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Abstract

Dengue is a mosquito-borne viral disease that poses significant public health challenges
in tropical and sub-tropical regions worldwide. Surveillance systems are essential for
dengue prevention and control. However, traditional systems often rely on delayed data,
limiting their effectiveness. To address this, nowcasting methods are needed to estimate
underreported cases, enabling more timely decision-making. This study evaluates the
value of using Google Trends indices of dengue-related keywords to complement official
dengue data for nowcasting dengue in Brazil, a country frequently affected by this
disease. We compare various nowcasting approaches that incorporate autoregressive
features from official dengue cases, Google Trends data, and a combination of both,
using a naive approach as a baseline. The performance of these methods is evaluated by
nowcasting weekly dengue cases from March to June 2024 across Brazilian states. Error
measures and 95% coverage probabilities reveal that models incorporating Google
Trends data enhance the accuracy of weekly nowcasts across states and offer valuable
insights into dengue activity levels. To support real-time decision-making, we also
present Dengue Tracker, a website that displays weekly dengue nowcasts and trends to
inform both decision-makers and the public, improving situational awareness of dengue
activity. In conclusion, the study demonstrates the value of digital data sources in
enhancing dengue nowcasting, and emphasizes the value of integrating alternative data
streams into traditional surveillance systems for better-informed decision-making.

Author summary

Dengue is a mosquito-borne viral disease that poses significant public health challenges
in tropical and sub-tropical regions worldwide. Surveillance systems are crucial for
dengue prevention and control. Unfortunately, traditional systems often rely on delayed
data, limiting their effectiveness. To address this, nowcasting methods are needed to
estimate underreported cases, enabling more timely decision-making. This study
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evaluates how Google Trends indices of dengue-related keywords can complement
official dengue data to improve nowcasting of dengue in Brazil, a country frequently
affected by this disease. We compare the performance of various nowcasting approaches
that incorporate Google Trends data with other approaches that rely solely on official
reported cases data, assessing their accuracy and uncertainty in nowcasting weekly
dengue cases from March to June 2024 across Brazilian states. To support real-time
decision-making, we also present Dengue Tracker, a website that displays weekly dengue
nowcasts offering valuable insights into dengue activity levels. The study demonstrates
the potential of digital data sources in enhancing traditional surveillance systems for
better-informed decision-making.
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Dengue; Google Trends; Nowcasting; Time series modeling; Real-time data; Surveillance
systems

Introduction 1

Dengue is a viral disease transmitted by mosquitoes of the Aedes genus such as Aedes 2

aegypti and Aedes albopictus, which poses a significant global health threat, particularly 3

in tropical and subtropical regions like Latin America, Southeast Asia, the Pacific 4

Islands, parts of the Middle East, and Africa (1). The disease ranges in severity from 5

mild symptoms such as high fever, severe headache, retro-orbital pain, joint and muscle 6

pain, and rashes, to severe forms like dengue hemorrhagic fever. This severe condition 7

can lead to critical complications such as bleeding, plasma leakage, and organ failure, 8

significantly increasing the risk of mortality (2). 9

Dengue transmission occurs through mosquito bites, with peak activity early in the 10

morning and before dusk. The disease is highly contagious and can rapidly spread 11

among populations, particularly in densely populated urban areas where mosquitoes 12

breed in stagnant water. Several factors contribute to the prevalence of dengue, 13

including climate, urbanization, and socio-economic disparities (3). Additionally, global 14

warming and increased international travel have expanded the geographic range of 15

dengue (4). 16

Annually, there are approximately 400 million infections, with 100 million cases 17

exhibiting clinical symptoms ranging from mild to severe (2; 5). In 2024, Brazil is facing 18

a severe dengue outbreak, with 9.48 million suspected cases and 5.32 million confirmed 19

cases as of August (6). This surge has made Brazil the most affected country in the 20

Americas. The increased incidence is attributed to factors like early transmission 21

seasons, climate change, and the presence of all four dengue serotypes. 22

Challenges in dengue prevention and control include the absence of specific antiviral 23

treatments and the complexity of developing vaccines for the virus’s four serotypes (7). 24

