models -  
D+A+M+NP  and D+A+NP+M+Δcog6m - trained and fine-tuned on the EXPtrain dataset, on the 
ADNIAD dataset (see Table 4). Both the models using the LDA method were assessed in 
predicting whether the participants would show CMCD at the end of 2 year follow up in ADNI. 
The D+A+NP+M  model showed a moderately high AUC of 0.77 (±0.04) with a high sensitivity 
of 87.3% (95%CI: 80.9-93.7), a high NPV of 81.6% (95%CI: 74.2-89.0) and a PPV of 71.6% 
(95%CI: 63.0-80.2, BP: 52.4%). The D+A+NP+M+Δcog6m had the highest performance among 
all the models with a high AUC of 0.80 (±0.04) with a sensitivity of 83.6% (95%CI: 76.5-90.7), 
a high NPV of 80.9% (95%CI: 73.4-88.4) and a high PPV of 79.3% (95%CI: 71.6-87.0, BP: 
52.4%). 
 
The RF method with the same models showed a slightly better performance for the D+A+NP+M 
model compared to that of using the LDA method (AUC of 0.77±0.04) but a lower performance 
for the D+A+NP+M+Δcog6m model (AUC of 0.70±0.03). Detailed results of the validation of 
the two models on the ADNIAD dataset can be found in Supplementary Table 4. 
 
Statistical Power Analysis in Simulated Clinical Trials: Using plasmode simulations, we 
evaluated the added value of the predictive models of cognitive decline in terms of increased 
power and reduced sample size, via two approaches to incorporate the predictive models: (I) 
informing enriched enrollment and (II) constructing prognostic variables for post-study analysis. 
In (I), for treatment effect sizes ranging from 0.3 to 0.5, the hypothetical trial with enriched 
enrollment informed by our predictive models yields higher power than the trial without enriched 
enrollment. The power difference was greater at an effect size of 0.3 (~83% with enriched 
enrollment vs ~50% without). The difference in power reduced for larger effect sizes with the 
enriched enrollment still achieving higher power (Figure 3A). In (II), the analysis that adjusts for 
the prognostic variable constructed using our predictive model consistently reduced the 
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minimum required sample size n for 80% power compared to the unadjusted analysis. For 
example, with an effect size of 0.3, the minimum required sample size was 292 for the adjusted 
analysis and 336 for the unadjusted analysis. As the effect size increased, sample size 
requirements decreased for both analyses and the difference between the two analyses also 
decreased (Figure 3B). 
 
 

4 Discussion 
In this study, we developed models that use baseline characteristics of participants in a clinical 
trial to classify them into two groups: those who show longitudinal cognitive decline during the 
trial and those expected to remain cognitively stable. We showed that these models can predict 
CMCD in 2 years in an internal validation sample and in an independent dataset from the cohort 
study ADNI whose recruitment was designed to mimic that of a clinical trial. Models using LDA 
method had better performances than those using RF method in predicting CMCD in both 
EXPvalid and ADNIAD  subsets while both the models showed the potential of machine learning 
models in predicting CMCD. With all the baseline characteristics as features and clinically 
meaningful cognitive decline (CMCD) as the outcome based on the longitudinal change in 
ADAS-Cog11 score, predictive models in the independent EXPEDITION3 validation subset 
(EXPvalid) had a mean PPV of 65.3%, which was 9% higher than the prevalence of CMCD in the 
EXPvalid subset at the end of the trial.  This could represent a considerable degree of enrichment 
of the decliner group. The same model when tested on ADNIAD subset, had a mean PPV of 
71.6%, which is 19% higher than the prevalence in ADNIAD observed at the 2yr follow up visit.  
 
