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Abstract 

Lipids are a heterogenous class of molecules involved in signaling, cell structure and 

energy storage. Lipid metabolism is dysregulated in aging and aging-related diseases such 

as cancer, metabolic disorders, and neurodegeneration. In this study, we developed a 

biological age predictor – a Lipid Aging Clock - based on human serum lipidome data of 

pancreatic ductal adenocarcinoma (PDAC) patients, that has a Pearson correlation 

coefficient of 0.81 to chronological age with a median absolute error of 4.5 years. This 

shows that it is possible to build aging clocks measuring aging from pathological cohorts. 

We find that LipidAgeAcceleration is increased in both PDAC and pancreatitis, 

indicating that these pancreatic conditions accelerate aging or that individuals with age 

acceleration or more likely to acquire them (or both). Furthermore, the lipid age clock is 

predictive of PDAC survival, where positive accelerated Lipid Age is associated with an 

86% higher mortality risk. Among the lipid species associated with LipidAgeAcceleration, 

Ceramides, Sphingomyelins and Glycerophosphocholines, have statistically significant 
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hazard ratios, and directly impact increased mortality. Pathway analysis of lipid species 

selected by the lipid clock further identifies age-dependent dysregulation of specific lipid 

pathways, including Sphingolipid, Glycerolipid, Glycerophospholipid metabolism, and 

steroid biosynthesis. Sphingolipid metabolism is significantly dysregulated in both aging 

and PDAC, connecting aging dynamics and cancer mortality. Moreover, sphingolipids are 

involved in inflammatory processes, and therefore the lipid aging clock could be, at least 

in part, reflecting inflammaging and is likely influenced by age-related alterations to the 

immune system. In summary, our work shows that lipid alterations are a robust biological 

age predictor with utility in cancer and aging research, as well as in predicting disease-

associated outcomes.

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.24311998doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24311998
http://creativecommons.org/licenses/by-nd/4.0/


4 

 

Introduction 

Aging and age-related diseases represent critical areas of research due to their impact on 

the global disease burden. Measuring the divergences between biological and 

chronological age in patients with chronic illnesses is crucial. While most aging clocks are 

based in healthy cohorts, more clocks that can provide insights into disease staging, 

progression and patient prognosis are needed in clinical practice. 

Lipids are a heterogeneous class of bioactive molecules that play a central role in the 

pathology of aging and associated disorders. Several thousand distinct lipid species have 

already been identified in human serum, which is presumably a small fraction of the true 

number of distinct lipids that make up the human lipidome, and routine lipidomic 

approaches usually quantify only a few hundred distinct lipids (Bowden et al., 2017; 

Psychogios et al., 2011; Quehenberger & Dennis, 2011). The abundances of many lipid 

species undergo dynamic changes with disease, during tissue and organismal aging 

(Hornburg et al., 2023; Pietzner et al., 2021), with some multi-omics studies finding that 

40% of the metabolites with significant changes during aging were lipids (Ahadi et al., 

2020). Dysregulation of lipid metabolism is observed in various age-related conditions, 

including cardiovascular and neurodegenerative diseases, Diabetes mellitus, and various 

forms of cancer (Athyros et al., 2018; Kao et al., 2020; Choi et al., 2021; Broadfield et al., 

2021; Buergel et al., 2022). Changes in the abundance of lipid species, such as cholesterol 

and triglycerides, are already widely used as clinical biomarkers of metabolic diseases, 
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many of which are strongly age-dependent (Berger et al., 2015; Laufs et al., 2020). 

Meanwhile, disease specific lipid biomarkers have been proposed for age-related 

pathologies, such as cardiovascular disease (McGranaghan et al., 2021), Alzheimer’s 

Disease (Zarrouk et al., 2018; Agarwal & Khan, 2020), and pancreatic ductal 

adenocarcinoma (Wolrab et al., 2022).  The lipid species being explored for these purposes 

are frequently ceramides, sphingomyelins, phosphatidylcholines, and 

lysophosphatidylcholines (Agarwal & Khan, 2020; McGranaghan et al., 2021; Wolrab et 

al., 2021; Zarrouk et al., 2018).  

However, deconvoluting signatures of intrinsic aging from disease markers remains 

challenging and no specific and accurate lipid biomarkers that measure the rate of 

biological aging in humans have been developed yet. 

In the field of aging biology and Longevity Medicine, biological aging clocks have become 

informative tools to measure the biological age at the individual and population level and 

have been used as biomarkers in some clinical trials of longevity interventions (Fahy et 

al., 2009; Demidenko et al., 2021; Waziry et al., 2023). Aging clocks are an active area of 

research, although accepted standards for current aging biomarkers and are still lacking 

(Moqri et al., 2023). Aging clocks, utilizing mathematical and machine learning 

approaches, have been constructed with the aim of characterizing and quantifying 

biological aging through signatures from different types of molecular and clinical 

biomarkers (Moqri et al., 2023; Zhavoronkov & Mamoshina, 2019). Whereas individual 
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molecular biomarkers of disease can be predictive of a specific illness, aging clocks can 

give systems level information by combining multiple measurements. Indeed, biological 

age clocks have been demonstrated to be better at predicting all-cause mortality, frailty, 

and onset of chronic disease than chronological age itself (Lu et al., 2019; Argentieri et al., 

2023; Shkunnikova et al., 2023).  

Ageing impacts many different organs and biological systems, and these effects can be 

quantified using different classes of biomolecules, including methyl groups on DNA, 

glycans, proteins, metabolites, lipids, and RNA, all of which increasingly explored as 

alternative inputs for aging clocks (Horvath, 2013; Krištić et al., 2014; Johnson et al., 

2020; van den Akker et al., 2020; Meyer & Schumacher, 2021; Unfried et al., 2022; 

Argentieri et al., 2023; Sehgal et al., 2023; Moqri et al., 2023). The Mega-omics clock even 

combines multiple classes of biomolecules, including lipids, in a biological age estimator 

(Macdonald-Dunlop et al., 2022). metaboAge estimates the biological age of an individual 

based on the metabolic profile and is based on the blood metabolome from 25000 samples 

(van den Akker et al., 2020).  

While epigenetic clocks have attained an impressive level of accuracy, one advantage of 

clocks constructed from metabolites is that age-dependent changes in metabolites may be 

more readily interpretable mechanistically, because changes in the abundance of specific 

metabolites can be linked to specific biological and disease processes (Danzi et al., 2023; 

Qiu et al., 2023).  
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Notably, epigenetic biological age can be a good predictor for cancer morality and could 

become a biomarker for cancer epidemiology (Perna et al., 2016; Zheng et al., 2016). 