Moreover, dengue symptoms can resemble those of other diseases such as chikungunya 25

and Zika leading to misdiagnosis and complicating effective control measures. Dengue 26

prevention efforts focus on reducing mosquito populations and avoiding bites through 27

community engagement, personal protection, and environmental measures. 28

The rapid transmission and extensive impact of dengue underscore the importance of 29

research and the ability to predict its outbreaks. Surveillance systems play a crucial role 30

for guiding strategies for prevention and control, but traditional surveillance systems 31

often rely on delayed or incomplete data due to underreporting, healthcare 32

infrastructure limitations, and time lags in laboratory testing. For example, in Brazil, a 33

suspected dengue case is required by law to be reported to the government authorities. 34
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The notification is made by authorized health professionals in Notifiable Diseases 35

Information System (SINAN) (8). The notification data is then gathered in Brazilian 36

Ministry of Health and the most up-to-date information is used by the Epidemiological 37

Surveillance teams to understand current status of dengue cases through the country. 38

However, according to (9), less than 50% of dengue cases are reported within the first 39

week, no more than 75% are reported within four weeks, and fewer than 90% are 40

reported within nine weeks. This latency necessitates nowcasting methods to estimate 41

occurred-but-not-yet-reported disease cases for real-time decision-making. 42

Several nowcasting techniques have been developed in different settings. For 43

example, (10) employed reverse-time discrete hazard functions and maximum likelihood 44

estimation to handle reporting delays and nowcast AIDS cases in Canada. A Bayesian 45

hierarchical model was proposed by (11) to improve prediction and management of a 46

Shiga toxin producing Escherichia coli that caused a major outbreak in Germany in 47

2011. The model combined a survival regression model for the delay distribution, and a 48

quadratic spline for the epidemic curve, utilizing the generalized Dirichlet distribution 49

for flexibility in handling uncertainty. (12) proposed a Bayesian hierarchical model that 50

jointly estimates the expected number of deaths, and the reporting delay distribution to 51

nowcast COVID-19 fatalities in Sweden. This model offers enhanced predictive 52

performance and flexibility by incorporating leading indicators such as the number of 53

reported cases and COVID-19 associated ICU admissions. 54

A nowcasting by Bayesian smoothing approach capable of producing nowcasts in 55

multiple disease settings was developed by (13). This approach learns the reporting 56

delay distribution and the time evolution of the epidemic to produce nowcasts in both 57

stable and time-varying case reporting settings. The approach was tested on dengue in 58

Puerto Rico and influenza-like illness (ILI) in the United States. (14) presented a 59

framework for addressing reporting delays in malaria surveillance in Guyana. The 60

method combines a data imputation model and network models to refine case estimates 61

using historical data, neighboring region data, and precipitation levels. (15) introduced 62

a Bayesian framework with sliding windows for dengue surveillance in Bangkok, 63

Thailand, addressing reporting delays by accounting for spatial and temporal variations. 64

A Bayesian hierarchical model for dengue nowcasting in Brazil was developed by (9). 65

This approach uses a Negative Binomial distribution for the reported cases with mean 66

explained by spatial, temporal, and delay information, offering a robust correction to 67

the reported cases. This model is used by the InfoDengue system to nowcast dengue in 68

Brazilian municipalities (16). 69

The implementation of these methods are complex and require extensive data on the 70

historical weekly reported cases for the disease under consideration. In recent years, 71

methods utilizing digital data, such as Google Trends indices and Twitter (now X) 72

information on disease-related keywords, have shown significant effectiveness in 73

understanding and predicting disease activity levels. These methods leverage real-time 74

search query data to enhance the accuracy of traditional models, allowing for more 75

timely and reliable public health responses. 76

For example, (17) utilized used search query logs and modeling techniques such as 77

Elastic Net regularized regression and Gaussian Process regression to nowcast 78

influenza-like illness in the USA. (18) used an ARIMA model augmented with Google 79

Flu Trends data for nowcasting influenza outbreaks in the USA. They showed the 80

incorporation of real-time search query data improves prediction accuracy compared to 81

a model that uses only case data. 82

A Hidden Markov Model combining cases and Google Trends information for disease 83

prediction was proposed by (19). The model incorporated an autoregressive component 84

describing case counts and a linear covariate representing Google Trends. The model 85

was applied to predict dengue in Brazil, Mexico, Thailand, Singapore, and Taiwan, as 86
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well as influenza-like illness in the USA (20). 87