Furthermore, we showed that augmenting the models using baseline characteristics with short-
term change in cognition drastically improved the performance of the models in classifying CS 
participants from CMCD within EXPEDITION3 as well as in the independent dataset ADNIAD. 
Our results highlight the additional value of 6-month change in cognition in predicting the 
eventual cognitive decline. The addition of 6-month changes in ADAS-cog11 and FAQ scores 
(Δcog6m)  to the model with all the baseline characteristics showed a significantly higher 
performance in both the validation sample of EXPEDITION3 (EXPvalid) as well as in the 
independent ADNIAD sample. The D+A+NP+M+Δcog6m model showed a mean PPV 22.5% 
higher than the base prevalence of CMCD in the EXPvalid sample, with a moderate AUC of 
0.73±0.03.  The same model performed even better in the independent ADNIAD  subset with a 
mean PPV 27% higher than the prevalence of CMCD at the end 2 year follow up in ADNI, with 
an AUC as high as 0.80±0.04. We have also shown that our predictive models using imaging 
biomarkers can be used in both informing enriched trial enrollment and enhancing post-study 
analysis to increase statistical power and reducing sample size, in line with previous simulation 
studies 13. Our results highlight novel approaches to optimizing the recruitment of RCTs 
targeting cognitive decline. 
 
The utility of machine learning models in predicting clinically relevant change in cognition in 
different stages of AD has been demonstrated in various settings 31,32. We used 2 different ML 
methods that offer unique advantages in handling complex AD data. LDA, a supervised 
classification algorithm, effectively preserves differentiating information across outcomes and 
reduces input feature dimensions. It is also particularly advantageous for small sample sizes as 
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observed in our independent validation dataset ADNIAD. On the other hand, application of a 
family of ML methods known as ensemble learning has been shown to be highly effective 
method in predicting clinical outcomes 28. RF, an ensemble ML algorithm, was the other method 
we employed, owing to its resistance to overfitting the training data and its inbuilt feature 
importance. Both models demonstrated strong performance in predicting cognitive change, 
suggesting potential for further sophisticated analyses and robust feature selection in future 
iterations of this study. In the context of clinical trial design, establishing the utility of different 
clinical and biomarker measures measured at screening or baseline visit may have implications 
for enrichment strategies with direct impact on costs and success of the trials.  
 
Our work highlights the use of data from the placebo arms of clinical trials in building models 
that can inform various ADRD studies in future. Over the last 2 decades, only a few of clinical 
trials targeting AD pathology in brain with an outcome of slowing down cognitive decline 
succeeded in their goals 10,33,34 with the majority of trials failing to meet their outcomes 35,36, 
including the one used in this current study 12. Optimizing trial design involves incorporating 
sequential and adaptive, and enrichment strategies. One approach to enrich AD trials is to 
include suitable individuals – who are more likely to benefit from therapeutic intervention and 
exclude those expected to remain cognitively stable and unlikely to show benefit during the 
limited timeframe of trial. This not only improves the chances of success but also can reduce the 
costs. Our study demonstrates that predictive models developed using the data from failed trials 
can have a significant impact on the design of future trials, primarily by enriching the participant 
recruitment.  Another potential application of these models is in conducting post-hoc analyses of 
completed trials, enabling us to assess the effects of investigational drugs specifically in 
individuals expected to experience cognitive decline within the trial period. 
 
Several studies have developed models to predict cognitive trajectories in different stages of AD 
using either longitudinal data from prospective cohorts of ADRD 28,31 or the baseline 
characteristics of a clinical trial population with mild AD 32. This study is the first to show 
models built using both baseline and short-term follow up data are reliable and effective in 
predicting clinical outcomes. However,  our study has some  limitations. Firstly, the models in 
our study used relatively small set of features from volumetric MRI and a small set of 
neuropsychological scores from each of clinical, cognitive, and functional assessments. Baseline 
neuropsychological measures are a cross-sectional representation of individual’s cognition,  and 
are prone to measurement errors and high variability 37. Another limitation of our models is lack 
of AD-specific biomarkers such as CSF or plasma amyloid and tau biomarkers. Overall, the 
performance of models is expected to improve if more detailed, informative data is available.  
Furthermore, to validate our models, we used a subset from a cohort study whose characteristics 
were overlapping with the recruitment of the clinical trial, but ADNI should not be considered a 
trial, and results should be further validated in independent samples from other trials. Finally, we 
described cognitive decline as opposed to stability in a unidimensional way, whereas it is 
expected that further classification of decliner populations into rapid vs slow decliners improves 
the efficacy and applicability of the models.  
 