Applying Horvath’s clock on a cohort of 1863 patients found a hazard ratio of 1.22 (95 % 

CI 1.03–1.45) for cancer mortality for 5 years of epigenetic age acceleration (Perna et al., 

2016). Accordingly, Hannum, Horvath and PhenoAge DNAm clocks applied to blood 

DNA methylation of 2764 women revealed that epigenetic age acceleration statistically 

significantly increases the risk of developing breast cancer (Kresovich et al., 2019).  

Pancreatic ductal adenocarcinoma (PDAC) is one of the most severe cancers with a 5-year 

survival rate of less than 10% (Bengtsson et al., 2020; Sarantis et al., 2020). Pooled analysis 

of three cohorts showed that Hannum, Horvath and PhenoAge intrinsic epigenetic age 

acceleration are significantly associated with pancreatic cancer risk, however there was 

no significant association between intrinsic epigenetic age acceleration and pancreatic 

cancer survival (Chung et al., 2021). Development and progression of PDAC and altered 

lipid metabolism are highly intertwined (Swierczynski et al., 2014; Sunami et al., 2017; 

Qin et al., 2020). Moreover, differences in serum lipids, especially sphingomyelins, 

ceramides, and phosphatidylcholines are found in pancreatic cancer patients (Wolrab et 

al., 2022). Given that, lipid metabolism is dysregulated in PDAC (Swierczynski et al., 

2014; Sunami et al., 2017; Qin et al., 2020), precise lipid-based biomarkers of the disease 

are conceptualizable and needed (Ballehaninna & Chamberlain, 2012; Wolrab et al., 

2022). 
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In this study, we show that the serum lipidome can be used as a systemic biomarker to 

estimate the biological age of a human individual. Building on our findings from a proof-

of-principle study Lipid aging clock predicting aging rates in slow and fast aging C. 

elegans mutants (Unfried et al., 2022), we here translate the concept to human serum 

data, validating its applicability in patients and a direct relationship between pancreatic 

diseases and accelerated aging. We present a new human lipid age clock (hLAC) that can 

predict survival in PDAC patients. Given these promising results, there is a compelling 

case for broader application and further testing of the hLAC to evaluate its efficacy in 

predicting outcomes in other cancerous conditions and possibly other chronic diseases 

where biological aging plays a critical role. This could pave the way for the hLAC to 

become an essential tool in the clinical setting, providing a robust, biologically sound 

measure of biological aging that could significantly enhance patient management and 

treatment personalization. 

Additionally, we show that aging clocks can be constructed using data from pathological 

cancer cohorts, unlocking the potential to leverage large cancer datasets for advancing 

aging clock research. 

 

Material and Methods 

Dataset  
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The dataset used in this study was collected by Wolrab et al. (Wolrab et al., 2022) and 

consist of 830 serum samples gathered in a 3-phase biomarker discovery study. The 

phenotypes of the participants were healthy controls, patients with pancreatic ductal 

adenocarcinoma (PDAC) or pancreatitis. A total of 202 lipids from over 10 lipid classes 

were analyzed.  

 

Demographics of the Dataset 

In total, 830 samples were available in the dataset of which 262 were healthy, 546 were 

diagnosed with pancreatic ductal adenocarcinoma, and 12 with pancreatitis. Of the PDAC 

patients 443 had a recorded overall –, and progression free survival. The mean age for 

healthy people was 53.02 +/- 11.88 years with a range of 19-79 years, for PDAC patients it 

is 63.85 +/- 10.2 on a range from 23-87 years, and 57.4+/-12.96 with a range of 37-75 years 

for people with pancreatitis. Age distribution between healthy and PDAC is statistically 

significantly different (Welch’s t-test: p<0.005), but not between the healthy or PDAC 

and pancreatitis groups (Welch’s t-test: p>0.05 for both). Sex was evenly distributed for 

healthy and PDAC patients, but slightly skewed for the pancreatitis patients (Tab. 1). 

 Healthy PDAC Pancreatitis 

Total Count 262 546 12 
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Tab. 1: Dataset Demographics 

 

Collected Lipid Species 

A total of 202 individual lipid species from 10 classes (Tab. 2) were quantified across three 

different laboratories. As lipid species were quantified using different methods, in 

addition to normalization to internal standards, the lipid species were normalized to a 

reference pooled plasma sample (Triebl et al., 2020). Detailed information on lipid 

extraction and processing can be found in Wolrab et al. (Wolrab et al., 2022). 

Only lipid species measured for each sample were included in the analysis, hence certain 

species had to be excluded from the analysis, leaving us with 102 species from the original 

202 species. The exclusion criterion was quite strict such that only species without 

missing values were used. All the remaining lipid species were log2 median-fold 

transformed in a preprocessing step to reduce skew and increase robustness. 

Survival Information N/A 443 N/A 

Mean Age in years 53.02 +/- 11.88 63.85 +/- 10.2 57.4+/-12.96 

Age Range in years 19-79 23-87 37-75 

Sex Male Female Male Female Male Female 

Count per Sex 128 134 275 271 9 3 
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Lipid Class Measured lipids Lipids used for 

analysis 

Lipids Selected by 

the Cox Regression 

Model 

Triglycerides (TG) 84 42 23 

Phosphatidylcholines (PC) 40 26 20 

Diglycerides (DG) 22 5 4 

Sphingomyelins (SM) 23 13 10 

Ceramides (Cer) 11 4 3 

Cholesteryl Esters (CE) 9 7 5 

Lysophosphatidylcholines 

(LPC) 

8 5 5 

Monoglycerides (MG) 3 0 0 

Cholesterol (Chol) 1 0 0 

Coenzyme Q10 1 0 0 

Total 202 102 70 

Tab. 2: Lipid Classes Count for the various lipid classes. 
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Constructing the Lipid Clock 

Similar to the PCAge clinical clock, the LipidClock consists of the combination of two 

penalized cox proportional hazard models (Fong et al., 2023). The underlying Cox 

proportional hazard models is a regression model which regresses between the survival 

time of patients and one or more predictor variables (Cox, 1972). Through an Elastic Net 

penalty, the model selects which subset of features, in our case chronological age and 

lipid species, are associated with mortality, and with what kind of magnitude. 

First, a cox proportional hazard model with chronological age as the only covariate was 

trained. This chronological age model provides the hazard based on chronological age 

(𝐻𝐶𝐴). Next, a penalized cox proportional hazard model with all the lipid species as 

covariates. This lipid model gives us the hazard based on the lipidome (𝐻𝑙𝑖𝑝𝑖𝑑). 