In (21), authors utilized Baidu search query data, which is similar to Google Trends, 88

to nowcast hand, foot, and mouth disease across China. They utilized a meta-learning 89

framework to dynamically select among predictive models including Principal 90

Component Analysis, LASSO, Ridge Regression, and ARIMA. They showed the 91

inclusion of Baidu Index data enhances prediction accuracy by providing real-time 92

public interest metrics correlated with hand, foot, and mouth cases. 93

(22) used Twitter data to monitor dengue in Brazil. First, they analyzed tweet 94

sentiments to filter tweets indicative of actual cases, and found a high correlation of the 95

number of dengue-related tweets with official dengue data. Then, they constructed a 96

regression model for predicting the number of dengue cases using the proportion of 97

dengue-related tweets, and used it to develop a monitoring system that generated 98

weekly heatmaps of dengue across cities in Brazil. 99

We are not aware of any approach that utilizes Google Trends data in Brazil. In fact, 100

the only existing dengue tracking system in Brazil is InfoDengue, which provides weekly 101

case reports of dengue and other arboviruses across Brazilian municipalities, along with 102

nowcasts generated by a Bayesian hierarchical model (16). Therefore, it is crucial to 103

investigate alternative methods. 104

To this end, in this paper we assess the value of Google Trends to nowcast weekly 105

dengue cases in Brazilian states by fitting models that integrate reported dengue cases 106

in Brazilian states provided by InfoDengue https://info.dengue.mat.br/, and Google 107

Trends indices of dengue-related keywords at the state level in Brazil which can be 108

obtained from https://trends.google.com/trends/. Then, we compare nowcasts 109

produced by models that utilize only reported dengue cases, only Google Trends data, 110

and a combination of both, with the model provided by InfoDengue (16). As a baseline, 111

we also use a naive approach where nowcasts are considered as the reported cases the 112

previous week. Our aim is to evaluate the value of real-time Google Trends data in 113

producing accurate nowcasts using simple models that do not rely on incomplete recent 114

case data, and to determine whether these nowcasts can compete with more complex 115

and time-consuming models. 116

Additionally, recognizing the importance of timely and accurate data for dengue 117

surveillance, we developed the Dengue Tracker website 118

(https://diseasesurveillance.github.io/dengue-tracker/). This site is updated with weekly 119

nowcasts for each Brazilian state, and presents information through interactive maps 120

and time trend plots to inform decision-makers and the public about dengue activity 121

levels in real-time. 122

The rest of the paper is organized as follows. First, we detail the study region, data 123

sources, nowcasting methods, and performance assessment measures. Next, results are 124

presented through explanatory tables and figures, highlighting error and uncertainty 125

measures across states. Then, we describe the Dengue Tracker website developed to 126

support real-time decision-making. Finally, the paper concludes with a discussion of the 127

findings and future work. 128

Materials and methods 129

Study region 130

Brazil, the largest country in South America and the fifth-largest in the world, spans a 131

vast geographical area characterized by diverse climates and ecosystems (23). Its 132

territory stretches from the equatorial Amazon basin in the north to the temperate 133

regions in the south. This wide latitudinal range encompasses various climatic zones, 134

including tropical, subtropical, and temperate, which significantly influence the 135
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epidemiology of vector-borne diseases like dengue fever. Brazil is divided into 26 states 136

and one federal district, each with unique geographical and socio-economic 137

characteristics that impact dengue transmission and control (Figure 1). 138

Fig 1. Map of South America with Brazil highlighted (left) and map of 26 states and
the federal district of Brazil (right).