Notwithstanding the limitations described above,  the results of this study from the placebo arm 
of one AD clinical trial and its validation in an independent population, show a great promise of 
how predictive models can impact the design of future AD trials. This work can be extended to a 
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more generalizable framework, which exploits the data from placebo groups of the multiple 
failed trials, providing clinically relevant tools for clinical trial recruitment. Furthermore, in 
conjunction with treatment data from the trials, this work opens avenues for robust and extensive 
post-hoc analyses of the treatment effects of DMTs in AD.  
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Table 1. Participant Characteristics in EXPEDITION3* (placebo arm) and ADNIAD studies. 

  EXPEDITION3-Placebo Arm ADNI*AD 

  All  Decliner** Stable All  Decliner Stable 

Count, % 894 498(57) 392(43) 107 57(53%) 50(47%) 

Age, mean (SD), y 72.7(7.7) 71.8(7.8) 73.8(7.3) 73.5(7.4) 72.1(8.2) 75.1(6.1) 

Female, % 59% 61% 58% 48% 43% 54% 

Education, mean (SD), y 13.6(3.7) 13.5(3.9) 13.8(3.5) 15.2(2.6) 15.2(2.4) 15.1(2.9) 

ADAS-cog11 18.2(6.5) 18.8(6.9) 17.6(5.9) 15.4(6.6) 17.4(7.0) 13.1(5.2) 

MMSE 22.8(2.9) 22.3(2.9) 23.4(2.7) 24.3(1.6) 23.8(1.9) 24.8(1.2) 

ADL  67.3(8.7) 66.7(9.1) 68.0(8.3)       

FAQ 10.1(6.9) 10.7(7.0) 9.4(6.8) 6.2(7.2) 7.7(6.5) 4.5(7.6) 

GDS 1.6(1.5) 1.7(1.5) 1.6(1.5) 1.2(1.2) 1.0(1.1) 1.4(1.3) 

CDR 3.8(1.8) 4.0(1.9) 3.5(1.8) 2.4(2.3) 3.2(2.5) 1.4(1.5) 

APOE ε4 allele(s)       

0 287(32) 161(32) 126(31) 20(18) 11(19) 9(18) 

1 459(51) 256(51) 203(51) 70(65) 37(64) 33(66) 

2 124(13) 67(13) 57(14) 17(15) 9(15) 8(16) 

EXPEDITION3: The placebo arm of the EXPEDITION3 clinical trial.*- Participants were allowed to continue receiving 

their therapy including treatments for symptoms of dementia (acetylcholinesterase inhibitors and memantine) and 

nondrug treatments.  

 CDR-SB: Clinical Dementia Rating Sum of Boxes. ADAS-Cog11 : Alzheimer's Disease Assessment Scale  – 11 Item 

Cognitive Subscore (score range, 0–70, higher scores indicating greater cognitive impairment). MMSE:  Mini 

Mental State Examination (score range: 0-30, higher scores indicate better cognition). ADL: Alzheimer’s Disease 

Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower scores indicating worse 

functioning). FAQ:  Functional Activity Questionnaire. APOE: Apolipoprotein. *ADNI: Subset of ADNI participants 

with amyloid-PET SUVR > 1.11, 16 ≤ baseline MMSE score ≤ 26, GDS ≤ 6 (Geriatric Depression Scale, range: 0-15, 

higher scores indicating more severe depression). ** Change from baseline to week 80 in ADAS-cog11, Stable: < 3, 

Decliner: ≥3. 
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Table 2: Performances of models classifying CS and CMCD groups in EXPEDITION3 training
a
 

set. 

N Base 

prevalence 

(%) 

Method Model Sensitivity, % 

(95%CI) 

Specificity, % 

(95%CI) 

PPV, % 

(95%CI) 

NPV, % 

(95%CI) 

AUC 

Training (70% of the EXPEDITION3 SAMPLE) 

574 54.4 LDA 

D+A+NP 69.3 (65.5-73.1) 48.7 (44.6-52.8) 61.6 (57.6-65.6) 57.3 (53.3-

61.3) 

0.63 

(0.04)

D+A+M 72.5 (68.8-76.2) 61.4 (57.4-65.4) 69.3 (65.5-73.1) 65.6 (61.7-

69.5) 

0.71 

(0.04)

D+A+NP+M 72.1 (68.4-75.8) 58.9 (54.9-62.9) 67.8 (64.0-71.6) 64.2 (60.3-

68.1) 