The intuition behind developing the clock like this is as follows: 

By dividing the predicted hazards 𝐻𝑙𝑖𝑝𝑖𝑑 and  𝐻𝐶𝐴 we get the individual ratio R of partial 

hazards for each individual. 

𝑅 =
𝐻𝑙𝑖𝑝𝑖𝑑

𝐻𝐶𝐴
 

A ratio of 1 means that the hazard of the lipidome corresponds to the hazard of the 

chronological age, and thereby the lipidome is typical for the chronological age. A ratio 

R>1 means that the lipidome is biologically older than the chronological age, whereas a 
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ratio R<1 would indicate a lipidome younger than the chronological age. Through a log2 

transform of the ratio we introduce acceleration and deceleration, and to scale this ratio 

into years we multiply it by 8 - the mortality rate doubling time for humans, as described 

by Gompertz law of mortality (Gompertz, 1825), which gives us a measure for Lipid Age 

Acceleration (LAA) defined as 

𝐿𝐴𝐴 = 8 𝑦𝑒𝑎𝑟𝑠 ∗ 𝑙𝑜𝑔2 
𝐻𝑙𝑖𝑝𝑖𝑑

𝐻𝐶𝐴
 

With R =1, LAA is 0, for R>1 LAA leads to acceleration and LAA is decelerated for R<0. 

Therein, LipidAge can then be interfered by LipidAge = Chronological Age + LAA. 

We optimize the parameters for the penalized cox proportional hazard model through 

grid search and 5-fold cross validation and find the best hyperparameters to be 0.0001 for 

the penalty, and 0.9 for the l1-ratio for the chronological age model and penalty 0.01 and 

l1-ratio =0.8 for the lipid model, making the model very sparse. 

The final model is trained with 75% of the PDAC data, and 25% are kept for evaluation. 

Moreover, we evaluate it against the healthy and pancreatitis samples. 

As the model is trained on severely diseased individuals, it will calculate an LAA for 

healthy individuals that is negative. Therefore, to make LAA referenced to healthy people 

we use an additive transformation and mean center the LAA by adding the absolute value 

of the mean of the LAA of healthy people.  

Hence, centered LAA is given by LAA + mean(𝐿𝐴𝐴ℎ𝑒𝑎𝑙𝑡ℎ𝑦). 
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Lipid Pathway Analysis 

Lipid pathway analysis was conducted using the MetaboAnalyst Pathway Analysis 

module (Xia et al., 2009), which allows the exploration of systematic changes in lipid 

pathways at the lipid class and lipid species levels. Prior to using MetaboAnalyst we 

convert lipid species names to Human Metabolome Database (HMDB) IDs (Wishart et al., 

2022). Out of the 70 lipids in the Lipid clock, 13 lipids had no entry in the HMDB and 

were not considered for the pathway analysis. For analysis we use the online tool that is 

available on the MetaboAnalyst webpage 

(https://www.metaboanalyst.ca/MetaboAnalyst/) and upload the concentration table. 

We use the default settings with no additional preprocessing of the concentration values.  

As specific pathway analysis parameters out-degree centrality and we use the KEGG 

Pathway Homo Sapiens as pathway library. 

 

Implementation 

For the implementation Python v3 was used. Survival analysis was conducted using the 

Lifelines package (Davidson-Pilon, 2019).  Data, code, and model will be made available 

on GitHub https://github.com/max-unfried/lipid-clock. 
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Results 

We developed a Lipid Aging Clock to predict mortality and biological age on a cohort of 

patients diagnosed with Pancreatic Ductal Adenocarcinoma (PDAC) at various stages, 

using two different Cox Proportional hazard models – one trained on the lipid profile, 

and the other on chronological age, providing us with hazard ratios for individual lipids 

and chronological age.  

To test if the human serum lipidome can be used as an accurate predictor of biological age 

we trained a LipidClock on data from individuals with pancreatic ductal adenocarcinoma 

(PDAC) and evaluated it on a holdout test set of PDAC patients, patients with pancreatitis 

or healthy individuals. The decision to generate the clock from the serum of cancer 

patients was based on the availability of larger sample sizes from this group. To date, the 

vast majority of aging clocks have been generated from healthy populations, or at least 

not individuals with one condition. Our approach is a test of the hypothesis that reliable 

measure of aging can be extracted from a pathological cohort. If successful, this approach 

would open up a much wider range of cohorts in which it is possible to determine 

biological age and enhance the capacity of this methodology to disentangle the role of 

aging in disease progression. 

 

Mortality trajectory due to cancer, resembles non-cancer aging trajectory 
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The LipidClock successfully predicts the chronological age of healthy individuals (Fig. 1a) 

and we find that it can accurately predict the biological age acceleration in healthy 

individuals with a mean and median absolute error of 6.22 years and 4.85 years (Sup. Tab. 

1). 

 

Given that the clock was constructed from serum of PDAC patients, we were surprised of 

its accuracy in forecasting aging in healthy individuals. Conversely, predicting the 

biological age of pancreatic cancer patients yields a mean and median absolute error of 

11.99 and 10.09 years respectively, indicating that on a population level the lipid profile 

of PDAC patients might show more variation, yielding larger errors (Sup. Tab. 1). 

In both cases residuals are normally distributed, indicating that the model is capturing the 

underlying primary trends of lipid aging (Shapiro-Wilk: Healthy: p-value=0.09; PDAC: p-

value=0.97; Pancreatitis: p-value=0.42). Accordingly, the Pearson correlation between 

chronological and LipidAge for healthy individuals is 0.81 (p=2.12e-62), 0.649 (p=5.32e-

27) for PDAC patients, and 0.83 (p=0.0009) for patients with pancreatitis. These data 

suggest that healthy people are more alike, whereas there are many different molecular 

variations and clinical phenotypes of a disease, especially when as complex as cancer. 

Generally, when developing an aging clock on data of healthy individuals the predicted 

biological age may be expected to be accelerated for various age-related diseases, 

especially cancer (Argentieri et al, 2023; Perna et al, 2016; Kresovich et al., 2019). Thus, 
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we reasoned that the converse may also be true: developing an aging clock on diseased 

individuals should predict decelerated age for healthy individuals. This is indeed true 

with PDAC patients, having an uncorrected mean LipidAgeAcceleration (LAA) around of 

0.12, and healthy people a mean LAA of - 7.53 years (Sup. Fig. 1). To make healthy people 

the reference when talking about LAA, we center the predictor by adding the absolute 

value of the mean (7.53 years) of the healthy people to each calculation. 