Several factors significantly contribute to the proliferation of dengue outbreaks in 139

Brazil (24). Climate change, characterized by increased temperatures, has diminished 140

geographical barriers to dengue transmission, particularly in southern Brazil, by 141

reducing the seasonal cold periods that typically inhibit mosquito propagation. In the 142

Amazon region, climatic changes have made previously protected areas more susceptible 143

to dengue outbreaks. 144

Rapid urbanization has led to high population densities in large cities, fostering 145

environments conducive to mosquito breeding due to inadequate infrastructure, such as 146

insufficient piped water and waste management systems (25). This results in standing 147

water containers and uncollected garbage, serving as breeding grounds for mosquitoes. 148

Furthermore, high connectivity within Brazil’s urban network exacerbates the risk of 149

disease spread. Major regional hub cities with frequent transportation and logistical 150

connections facilitate faster virus transmission, while enhanced connectivity between 151

urban and rural areas contributes to the spread of the virus from cities to the 152

countryside (24). 153

Figure 2 illustrates the seasonal pattern of monthly dengue incidence rates in 154

Brazilian states from January 2010 to July 2024, aggregated at the state level, with 155

data sourced from InfoDengue (26). The figure reveals a seasonal pattern, with dengue 156

outbreaks typically occurring from January to May. In certain regions, such as Acre, 157

Rondônia, Mato Grosso, and Goiás in southwestern Brazil, outbreaks may even 158

commence in November or December. The spread of the disease is generally minimal 159

during the winter months. Moreover, it is observed that dengue outbreaks tend to be 160

more severe every three to four years. This periodicity could be influenced by El Niño, 161

which significantly impacts weather patterns in certain areas of Brazil (27). Notably, 162

the states of Acre, Esṕırito Santo, Goiás, Mato Grosso do Sul, Paraná, Rio Grande do 163

Norte, São Paulo, and Tocantins experience a more substantial impact from dengue, as 164

indicated by consistently higher incidence rates. 165
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Fig 2. Dengue incidence rate (cases per 100k people) on a log10 scale in Brazilian
states from January 2010 to July 2024.
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Dengue cases data 166

The InfoDengue system (28) provides comprehensive data on dengue and other 167

arboviruses across Brazil, offering detailed insights into regional variations, trends, and 168

severity of outbreaks. Accessible at https://info.dengue.mat.br/, the platform 169

aggregates data provided from SINAN to present dengue cases by epidemiological week 170

and municipality. 171

Despite being a reliable source of information, the cases shown in InfoDengue suffer 172

from reporting delays. As mentioned in (9), although in principle dengue is meant to be 173

reported within seven days, in practice no more than 90% of the cases are reported 174

within 9 weeks. Therefore, we consider as the actual number of dengue cases the 175

number of cases reported in the system after 10 weeks. The difference between the 176

provisional and final dengue cases represents the delay that needs to be accounted for in 177

the nowcasting models. In addition, InfoDengue provides nowcasts and comprehensive 178

visualizations into the geographic and temporal distribution of dengue, making it an 179

essential tool for timely decision-making and proactive response to emerging outbreaks. 180

Google Trends data 181

Google Trends (https://trends.google.com/trends/) is a tool that provides anonymized 182

and aggregated insights into global search behaviors, ensuring user privacy by 183

anonymizing individual searches and consolidating them into high-level trends. This 184

data is valuable for identifying emerging topics and seasonal trends. The Google Trends 185

index for a specific keyword at a given time ranges from 0 to 100, calculated by dividing 186

the number of searches for that keyword by the total number of searches in a specific 187

region and timeframe, enabling fair comparisons between search terms, locations, and 188

periods. This standardization eliminates disparities due to population size or total 189

search volume. However, it may also create misleading representations, as a term could 190

appear less popular in larger regions due to a dilution effect. Moreover, aggregation 191

might obscure specific nuances or emerging trends within smaller subgroups, potentially 192

limiting the depth of analysis (29). 193

Here, we utilize Google Trends data to understand dengue search behavior patterns 194

that could complement official dengue data. To select the keywords for the Google 195

Trend indices to include in the models, we calculated the Pearson correlation between 196

country-level aggregated dengue cases and the Google Trends index for various 197

dengue-related keywords identified in (30). We used data from January 1, 2013, to 198

December 31, 2023, with correlations computed using monthly resolution data, as 199

Google Trends data cannot be obtained at a finer temporal resolution for periods 200

exceeding five years and two months. 201

Figure 3 illustrates the correlation between the number of dengue cases and the 202

Google Trends index corresponding to each of the keywords considered. We observe the 203

highest correlation of dengue cases and Google Trends index corresponding to keywords 204