0.71 

(0.04)

Internal Validation (30% of the EXPEDITION3 SAMPLE)  

246 56.5 LDA 

D+A+NP 
68.3 (62.5-74.1) 45.8 (39.6-52.0) 62.1 (56.0-68.2) 52.7 (46.5-

58.9) 

0.57 

(0.03)

D+A+M 
68.3 (62.5-74.1) 50.5 (44.3-56.7) 64.2 (58.2-70.2) 55.1 (48.9-

61.3) 

0.59 

(0.03)

D+A+NP+M 
69.1 (63.3-74.9) 52.3 (46.1-58.5) 65.3 (59.4-71.2) 56.6 (50.4-

62.8) 

0.61 

(0.03)

 

CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 
a
70% of the entire dataset is used for 

training with 5-fold cross validation. 
b
30% of the entire dataset, reserved for validating the trained models.  

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics; Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ).  

LDA: Linear Discriminant Analysis. 
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Table 3: Performance of model including short-term change in cognition over 6 months in 
predicting CMCD  

Model: D+A+NP+M+Δcog6m 

N Prevalence (%) Method Dataset 
Sensitivity, %  

(95%CI) 

Specificity, %  

(95%CI) 

PPV, %  

(95%CI) 

NPV, %  

(95%CI) 
AUC (SD) 

574 54.4 LDA 
Training 

(EXPtrain) 

74.5 (70.9-

78.1) 

73.7 (70.1-

77.3) 

77.1 (73.7-

80.5) 

71.1 (67.4-

74.8) 

0.83 (0.04)

246 56.5 LDA 
Internal Validation 

(EXPvalid) 

73.4 (67.9-

78.9) 

74.8 (69.4-

80.2) 

79.1 (74.0-

84.2) 

68.4 (62.6-

74.2) 

0.74 (0.03)

 

EXPtrain : 70% of the entire EXPEDITION3 dataset is used for training with 5-fold cross validation. 

EXPvalid : 30% of the entire EXPEDITION3 dataset, reserved for validating the trained models. 

CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 
a
 30% of the entire dataset, reserved for 

validating the trained models.  

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

LDA: Linear Discriminant Analysis 
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Table 4: Performance of models in predicting CMCD in ADNIAD sample
a
.  

External Validation in ADNIAD dataset 

N 
Prevalence 

(%) 
Method Model 

Sensitivity, %  

(95%CI) 

Specificity, %  

(95%CI) 

PPV, %  

(95%CI) 

NPV, %  

(95%CI) 
AUC (SD) 

105 52.4 LDA D+A+NP+M 
87.3 (80.9-

93.7) 

62.0 (52.7-

71.3) 

71.6 (63.0-

80.2) 

81.6 (74.2-

89.0) 0.75 (0.04) 

105 52.4 LDA 
D+A+NP+M+ 

Δcog6m 

83.6 (76.5-

90.7) 

76.0 (67.8-

84.2) 

79.3 (71.6-

87.0) 

80.9 (73.4-

88.4) 0.80 (0.04) 

 
CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 

a
 ADNIAD. sample is only used for validating 

the models that were trained on the EXPEDITION training subset. 

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

LDA: Linear Discriminant Analysis. 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.24312481doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24312481


Enriching AD trials by predicting cognitive decline. 

 

Figure 1. Study Design 

 
 

EXPEDITION3 :  The Placebo arm of the EXPEDITION3 clinical trial (ClinicalTrials.gov ID: NCT01900665) 

ADNIAD : The population subset of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study which matched 

with the recruitment criteria of the EXPEDITION3 clinical trial (on the mild-to-moderate AD without depression). 

CMCD: Clinically Meaningful Cognitive Decline. CMCD=ADAS-Cog11end – ADAS-Cogbaseline ≥ 3. ADAS-Cog11: 

Alzheimer's Disease Assessment Scale  – 11 Item Cognitive Subscore (score range, 0–70, higher scores indicating 

greater cognitive impairment). end: Week 80 in EXPEDITION3 and 2 years in ADNI. CS: Cognitively Stable 

participants who did not show CMCD. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.24312481doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24312481


Enriching AD trials by predicting cognitive decline. 