 

Correspondingly, we find that PDAC patients show a mean and median lipid age 

acceleration of 7.42 and 5.5 years, respectively, compared to healthy people (Fig. 1b). On 

a population level, these differences are highly statistically significant (p=1.44e-11). This 

is expected as other aging clock studies show accelerated aging for cancer patients. 

Similarly, we find that the 12 patients with pancreatitis show 3.63 years mean 

acceleration compared to healthy people, and a mean deceleration of 3.79 years compared 

to cancer (Fig. 1b). 

To investigate the rate of lipid aging in healthy people, and patients with pancreatitis and 

PDAC, we can calculate the slope of the regression line between chronological and lipid 

age. For PDAC patients, this slope is 0.17 higher that for healthy individuals, indicating 

that cancer patients age biologically at a rate of 0.17 per year more than healthy people 

(Fig. 1a); however, this is not statistically significant (p-value= 0.08). For pancreatitis 

patients the slope is 0.06 steeper compared to healthy, indicating that the clock captures 
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even lipidome disturbances of other severe diseases that were not in the training data but 

also aging faster. 

 

Fig. 1. a.)  Chronological age vs LipidAge for Healthy, PDAC and Pancreatitis Patients; b.) 

Violine plot of Lipid Age Acceleration for Healthy, PDAC and Pancreatitis Patients 

 

LipidAge and LipidAgeAcceleration are Predictive of PDAC Survival 

For a biomarker to be useful clinically in the context of a disease, it should be predictive 

of related outcomes. We use LipidAge, LAA and a binarized version of LAA, which only 

differentiates between negative and positive LAA to investigate if either of those metrics 

would be predictive of Overall Survival (OS) and Progression Free Survival (PFS) for 

PDAC patients.  

First, we discover that chronological age has a non-significant Hazard ratio of 1.01, 

meaning that an increase by 1 year would increase mortality by 1% (Tab. 3). Given that 
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PDAC is a severe and mostly lethal disease this makes sense, as it indicates that death by 

PDAC is almost age independent. On the other hand, we find that both, LipidAge and 

LipidAgeAcceleration are both statistically significant associated with overall survival 

(Tab. 3) and progression free survival (Sup. Tab. 2). 

An increase of 1 year for both, either LipidAge or LAA increases the risk of death by 3% 

(p<0.005) (Tab. 2), and for progression free survival by 2% (p<0.005) for LipidAge, and 3% 

(p<0.005) for LAA (Sup. Tab. 2). This suggests that the lipidome encodes information on 

the disease and mortality better than chronological age itself with an increase in LipidAge 

being 3 times as hazardous as chronological age. Moreover, as the hazard is constant the 

5-year risk can be calculated as cumulative hazard, hence 5 years of LAA yield a PDAC 

mortality risk of 15%.  

Further analyzing the impact of LAA, we attempted to stratify the partial effects of lipid 

age acceleration (Fig. 2). By varying the covariate, we see that LAA below 0 show survival 

longer than baseline, whereas LAA above 0 falls below the baseline. Moreover, the lower 

the LAA the higher the survival, and the higher the LAA the lower the survival (Fig. 2). 

Additionally, we find that LAA is moderately negatively correlated with overall survival 

(r=-0.29, p=0.002) and progression free survival (r=-0.31, p=0.001) (Sup. Fig. 2), consistent 

with the finding that negative LAA is associated with longer survival. Hence, at a LAA of 

0 there is a cusp that bifurcates the signal. This suggests that binarization could be a 

reasonable choice for signal amplification. To explore this pattern, we binarized the lipid 
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age acceleration by defining binarized LipidAgeAcceleration (bLAA) as either accelerated 

(LAA>0) or decelerated (LAA<0) and called it bLAA. Similarly, binarizing -omics 

signatures has previously been shown to be an accurate biological age predictor in 

humans (Meyer & Schumacher, 2021). 

As expected, by binarizing LAA, we can enhance the signal where accelerated lipid age 

contributes significantly to mortality, whereas a decelerated LAA is a good predictor of 

longer survival. Having a positive LAA increases risk of death at any given timepoint by 

84%, compared to having a negative LAA (Tab. 3; Fig. 3a). A similar pattern can be 

observed for progression free survival with the Hazard Ratio for LAA >0 is 1.65 (p<0.05) 

(Sup. Tab. 2; Fig. 3b). Accordingly, patients with a positive LipidAgeAcceleration 

(bLAA>0) have a median survival of 17.9 months, whereas patients with negative LAA 

(bLAA<0) have a median survival of 23.14 months, yielding that they live 29.2% longer. 

 

 Table 3: Cox proportional Hazard model for individual models of Chronological Age, LipidAge, LAA and CA 19-9 for 

Overall Survival 

Covariate Hazard 

Ratio 

95% CI SE Z p-value 

Chronological age 1.01 1.00-1.02 0.01 1.84 0.07 

LipidAge 1.03 1.01-1.04 0.01 4.18 <0.005 
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Lipid Age 

Acceleration 

1.03 1.01-1.04 0.01 3.74 <0.005 

Binary Lipid Age 

Acceleration 

1.84 1.21-2.80 0.21 2.86 <0.005 

Log2 CA 19-9 1.13 1.8-1.19 0.02 5.40 <0.005 

Binary CA 19-9 3.03 1.96-4.67 0.22 5.00 <0.005 

 

 

Figure 2: Partial effects on overall survival when changing unadjusted LAA 
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Fig 3. Survival curves of a.) overall survival and b.) progression free survival depending on bLAA, partial effects 

 

Comparing Lipid Age Acceleration to Cancer Antigen 19-9 

To evaluate the usability of our approach in the context of pancreatic cancer surveillance, 

we compared our predictor to the currently used golden standard blood biomarker, 

Cancer Antigen 19-9 (CA19-9), which is used for diagnosis, prognosis, treatment 

monitoring, and surveillance of pancreatic cancer (Ballehaninna & Chamberlain, 2012; 

Poruk et al., 2013). First, we conduct survival analysis with raw CA19-9 measurements 

and found no significant correlations. This is mainly due to the wide range in 

measurements of CA19-9 concentration with the smallest measurement equaling to 0.6 

U/mL, and the maximum measurement to 199088 U/mL. Hence, we repeated the survival 

analysis with log2 transformed CA19-9 measurements which resulted in a hazard ratio of 

1.13 (p<0.005), which translates to an increase of 1 unit increases death risk by 13% (Tab. 