“sintomas dengue” “dengue” and “sintomas de dengue” with correlations of 0.93, 0.90, 205

and 0.89, respectively. The intercorrelations among these keywords were also significant, 206

with the highest correlation being 0.97 between “sintomas dengue” and “dengue.” 207

In addition, to assess the current situation, we used Google Keyword Planner 208

https://ads.google.com/intl/en/home/tools/keyword-planner/ to find keywords related 209

to “dengue” in Brazil from January to April 2024. By providing the keyword dengue, 210

the tool showed high search interest in “dengue” and “sintomas de dengue.” 211

Consequently, we decided to incorporate Google Trends indices for the keywords 212

“sintomas dengue” and “dengue” into our models. 213
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Fig 3. Correlation among dengue cases and Google Trends indices for several
dengue-related keywords in Brazil.

Nowcasting methods 214

We evaluate the performance of several approaches for nowcasting the weekly number of 215

dengue cases in each Brazilian state. Specifically, we use five approaches: 1) a model 216

that uses only official dengue case data; 2) a model that uses only Google Trends data; 217

3) a model that integrates both official dengue case data and Google Trends indices; 4) 218

a Bayesian nowcasting approach implemented in the InfoDengue system; and 5) a naive 219

approach that predicts cases based on the previous week’s data. 220

Models are evaluated using a moving window strategy, where each model is trained 221

on a fixed-size window of historical data. Nowcasts are then generated for the last week 222

of the window based on this training. The window advances by one week iteratively, 223

producing a sequence of nowcasts over time that will be compared with the actual 224

number of cases using several error and uncertainty measures. 225

In this study, we began recording the weekly number of dengue cases from 226

InfoDengue on epidemiological week 10 of 2024 (March 3). Due to reporting delays, the 227

initially reported number of cases is significantly lower than the actual number. Each 228

week, InfoDengue updates the case numbers, continuing this process for up to 229

approximately 10 weeks (9). Therefore, we assume the actual number of cases is 230

accurately reported after a ten-week delay. 231

We started by producing a nowcast for week 10 of 2024 (March 3, 2024), using 232

models trained on data from the past three years, from epidemiological week 6 in 2021 233

to epidemiological week 6 in 2024 (February 7, 2021, to February 4, 2024), 156 weeks in 234

total. The models were trained using data that excluded the four most recent weeks, 235

and provided a nowcast for the current number of dengue cases (four weeks ahead). We 236

decided to exclude the most recent four weeks of training data to balance maintaining 237

recent information with discarding incomplete data. During this period, the reported 238

dengue cases do not accurately reflect the actual numbers, with less than 75% of cases 239

being reported within four weeks (9). 240

This procedure is repeated by moving the window forward by one week for fourteen 241

weeks, obtaining nowcasts for epidemiological weeks 10 to 23 of 2024 (March 3 to June 242

September 2, 2024 8/26

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.24312934doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312934
http://creativecommons.org/licenses/by/4.0/


2, 2024). By computing error metrics and uncertainty intervals over multiple windows, 243

this approach is particularly useful for validating models in dynamic and seasonal 244

contexts, providing robust insights into nowcasts accuracy. 245

Let ct represent the actual number of dengue cases at week t, and let yt represent 246

the official number of dengue cases reported at week t. As previously discussed, yt is 247

lower than ct due to reporting delays, and we are interested in obtaining a nowcast ĉt. 248

Here, we assume the actual number of cases ct is the number of dengue cases reported 249

in InfoDengue 10 weeks after t. In addition, let xn,t be the Google Trends index for the 250

nth keyword at week t. 251

The nowcasting approaches considered include DC, GT, and DCGT, which use 252

information only from dengue cases, only from Google Trends, and a combination of 253

both datasets, respectively. These models use historical reported dengue cases yt 254

excluding the most recent weeks to produce nowcasts ĉt. That is, the models are trained 255

using only data for which we expect yt ≈ ct. In addition, a Bayesian nowcasting model 256

and a naive approach are also considered. The descriptions of the five nowcasting 257

approaches are as follows. 258

DCGT 259

The DCGT model uses SARIMA with eXogenous factors (SARIMAX) (31) to combine 260

dengue cases (time series) with Google Trends indices (exogenous factor). The 261