Figure 2: Change in Cognition in EXPEDITION3 placebo arm participants after 2 years 

ADAS-Cog11: Alzheimer's Disease Assessment Scale  – 11 Item Cognitive Subscore (score range, 0–70, higher 

scores indicating greater cognitive impairment) 

Change: Aby change in ADAS-Cog11, ADAS-Cog11WeekX – ADAS-Cogbaseline > 0 

CMCD: Clinically Meaningful Cognitive Decline. CMCD=ADAS-Cog11Week80 – ADAS-Cogbaseline ≥ 3.  

  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.24312481doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24312481


Enriching AD trials by predicting cognitive decline. 

Figure 3. Statistical power analyses of using predictive model in simulating treatment effects in

a clinical trial 

 

Comparison of Power Analyses between different approaches using predictive models of cognitive decline and a 

classical approach assessing the treatment effect using only observed outcome data. For all the analyses, the 

placebo arm data of EXPEDITION3 was used. Half of it was reserved  and used to train the model to classify 
participants into those showing clinically meaningful cognitive decline (CMCD) at the end of 2 years; The 
remaining half of the data is used for simulating the hypothetical clinical trials in the following 2 appraoches: 
A. Approach I – Models trained to predict CMCD of an individual at the end of 2 years are used to enroll 

participants in a hypothetical clinical trial (only participants that are predicted to show cognitive decline at the 

end of 2 years, N=182 for the Enriched Enrollment analysis, and random subset of the same sample size 

N=182 for the analysis Without Enriched Enrollment). Power is calculated as the percentage of times the 

simulated treatment effect was significantly associated with the observed ADAS-cog11 change in 2 years, 

P<0.05, out of 1000 simulations. The power from both the analyses are compared for various effect sizes. 

B. Approach II – Models trained to predict cognitive decline of an individual at the end of 2 years are used to 

obtain a prognostic variable, “individual predictor” value for each participant, that is used in the treatment 

effect analyses. (Using the remaining half:  for the analysis adjusted for the Prognostic Variable, all the 

available participants were used with the “individual predictor” variable added as a covariate in the treatment 

effect analysis, and for the Unadjusted Analysis, all the available participants were used without any predictor

variables. Power is calculated as the percentage of times the simulated treatment effect was significantly 

associated with the observed ADAS-cog11 change in 2 years, P<0.05, out of 1000 simulations. The process is 

repeated for a range of sample sizes from 150 to 400, minimum sample size needed to achieve 80% power is 

compared for a given effect size.  

n 

 

r 
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Supplementary Material 
 

Supplementary Table 1: Performances of models classifying CS and CMCD groups in 

EXPEDITION3 training
a
 set. 

Model N Method Sensitivity, 

% (95%CI) 

Specificity, % 

(95%CI) 

PPV, % 

(95%CI) 

NPV, % 

(95%CI) 

AUC Base 

prevalenc

(%) 

D+A+M 574 
RF 

69.2 (65.4-

73.0) 

56.1 (52.0-60.2) 65.4 (61.5-69.3) 60.6 (56.6-

64.6) 

0.67 

(0.05) 

54.4 

D+A+NP 574 
RF 

63.7 (59.8-

67.6) 

51.7 (47.6-55.8) 61.2 (57.2-65.2) 54.4 (50.3-

58.5) 

0.61 

(0.04) 

54.4 

D+A+NP+M 574 
RF 

69.0 (65.2-

72.8) 

58.0 (54.0-62.0) 66.4 (62.5-70.3) 61.2 (57.2-

65.2) 

0.68 

(0.05) 

54.4 

 

CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 
a
 70% of the entire dataset is used for 

training with 5-fold cross validation.  

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

RF: Random Forests Classifier 
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Supplementary Table 2: Performance of models predicting CMCD in EXPEDITION3 validation
a
 

set. 