3). 
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Generally, it is considered that CA19-9 values above 37 U/mL are indicative of pancreatic 

cancer. Therefore, with similar reasoning as for the binarized LAA, we binarized CA19-9 

values into thresholds with 0 for CA19-9 0 below 37 U/mL and 1 for values above 37 

U/mL. This allowed for a fair comparison between the binarized version of LAA and 

CA19-9. This binarized CA19-9 measurement yields a Hazard Ratio of 3.03, giving it the 

strongest predictive power of mortality (Tab. 3). 

However, log2(CA 19-9) and LAA show only a modest correlation of 0.29 (p=2.3e-05) 

(Sup. Fig. 3), indicating that they mostly capture different physiological dynamics. Hence, 

a combined model might improve diagnostic predictions. 

Developing a combined CoxRegression model using LAA and log2 CA19-9, we 

established that both are still statistically significant but have decreased HR compared to 

individual models (Tab. 4). Log2 CA19-9 correlates to an increased risk of mortality by 

11%, whereas LAA by 2%. As they both only decrease slightly, we can assume that they 

are not heavily correlated. 

 

 Table 4: Combined model of LAA and Log2 CA 19-9 

Covariate Hazard 

Ratio 

95% CI SE Z p-value 
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Lipid Age 

Acceleration 

1.02 1.00-1.03 0.01 2.11 0.03 

Log2 CA 19-9 1.11 1.06-1.17 0.02 4.26 <0.005 

 

As we discovered earlier, binarization improves the mortality signal. Hence when 

developing a combined model of binary LAA and binary CA 19-9 we find that both have 

high HRs of 1.75 (CI: 1.14-2.69, p=0.01) and 2.96 (CI: 1.91-4.60, p<0.005), respectively, 

that are statistically significant (Tab. 5). Given that the model is penalized, yet hazard 

ratios for either of the variables only decreases slightly we can assume no heavy 

correlation between the variables. While aging is a major risk factor for chronic disease 

incidence and progression, it remains poorly understood why at the molecular level. 

Given that there is limited correlation between the LipidClock and CA 19-9, we suggest 

that CA 19-9 is specific for PDAC disease progression parameters. Disentangling aging-

specific and disease specific markers may assist both in developing therapies and in 

understanding the aging process. 

 

 Table 5: Combined model of binary LAA and binary CA 19-9 

Covariate Hazard 

Ratio 

95% CI SE Z p-value 
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Binary Lipid Age 

Acceleration 

1.75 1.14-2.69 0.22 2.86 0.01 

Binary CA 19-9 2.96 1.91-4.60 0.22 5.00 <0.005 

 

 

Interpretation of the Lipid Species Included in the LipidClock 

The 7 Death and Protector lipids 

From the 102 lipids we started to train the model, 70 lipids (Tab. 2) contribute to the 

weights of the Cox regressor while the remaining 32 lipids have weights of 0 (Sup. Fig. 4), 

and hence do not impact the prediction. However, we find that the Cox proportional 

hazard model identify 7 individual lipid species that have statistically significant hazard 

ratios (Tab. 4). 5 of these 7 lipids increase the risk of death, while 2 of decrease the risk of 

death in the PDAC cohort. 

Ceramide 40:1 (Cer 40:1) (HR: 1.996 ;p=0.013), Sphingomyelin 41:1 (SM 41:1)(HR: 

1.546;p=0.02), Sphingomyelin 42:3 (SM 42:3) (HR: 1.917;p=0.05), Phosphatidylcholine O-

36:3 (PC-O 36:3/PC-P 36:2) (HR: 1.291;p=0.002),  and Triacylglycerol 58:2 (TG 58:2) (HR: 

1.331;p=0.039) are death lipids, and all increase the mortality risk due to HR>0. On the 

other hand, Sphingomyelin 41:2 (SM 41:2) (HR: 0.330; p=0.003), and Phosphatidylcholine 
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O-34:3 (PC-O 34:3/PC-P 34:2) (HR: 0.673; p=0.03), are protective lipids, and reduce the 

mortality risk. 

Of these 7 lipids only 2 are statistically significant correlated with chronological age, 

namely Cer 40:1 (r =0.36, p=1.97e-08) and SM 41:2 (r=0.147, p=0.026), which in our case 

offer the highest risk and protective associations, respectively. This might indicate that 

these lipids change linearly across lifespan, whereas the other lipids occur during disease 

progression. 

 

Tab. 6 Cox Proportional Hazard model for lipidome and covariates with coefficient and 

significant HR 

Covariate Hazard 

Ratio 

95% CI SE Z p-value 

Cer 40:1 1.996 1.158-3.44 0.278 2.489 0.013 

SM 41:1 1.546 1.072-2.229 0.187 2.335 0.020 

SM 41:2 0.330 0.160-0.679 0.368 -3.012 0.003 

SM 42:3 1.917 1.000-3.673 0.332 1.961 0.050 

PC-O 34:3/PC-P 

34:2 

0.673 0.470-0.963 0.183 -2.167 0.030 
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PC-O 36:3/PC-P 

36:2 

1.291 1.100-1.517 0.082 3.119 0.002 

TG 58:2 1.331 1.014-1.746 0.139 2.062 0.039 

 

Comparing these 7 lipids between the non-PDAC patients, and PDAC patients with 

positive and negative LAA, we find that there is always a statistically significant 

difference between the control group, and patients that have PDAC, independent of their 

LAA. 

However, comparing the lipid levels of the 7 lipids between the LAA>0 and the LLA<0 

group we find that Cer 40:1 (p=0.015) and SM 42:3 (p=8.13e-09) concentrations are 

statistically significant different between both groups (Fig. 4). 

 

Figure 4: The 7 lipids with significant Hazard Ratios 
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To determine if this subset of 7 lipids alone can separate healthy from cancerous patients, 

we apply dimensionality reduction with UMAP to project the lipidome into a 2-

dimensional projection. Visualization of the 2D UMAP coordinated of these 7 lipids alone 

depicts PDAC patients and healthy patients in clusters, with healthy individuals grouping 

together (Sup. Fig. 5). Moreover, we find statistically significant differences between the 

distributions of cancerous and healthy population of UMAP component 1 (p=4.38e-14), 

and UMAP component 2 (p=8.69e-53). This suggest that these 7 lipids are indeed 

descriptive of pancreatic ductal adenocarcinoma.  

 

Interpretation of all Lipids with Coefficients in the LipidClock 

Looking at the concentrations of all the 70 lipids the Lipid Aging Clock we find that 53 

show statistically significant differences between healthy controls and patients with 

PDAC (Sup. Fig. 6). Interestingly all the Sphingolipids in the lipid clock, in this case 

sphingomyelins and ceramides, show statistically significant differences. 