SARIMAX model is represented by a set of parameters equal to (p, d, q)× (P,D,Q, S), 262

where p represents the order of auto-regression, q is the the order of moving-average, 263

and d symbolizes differencing by which non-stationary time series are transformed into 264

stationary time series. P,D,Q, S represent the combination of the Seasonal ARIMA 265

(SARIMA) component. The exogenous part x is a variable outside the model, imposed 266

on it but not influenced by it. 267

Here, the time series yt can be written as the mathematical formulation of a 268

SARIMA (p, d, q)× (P,D,Q, S) model with exogenous variable as follows: 269

∆d∆D
S yt = µ+

p∑
n=1

ϕn∆
d∆D

S yt−n +

P∑
n=1

Φn∆
d∆D

S yt−Sn +

q∑
n=1

θnϵt−n

+

Q∑
n=1

Θnϵt−Sn +

K∑
i=1

βixi,t + ϵt, ϵt
iid∼ N

(
0, σ2

)
,

where ∆d∆D
S yt = (1−B)d(1−B)Dyt and B is the back-shift operator. 270

DC 271

The DC model employs a Seasonal Autoregressive Integrated Moving-Average 272

(SARIMA) model using dengue case data. It is the same as the DCGT model but 273

removing the exogenous regressor. 274

∆d∆D
S yt = µ+

p∑
n=1

ϕn∆
d∆D

S yt−n +
P∑

n=1

Φn∆
d∆D

S yt−Sn +

q∑
n=1

θnϵt−n

+

Q∑
n=1

Θnϵt−Sn + ϵt, ϵt
iid∼ N

(
0, σ2

)
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GT 275

The GT model uses a linear model using an intercept and the Google Trends indices for 276

the keywords ”dengue” and ”sintomas dengue” as covariates. 277

yt = µ+
K∑
i=1

βixi,t + ϵt, ϵt
iid∼ N

(
0, σ2

)
.

InfoDengue 278

InfoDengue provides nowcasts using a Bayesian hierarchical model where the observed 279

number of events nt,d,s at time t reported after d time units in spatial location s is 280

assumed to follow a Negative Binomial distribution with mean λt,d,s and dispersion ϕ 281

(9). Specifically, 282

nt,d,s ∼ NegBin(λt,d,s, ϕ),

with mean E[nt,d,s] = λt,d,s and variance Var[nt,d,s] = λt,d,s(1 + λt,d,s/ϕ). To capture 283

the temporal and spatial variability of nt,d,s, the mean is expressed as 284

log(λt,d) = µ+ αt + βd + γt,d + ηw(t) + ψs + βd,s +X ′
t,d,sδ.

Here, µ represents the overall mean on the log scale, and X ′
t,d,s is a matrix of temporal, 285

delay-related, and spatially varying covariates with associated parameter vector δ. αt 286

and βd capture time and delay structure means, respectively, modeled as first-order 287

random walks. The model also includes random effects γt,d to capture the interaction 288

between time and delay, and a seasonal component ηw(t). Finally, ψs represents spatial 289

variability, and βd,s captures how the delay structure varies across different spatial 290

locations. 291

Naive 292

The naive approach uses the number of cases reported in the previous week as the
nowcast of week t:

ĉt = yt−1.

Accuracy and uncertainty metrics 293

We assessed the performance of each nowcasting approach using several error measures.
In addition, we computed the 95% coverage probabilities, which represent the
proportion of times actual cases were covered by the 95% uncertainty intervals, as well
as the average width of these intervals. Let ĉt and ct represent the predicted and actual
number of dengue cases, respectively, at time t, where t = 1, . . . , n. The error measures
computed include the Root Mean Squared Error (RMSE), which measures the square
root of the average squared differences between the predicted and actual values as

RMSE =

[
1/n

n∑
t=1

(ĉt − ct)
2

]1/2

.

The RMSE emphasizes large errors due to the squaring process, making it sensitive to
outliers. We also calculated the Mean Absolute Error (MAE) as the average absolute
differences between predicted and actual values:

MAE = 1/n
n∑

t=1

|ĉt − ct| .
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The MAE provides a straightforward interpretation of the average error magnitude
which is less sensitive to outliers compared to RMSE. In addition, we computed the
Root Mean Squared Percentage Error (RMSPE) as the square root of the average
squared percentage errors:

RMSPE =

{
1/n

n∑
t=1

[(ĉt − ct) /ct]
2

}1/2

,

and the Mean Absolute Percentage Error (MAPE) as the average absolute percentage
differences between predicted and actual values:

MAPE = 1/n
n∑

t=1

|ĉt − ct| /ct.