Model N Method 
Sensitivity, %  

(95%CI) 

Specificity, %  

(95%CI) 

PPV, %  

(95%CI) 

NPV, %  

(95%CI) 
AUC (SD) Prevalence (%) 

D+A+M 246 
RF 67.6 (61.8-

73.4) 

48.6 (42.4-

54.8) 

63.1 (57.1-

69.1) 

53.6 (47.4-

59.8) 

0.58 (0.03) 56.5 

D+A+NP 246 
RF 64.0 (58.0-

70.0) 

50.5 (44.3-

56.7) 

62.7 (56.7-

68.7) 

51.9 (45.7-

58.1) 

0.57 (0.03) 56.5 

D+A+M+NP 246 
RF 71.9 (66.3-

77.5) 

50.5 (44.3-

56.7) 

65.4 (59.5-

71.3) 

58.1 (51.9-

64.3) 

0.61 (0.03) 56.5 

 

CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 
a
 30% of the entire dataset, reserved for 

validating the trained models.  

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

RF: Random Forests Classifier 
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Supplementary Table 3: Performance of model including short-term change in cognition in 

predicting CMCD  

Model: D+A+NP+M+Δcog6m 

Dataset N Method 
Sensitivity, %  

(95%CI) 

Specificity, %  

(95%CI) 

PPV, %  

(95%CI) 

NPV, %  

(95%CI) 
AUC (SD) Prevalence (%) 

Training 

(EXPtrain) 

574 
RF 

77.7 (74.3-

81.1) 

68.3 (64.5-

72.1) 

74.6 (71.0-

78.2) 

72.4 (68.7-

76.1) 

0.81 (0.05) 54.4 

Internal 

Validation 

(EXPvalid) 

246 

RF 77.7 (72.5-

82.9) 

66.4 (60.5-

72.3) 

75.0 (69.6-

80.4) 

69.6 (63.9-

75.3) 

0.72 (0.03) 56.5 

 

EXPtrain : 70% of the entire EXPEDITION3 dataset is used for training with 5-fold cross validation. 

EXPvalid : 30% of the entire EXPEDITION3 dataset, reserved for validating the trained models. 

CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 
a
 30% of the entire dataset, reserved for 

validating the trained models.  

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

RF: Random Forests Classifier 
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Supplementary Table 4 : Performance of models in predicting CMCD in ADNIAD sample
a
.  

External Validation in ADNIAD dataset 

Dataset N Method 
Sensitivity, %  

(95%CI) 

Specificity, %  

(95%CI) 

PPV, %  

(95%CI) 

NPV, %  

(95%CI) 
AUC (SD) Prevalence (%) 

D+A+M+NP 105 
RF 84.2 (77.3-

91.1) 

46.0 (36.6-

55.4) 

64.0 (54.9-

73.1) 

71.9 (63.4-

80.4) 0.65 (0.04) 
52.4 

D+A+NP+M+ 

Δcog6m 
105 

RF 69.1 (60.3-

77.9) 

68.0 (59.1-

76.9) 

70.4 (61.7-

79.1) 

66.7 (57.7-

75.7) 0.68 (0.05) 
52.4 

 
CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 

a
 ADNIAD. sample is only used for validating 

the models that were trained on the EXPEDITION training subset. 

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

RF: Random Forests Classifier 
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Supplementary Table 5 : Performance of models in predicting CMCD in ADNIAD sample
a
.  

External Validation in ADNIAD dataset 

Dataset N Method 
Sensitivity, %  

(95%CI) 

Specificity, %  

(95%CI) 

PPV, %  

(95%CI) 

NPV, %  

(95%CI) 
AUC (SD) Prevalence (%) 

D+A+M+NP 105 
RF 81.8 (74.4-

89.2) 

72.0 (63.4-

80.6) 

76.3 (68.2-

84.4) 

78.3 (70.4-

86.2) 0.77 (0.04) 
52.4 

D+A+NP+M+ 

Δcog6m 
105 

RF 69.1 (60.3-

77.9) 

70.0 (61.2-

78.8) 

71.7 (63.1-

80.3) 

67.3 (58.3-

76.3) 0.7 (0.03) 
52.4 

 
CS: Cognitively Stable. CMCD: Clinically Meaningful Cognitive Decline. 

a
 ADNIAD. sample is only used for validating 

the models that were trained on the EXPEDITION training subset. 

D: Demographics (age, sex, years of education). A:  Apolipoprotein E (APOE) ε4 alleles (0, 1, 2). M: Volumetric MRI 

measures (Entorhinal Cortex, Hippocampus, Inferior Parietal, Superior and Middle Temporal Cortices).  