To get a more holistic view on the pathways that are highlighted by the lipid clock, we 

next used the MetaboAnalyst tool for pathway analysis on all the 70 lipids that have a 

coefficient in the LipidClock, not just those with a significant hazard ratio. Identifying 

pathways helps us to gain a better understanding of the underlying lipid biology and how 

it relates to aging and disease. 
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The pathway analysis shows that the lipid clock captures information overlapping with 

the following lipid pathways: Sphingolipid metabolism, Glycerolipid metabolism, 

Glycerophospholipid metabolism, Steroid biosynthesis, Linoleic acid metabolism, alpha-

Linolenic acid metabolism and Arachidonic acid metabolism. While it is helpful to link 

the lipids to specific pathways, we must keep in mind that the data provided by the study 

used targeted lipidomics, and selected the lipid species that were measured, hence the 

selection is not unbiased. Future studies that measure larger quantities of lipids will 

provide more insights into the relevance of all lipid pathways. 

However, we tried to understand how these lipid pathways relate to the aging process, 

and if there is an overlap between cancer and aging. To ascertain changes in these 

pathways with age, we compared the lipidome of young healthy individuals (n=26, mean 

age=35.5) to old healthy people (n=22, mean age=72.32 years) from the pool of healthy 

individuals in the dataset. In other words, we compare young individuals with low 

mortality risk to old individuals with high mortality risk. 

Moreover, we compared PDAC patients with negative lipid age acceleration to the ones 

with positive lipid age acceleration, that is again, patients with lower mortality risk to 

patients with a mortality risk that is 84% higher (Tab. 3). 

Using lipid pathway analysis, we asked which pathways are dysregulated in both the 

young-old comparison, and the decelerated-accelerated LipidAge group. The idea is that 

we compare groups with higher and lower mortality risk to each other we can find 
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common lipid signatures that are indicative for the increased mortality risk, independent 

of whether the origin of this risk is due to age or cancer. 

 

Figure 5: Left Pathways for young-old and right for LAA<0 and LAA>0. Color indicates significance, size impact. 

Comparing young to old we find that Sphingolipid metabolism is significantly 

dysregulated with age (p-Holm=6.5238E-4), while the other pathways do not show 

significant disturbances (Fig. 5). 

When we compare PDAC patients with decelerated LipidAge to patients with accelerated 

LipidAge we also find that statistically significant Sphingolipid metabolism dysregulation 

(p-Holm=0.0012). Additionally, we find perturbances in Glycerolipid metabolism (p-

Holm=0.0485) (Fig. 5). This points towards dysregulated Sphingolipid metabolism being 

the denominator for an increase in mortality risk.  

 

Discussion 
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In this study, we developed the first oncological biological aging clock, based on a 

lipidomic profile from the serum of 546 human subjects with pancreatic ductal 

adenocarcinoma (PDAC).  

The lipid age predictor was trained on lipid samples and survival data from PDAC and 

subsequently tested by predicting the lipid age of a separate set of patients with PDAC 

that had not been used for training. Subsequently, we used the same predictor to 

determine the lipid age of healthy individuals and of patients with pancreatitis. 

Strikingly, despite having been trained on the lipidome and mortality data of PDAC 

patients, the clock is able to make reasonable predictions of healthy individuals and of 

subjects with less severe diseases.  

A key finding was that the lipid age predictor, though trained exclusively to predict 

survival of cancer patients, systematically assigned lower biological age to healthy 

volunteers. This hints at significant similarities between lipid species that predict 

mortality of cancer patients and lipids that change during normal aging.  

Moreover, this means that aging and mortality signatures are conserved, even between 

subjects suffering from serious, life threatening and potentially terminal diseases and non-

diseased individuals. This suggest that cancer cohorts can be repurposed to develop aging 

biomarkers. This is especially useful, as existing cancer and disease databases contain large 

amounts of data and large samples sizes, compared to databases containing mostly healthy 

agers. 
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The Pearson correlation coefficient between chronological and lipid age was 0.81 for 

healthy controls, and 0.65 for PDAC patients. This indicates that aging and cancer 

dynamics are correlated, e.g., that there are similarities in what contributes to mortality 

in cancer and aging. One might consider it in a way that the timespan in which 

detrimental aging process unfold during normal aging is compressed in cancer, and hence 

the aging rate in cancer is higher. Moreover, the fact that dysregulation in sphingolipid 

metabolism is a driving factor of mortality rate, in both aging and cancer, points in the 

same direction (Fig. 5). 

PDAC is a deadly disease with a general 5-year survival rate of under 10% (Bengtsson et 

al., 2020; Sarantis et al., 2020); hence, it makes sense that we find that chronological age 

itself is not very strongly nor significantly predictive of its survival, as the malignancy is 

the main driver of death, almost independent of age (Tab.3). It has been reported that 1- 

and 3-year survival outcomes for PDAC are very similar between age groups, indicating 

that that age is indeed not a significant factor. (Abbaszadeh Kasbi et al., 2022). On the 

other hand, our LipidAge based metrics show predictive power of PDAC survival. A 1-

year increase in LipidAge and LipidAgeAcceleration increases the hazard of death by 3%, 

or 5-year increase by 15%, in patients with PDAC (Tab. 3). In previous studies, 5 years of 

epigenetic age acceleration showed a 22% increase for cancer mortality (Perna et al., 

2016). This shows that the lipidomic age calculated by the model is more informative 

about cancer mortality than chronological age, and competitive with epigenetic age. 

Moreover, enhancing the signal through binarizing LAA into only positive and negative 
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age acceleration shows that any kind of LAA is highly likely to increase mortality risk by 

84%, as stratifying by partial effects of lipid age acceleration has shown (Fig. 2). This 

shows that there is an inherent systemic lipid signature that is captured by the 

LipidClock, and that Lipid Age Acceleration is linked to overall survival. 

 

Analysis of the specific lipids carrying predictive value in the model identifies several 

lipid species previously linked to mortality, as well as inflammation.  The lipidomic 

signature shows that 7 lipids are highly dysregulated during PDAC, and these are 

significant markers of hazard. Remarkably amongst these heavily dysregulated species are 

4 sphingolipids, including 1 ceramide and 3 sphingomyelins. Well-regulated 

sphingolipids are signatures of overall health and longevity, whereas dysregulation has 

been linked to disease and mortality (Albeituni & Stiban, 2019; Matanes et al., 2019). 

Next, we surveyed the literature, extracting previous studies reporting associations for 

each of these 7 lipids with longevity and mortality. 