These measures are useful when the relative error is more meaningful than the absolute 294

error, highlighting proportional discrepancies. 295

Implementation 296

All analyses were performed using the statistical software R (32). Nowcasts and 95% 297

confidence intervals for the DCGT and DC models were obtained using the function 298

auto.arima() from the forecast package using the default maximal orders (33). 299

Results for the GT model were obtained with the linear model function lm() from R. 300

For reproducibility purposes, data and code to apply these methods are provided in the 301

GitHub repository 302

https://github.com/diseasesurveillance/dengue-tracker/tree/main/paper . 303

Results 304

This section presents the error and uncertainty measures obtained for each method 305

across all states. Results are not shown for the Esṕırito Santo as this state stopped 306

reporting dengue cases to the federal governement since epidemiology week 16 of 2024 307

(April 14), resulting in missing case counts from that date onwards. Furthermore, the 308

data for epidemiology week 24 of 2024 (June 9) was not uploaded by InfoDengue, so 309

this week’s comparison was skipped in our analysis. For comparisons requiring this 310

week’s data as the “true value”, the data from epidemiology week 25 of 2024 (June 16) 311

was used. 312

Tables 1 to 4 present the error measures obtained for each state and nowcasting 313

approach, where red indicates the best performance (smallest error), and blue represents 314

the second-best performance (second smallest error) model. Figure 4 displays boxplots 315

of the differences between the nowcasts and the true number of cases across states. In 316

this figure, models are sorted by the mean of the differences being closest to zero, 317

corresponding to the MAE. Maps with the best nowcasting models across states 318

according to each error metric are shown in Figure 5. 319

Table 1 presents the RMSE values for prediction errors of each model. Overall, the 320

GT model performed the best among the five approaches, achieving the most accurate 321

predictions in 14 out of 26 states evaluated. The InfoDengue and DCGT models showed 322

comparable performance, excelling in 10 and 2 states, respectively. Conversely, the naive 323

and DC approaches performed the worst. In several states, such as Acre, Pará, Paráıba, 324

Piaúı, Rio Grande do Sul, and Sergipe, the GT model significantly outperformed the 325

second-best models (the error of the second-best performing model was more than 1.5 326

times the error of the best-performing model). The smallest errors were observed in 327
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Roraima, all below 100, whereas São Paulo exhibited the largest errors, ranging from 328

approximately 50,000 to 100,000, reflecting the differences in population sizes. 329

For MAE (Table 2), the overall results were similar to those observed for RMSE. 330

The GT model outperformed the other approaches in 18 out of 26 states, followed by 331

InfoDengue and DCGT, which were better in 7 and 1 states, respectively. The naive 332

approach and the DC model both had the poorest performance, with no states showing 333

an advantage. For Acre, Ceará, Maranhão, Pará, Paráıba, Paraná, and Rio Grande do 334

Sul, the difference between the best and second-best performances was significant. 335

RMSPE (Table 3) and MAPE (Table 4) values indicate that the top two models 336

remain GT and InfoDengue, as they consistently produce the best nowcasts across all 26 337

states. For RMSPE, GT leads in 17 states, and InfoDengue in 11 states (both models 338

produce the same RMSPE in Mato Grosso and Tocantins). Moreover, in many states, 339

there is a notable difference between the performance of the best and second-best 340

models. For example, in Alagoas, Amapá, Mato Grosso do Sul, and Rio Grande do Sul, 341

the error of the second-best performing model was more than 2 times the error of the 342

best-performing model. The results are similar for MAPE, with the GT model 343

maintaining its lead in 16 states, followed by InfoDengue in 11 states (they are both the 344

best in Acre). 345

Table 5 displays the 95% coverage probabilities, and Table 6 the average width of 346