NP: Clinical characteristics (Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's Disease Assessment Scale  

– 11 Item Cognitive Subscore (ADAS-Cog11; score range, 0–70, higher scores indicating greater cognitive 

impairment), Mini Mental State Examination (MMSE; score range: 0-30, higher scores indicate better cognition), 

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; score range, 0–78, with lower 

scores indicating worse functioning), Functional Activity Questionnaire (FAQ). Δcog6m: Change in ADAS-cog11 and 

FAQ at the end of 6 months. 

RF: Random Forests Classifier 
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Supplementary Figure 1. Informed Enrollment in Clinical Trials – Power Analysis 

A         B 

 
LR: Linear Regression; Yobs : Clinical Trial Outcome as observed in the data, in our case, change in ADAS-Cog11 at 2 

years from baseline.  

A :  Power Analysis of Informed Enrollment using our predictive models vs Classical Enrollment. The analysis was 

carried out for different effect sizes and powers were compared. 

B :  Power Analysis of Informed Evaluation using a predictor obtained from our predictive models vs Classical 

Evaluation (without any predictor in the LR equation). The analysis was repeated a range of sample sizes n and the 

minimum n to achieve 80% power were compared. 
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Supplementary Method 1. Informed Enrollment and Informed Evaluation in Clinical Trials – 

Statistical Power Analysis 

 
Plasmode simulations of treatment effects using predictive models 
The plasmode simulations were performed in R studio, using core stats packages. To compare 
the statistical power of different approaches using our predictive models to a more classical 
analysis in a clinical trial setting, we conducted plasmode simulations, where hypothetical trial 
data is generated from the available EXPEDITION3 placebo arm data. First, the available 
EXPEDITION3 placebo arm data was divided into two halves at random – one for training the 
predictive models and the other for performing the plasmode simulations (Npl). In each of the 
simulations, the hypothetical trial data consists of random placebo and treatment groups of same 
sample size drawn from non-overlapping subsets of Npl. A classical analysis of treatment effects 
can be performed using linear regression for a continuous outcome (Equation 1), similar to 
previously described ANOVA-CHANGE models 30.   
 

�� � � � ��� � ��                                                         (1) 
 
In our study, ��  represents cognitive decline, defined as the change in ADAS-cog11 score from 
the baseline observed at 2 years from baseline. ��  represents the treatment indicator, and ��  
represents random error. � is simulated for a range of effect sizes and � is estimated from the 
data. Within each analysis, 1000 simulations were repeated randomizing the division of 
treatment and placebo groups. The statistical power of the simulated treatment effect was 
calculated in both the cases, as the number of times P-value was significant corresponding to the 
test for treatment effect (�). We explored this for a range of effect sizes, which was defined as � 
divided by the standard deviation of the outcome �� . 
 
We analyzed the performance of our predictive models in the statistical power analysis of 
treatment effects using two approaches – (I) Using the predictive models to inform the trial 
enrollment and (II) Using the individualized estimates of clinical trial outcome from the 
predictive models in treatment effect analyses.  
 
Approach I – Informed Enrollment: For the analysis of predictive models, the hypothetical 
clinical trial sample consisted only the subset of participants in Npl that was predicted to show 
CMCD (NCMCD) using their baseline MRI data and our predictive models, an informed 
enrollment into the clinical trial. For the classical analysis, a random sample of size equal to 
NCMCD was drawn from Npl as the clinical trial data (Classical Enrollment). The analyses for 
both classical and informed enrollment were carried out using Equation 1 and their powers were 
compared for different treatment effect sizes. 
  
Approach II – Individualized Evaluation: For the analysis of predictive models as well as 
classical analysis, the hypothetical clinical trial data was randomly drawn from Npl. While the 
statistical power evaluation for classical analysis was carried out using Equation 1 (Classical 
Evaluation), we used the following equation for evaluating the predictive models, that 
incorporates a predictor obtained by slightly modifying the output of our models, that represents 
the individual’s likelihood to show CMCD at the end of 2 years as predicted at baseline 
(Individualized Evaluation).   
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�� � � � 	
� �  ��� � ��                                                          (2) 

 
Where 
�  represents the predictor obtained from our model and 	 is estimated from the data. The 
analysis for both classical and individualized evaluation were repeated for a range of sample 
sizes and the smallest n for which power reached 80% were compared.  
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