Of the 7 lipids, 2 are protective, that is, higher levels are associated with improved 

survival (Tab. 6). Both of these protective lipids, SM 41:2 and PC-O 34:3/PC-P 34:2, have 

in previous studies been linked to centenarians, longevity, and improved health 

(Gonzalez-Covarrubias et al., 2013; Montoliu et al., 2014; Pradas et al., 2019). 

SM 41:2 is significantly correlated with chronological age (r=0.147, p=0.026), its 

concentration is higher in centenarians (Montoliu et al., 2014) and this species has also 
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been associated with familial longevity (Gonzalez-Covarrubias et al., 2013). In the PDAC 

cohort, SM 41:2 is severely decreased compared to the healthy controls. These data 

strengthen the argument that SM 41:2 is a protective lipid, and higher concentrations of it 

are beneficial. 

 

The second protective lipid, PC-O 34:3/PC-P 34:2, is also positively associated with 

longevity and inversely correlated with type 2 diabetes and hypertension in the Leiden 

Longevity Study (Gonzalez-Covarrubias et al., 2013). However, generally PC-O 34:3/PC-

P 34:2 also decreases during aging in humans (Pradas et al., 2019) and has been reported 

to be part of an ether lipid signature that makes long-lived humans more resistant to 

oxidative damage and lipid peroxidation (Pradas et al., 2019). PC-O 34:3/PC-P 34:2 is also 

undergoing specific changes in north Italian centenarians, showing lower concentrations 

than normal agers (Collino et al., 2013). All in all, this connects PC-O 34:3/PC-P 34:2 to 

health and beneficial for survival. 

Looking at the 5 lipid species associated with increased mortality risk - Cer 40:1, SM 41:1, 

SM 42:3, PC-O 36:3/PC-P 36:2, and TG 58:2 - we find that previous studies have likewise 

associated them with age, frailty, morbidity, and increased mortality (Garcia-Etxebarria et 

al., 2021; Li et al., 2021; McNally et al., 2022; Montoliu et al., 2014; Pradas et al., 2019; 

Wang et al., 2022; Wolrab et al., 2021, 2022). 
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Cer 40:1 has been reported to exhibit age associated increase in the serum of elderly males 

(Ishikawa et al., 2014). The concentration of Cer 40:1 is also increased in the skeletal 

muscle and serum of patients with Type 2 Diabetes (McNally et al., 2022). This suggests 

that this long-chained ceramide 40:1 may be generally involved with diseases that involve 

the pancreatic system, and that higher concentrations are an indicator for disease and less 

successful aging. This is consistent with our findings that PDAC patients with higher Cer 

40:1 concentration had accelerated LipidAge and higher mortality. 

Similarly, SM 41:1 has also been previously reported by Wolrab et al. to be highly 

dysregulated in PDAC patients (Wolrab et al., 2022). Moreover, another study has 

proposed downregulated levels of SM 41:1 as a general cancer biomarker for kidney, 

breast, and prostate cancer (Wolrab et al., 2021). Interestingly, we find that SM 41:1 

concentration is lower in PDAC patients then in the healthy controls (Fig. 3). Li et al. 

reported that higher plasma concentration of SM 41:1 was positive associated with faster 

4-meter walking speed and lower self-reported disability, and especially in older adults, 

SM 41:1 was cross-sectionally positively associated with physical function (Li et al., 2021). 

Hence higher SM 41:1 concentration appears to be beneficial for health, while a decrease 

in it seems to connect to disease and frailty. 

SM 42:3 is increased in centenarians, compared to elderly (Montoliu et al., 2014). 

However, Wang et al. found that sphingolipid 42:3 is highly correlated with laryngeal 

cancer where it is decreased compared to healthy controls (Wang et al., 2022). However, 
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a study in colorectal cancer subjects identified gene variants that are associated with an 

increase in SM 42:3 in colorectal cancer patients (Garcia-Etxebarria et al., 2021). 

Interestingly, we find that for PDAC patients with LAA>0 shows a very strong increase 

SM 42:3 compared to healthy (p= .002), and individuals with LAA<0 (p= 8.13e-09). This 

contradiction could be resolved by postulating that that different lipids play different 

roles in different cancers. Hence, different diseases perturb lipid metabolism in different 

ways with deviation from a healthy, stable equilibrium itself might be a signature of 

disease, not necessarily the direction of deviation. However, the 2 lipids with the largest 

hazard rations, Cer 40:1 and SM 42:3 show both statistically significant increased 

concentrations for PDAC patients with bLAA>0 compared to patients with bLAA<0. 

Hence, this shift appears to be to be indicative of the increase in mortality risk.  

PC-O 36:3/PC-P 36:2 has been previously reported to decrease with age (Pradas et al., 

2019), and to be significantly increased in centenarians compared to elderly (Montoliu et 

al., 2014). Consistent with these reports, we find that the ether lipid PC-O 36:3/PC-P 36:2 

levels are much lower in PDAC patients compared to healthy controls, suggesting that 

higher levels might be associated with protection. 

TG 58:2 is the only lipid species that shows no statistically significant difference between 

healthy and PDAC patients, nor between binary LAAs. Triglycerides are mainly used for 

energy storage in adipose tissue (Rosen & Spiegelman, 2006; Redinger, 2009). One could 
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speculate that TG 58:2 has a high hazard ratio, as generally with age adipose tissue 

increases. 

All in all, our analysis shows that many lipid species associated with pancreatic cancer 

mortality are informative for stratification of normal aging, matching lipids previously 

identified to be biomarkers of healthy aging (Montoliu et al., 2014; Pradas et al., 2019; 

Almeida et al., 2021). In particular, our analysis of the lipid aging clock singles out 

sphingolipids as an important species, playing a key role in mortality. 

As we have established, positive LAA is associated with an 84% higher risk of succumbing 

to PDAC. Similarly in old people the risk of death is much higher than in young people. 

Given the statistically significant dysregulation of sphingolipids between young and old 

healthy individuals, as well as between PDAC patients with negative and positive lipid 

age acceleration (Fig. 4) we can speculate that the mechanisms that fail in pathology in 

compressed time scale, are also failing in aging but over a longer time frame. Other 

studies have highlighted the importance of sphingolipids in aging (Mielke et al., 2015; 

Rist et al., 2017; Darst et al., 2019; Beyene et al., 2020), making this a reasonable 

speculation. 

In the Baltimore Longitudinal Study of Aging, it was reported that plasma 

sphingomyelins increase with age, with women having higher values then men (Mielke 

et al., 2015). Other longitudinal studies have revealed similar findings, specifically, that 

serum sphingolipids change with age and increase for women and decrease for men (Rist 
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et al., 2017; Darst et al., 2019). Impaired sphingolipid metabolism is involved in a lot of 

pathophysiological phenotypes (Buergel et al., 2022). Sphingolipids, especially ceramides 

and sphingosine-1-phosphate, regulate various cellular processes that are crucial in 

immunity response, inflammation and inflammaging (Maceyka & Spiegel, 2014), as well 

as cell growth and survival (Arana et al., 2010). Moreover, ceramide species undergo 

strong changes with age (Beyene et al., 2020) and have been proposed as biomarkers of 

human longevity (Jové et al., 2017). Mechanistically, cell lines cloned from PDAC 

maintain modified sphingolipid signaling and elevated sphingosine-1-phosphate to 

preserve cancerous phenotypes (Speirs et al., 2019). In addition, cellular senescence, a 

hallmark of aging (López-Otín et al., 2013, 2023), can be induced by ceramides, whereas 

sphingosine-1–phosphate has the power to delay the transition to a senescent state 

(Trayssac et al., 2018). 

Finally, sphingolipids are involved in cell signaling and play a critical role in 

inflammation, inflammaging, and various diseases related to signaling pathways that 

regulate inflammatory responses (Maceyka & Spiegel, 2014; Albeituni & Stiban, 2019). In 

the context of inflammaging - the chronic, low-grade inflammation associated with aging 

- sphingolipids contribute to the dysregulation of inflammatory processes, which can 

exacerbate age-related diseases (Albeituni & Stiban, 2019; Matanes et al., 2019). 

Moreover, alterations in sphingolipid metabolism have been linked to a range of 

pathological conditions, including neurodegenerative diseases, cardiovascular disorders, 

and metabolic syndromes, underscoring their significance in both inflammation and 
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disease progression (Matanes et al., 2019). As our LipidClock shows enrichment in 

sphingolipids, we argue that a big component of the LipidClock measures inflammatory 

processes of the immune system that are related to aging and diseases. Previously, other 

groups have developed biological aging clocks and several of these appear to identify a 

key role for inflammatory signalling and dysregulation of the immune system. The first 

immune aging clock was glycan-based, measuring IgG glycosylation (Krištić et al., 2014), 

and this clock has since shown significant association with several age-related diseases 

and longevity interventions (Shkunnikova et al., 2023; Vinicki et al., 2023). Another 

aging clock tracking inflammatory processes is iAge, a deep learning-based clock that 

tracks multimorbidity, immunosenescence, frailty and cardiovascular aging (Sayed et al., 

2021). The success of these clocks illustrates the central role of the immune system 

inflammation in the context of aging and demonstrates that immune system status, 

whether measured through glycans, interleukins, lipids or other inflammatory 

metabolites can provide insight into the aging process of individuals.  

 

Overall, the LipidClock confirmed that sphingolipid metabolism is intertwined with 

survival and mortality, be it through natural aging or diseases of accelerated aging such as 

PDAC. This allows the use of lipidomic signatures for predictions of biological age as the 

lipidomic dynamics of aging resemble cancer dynamics close to death, in which decay is 

accelerated and processes that usually take decades to fail are compressed into years. 
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Hence, targeting sphingolipid metabolism might yield avenues for novel geroprotective 

drugs that extend healthspan and lifespan by balancing sphingolipid biochemistry. Laurila 

et al. showed, that sphingolipids accumulate in the skeletomuscular system with aging, 

and that in inhibiting sphingolipid synthesis prevents age-related decline in muscle mass 

and enhances strength and exercise capacity in mice (Laurila et al., 2022). One can 

speculate that a similar approach could be beneficial to de-age other organs. 

When we compare the pancreatic cancer patients with accelerated and decelerated 

LipidAge we observe that Glycerolipid is dysregulated, whereas this is not the case when 

we compare old to young, indicating signatures of pancreatic cancer dominate over pure 

aging patterns. The pancreas is involved in the regulation of glycerolipid metabolism 

through the secretion of insulin and lipases (Lowe, 2002; Lukens, 1959). Among its many 

roles, insulin stimulates the synthesis of fatty acids in the liver, which are then esterified 

to glycerol to form triglycerides – hence dysregulated Glycerolipid metabolism in a 

disease that impacts the pancreas is reasonable and not unexpected. Finding the 

Glycerolipid dysregulation between the 2 groups indicates that the further the progress of 

the adenocarcinoma, the more impaired is the pancreas, and the stronger the 

dysregulation. 

As large scale lipidomic data with thousands of individual samples is still hard to come by, 

a major limitation of our study is that we build our model on only 546 human serum 

samples. While this is enough to gain insights into some dynamics of cancer and aging, it 
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is not enough to capture the entire complexity of these biological processes, given the 

inherent variation in individuals. Moreover, while we showed that we can predict 

pancreatic cancer survival, we did not test this on other independent cohorts, but plan to 

do this in the future. For this reason, one must be careful to not overinterpret these 

findings, both in the context of cancer and in healthy individuals.  

Nevertheless, what this study shows is that lipids open up an avenue for cancer and aging 

biomarkers using aging clock methodology. Hence, future research should focus on 

measuring more lipids to capture more of the system, but also should explore lipid class 

specific clocks, with sphingolipids being a prime contender. Lipid aging clocks could be 

used in future clinical trials to assess the safety and efficacy of therapeutic drugs against 

pancreatic ductal adenocarcinoma, or other cancers (Cui et al., 2021; Rebelo et al., 2021). 

Moreover, including lipidomics measurements in large longitudinal as well as cross-

sectional studies will generate the large amount of data needed to eventually build models 

that can be used for diagnosis in clinical settings. 

Conclusion 

In this study, we describe a lipid clock that is based on the lipid profile of human serum 

of PDAC patients, which predicts PDAC and pancreatitis patients to be biologically older 

than healthy individuals. We demonstrate that a binary form of LipidAgeAcceleration 

can predict overall and progression survival in pancreatic ductal adenocarcinoma. 

Strikingly, it is comparable to the primary pancreatic cancer tumor marker, Cancer 
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Antigen 19-9, in predictive capability, finally equipping oncologists with a second tool of 

prediction and prognosis at diagnosis and during surveillance. Furthermore, we 

investigated the lipidome dynamics of PDAC and normal (non-cancer) individuals at 

different ages and find that dysregulated sphingolipid metabolism is a big driver in both 

PDAC and aging. 

LipidClock includes multiple lipid species and maps various lipid pathways. Development 

of sphingolipid specific aging clocks, as this class of lipid metabolites shows the strongest 

signal with regards to aging, disease, and mortality, is warranted. 

Overall, the lipid aging clock presents a novel method to assess biological age and 

mortality risk, with broad implications for aging research and healthy longevity 

medicine. 
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