95% uncertainty intervals obtained for each state and nowcasting approach. In these 347

tables, results for InfoDengue are not included, as nowcasts for this method are 348

provided by municipality level, while our analysis is conducted at the state level. We 349

found that both the DC and GT models exhibited high coverage rates, achieving the 350

highest coverage in 14 different states. In contrast, the DCGT model only achieved the 351

highest coverage in 6 states. While the coverage rates for DC and GT are comparable, 352

the average width of the uncertainty intervals in Table 6 shows that the DC model has a 353

significantly larger average width. In some regions, such as the Distrito Federal and 354

Maranhão, the prediction width for DC can be as much as twice that of GT. 355

Additionally, there is considerable variation in 95% coverage probabilities across 356

states. For example, in Acre, Amazonas, and Tocantins, all models have high coverage 357

rates, approaching or reaching 1. However, in states like Bahia and Rio Grande do Sul, 358

the coverage rates for all models are only around 20% to 30%. The variation also exists 359

in average width. This variation may be influenced by differences in population size, 360

data quality, or the nature of dengue transmission across states, leading to significant 361

discrepancies in results. 362

Figure 6 shows the weekly nowcasting results for each method. The green lines 363

represent the reported cases for a given epidemiological week after 10 weeks. We 364

consider these values as the true number of cases to benchmark the models’ performance. 365

Notably, the suspected cases lines are consistently the lowest, serving as a practical 366

“lower bound”, with various models employed to adjust this lower limit. In general, the 367

red lines representing nowcasts obtained with Google Trends closely align with the true 368

values, indicating that the GT model performs particularly well. In contrast, the purple 369

line for InfoDengue nowcasts frequently appear above the true values, suggesting a 370

tendency to overestimate potential cases. Despite this, the InfoDengue nowcasts 371

successfully capture the trends indicated by the true values. Finally, the DCGT and GT 372

nowcasts are generally less likely to accurately capture the trends of the true values. 373
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DCGT DC GT InfoDengue Naive
Acre 238.58 236.52 96.46 252.41 261.92

Alagoas 384.5 416.68 681.75 299.43 508.08
Amapá 307.5 275.27 125.18 143.42 315.95

Amazonas 143.9 424.48 108.62 317.05 332.88
Bahia 10638.59 11927.25 6839.64 16064.65 8836.69
Ceará 856.19 969.44 2250.78 674.55 1021.84

Distrito Federal 3270.97 4139.05 2957.96 3261.49 3561.15
Esṕırito Santo - - - - -

Goiás 4081.19 4889.6 4122.96 4362.55 9795.47
Maranhão 568.07 591.76 389.27 1031.92 606.9

Mato Grosso 973.33 1311.39 637.1 687.17 1638.31
Mato Grosso do Sul 964.76 870.86 713.08 3584.11 1414.12

Minas Gerais 27914.04 35223.9 19514.73 14264.82 53834.54
Pará 530.42 603.99 308.49 1133.26 1093.9

Paráıba 737.85 1031.91 275.54 568.89 543.3
Paraná 10187.53 14160.79 8957.75 5453.93 19491.39

Pernambuco 1219.49 1459.13 937.87 1626.65 1702.39
Piaúı 339.3 317.46 321.3 190.65 502.38

Rio de Janeiro 4392.15 10707.1 3344.29 15883.43 7007.1
Rio Grande do Norte 504.33 662.92 416 305.82 402.79

Rio Grande do Sul 6101.44 7212.6 6512.75 2874.93 6786.81
Rondônia 271.28 320.94 209.99 513.51 362.63
Roraima 76.95 74.46 57.65 55.55 70.32

Santa Catarina 11577.1 11317.19 10251.62 8830.4 15341.5
São Paulo 59150.61 60836.59 47280 55802.34 102921.67

Sergipe 128.07 206.87 193.35 761.92 208.83
Tocantins 316.82 415.83 251.67 241.73 333.54

Table 1. RMSE obtained for each state and nowcasting approach. Red and blue
represent the best and the second best performances respectively (the lowest and the
second lowest error).
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DCGT DC GT InfoDengue Naive
Acre 188.31 211.99 85.65 142.43 217.21

Alagoas 338.76 374.89 471.43 259.64 491.14
Amapá 226.2 194.61 97.75 115.43 289.29

Amazonas 127.59 334.89 93.89 264 267
Bahia 9133.97 9803.59 5523.38 12433.25 7719
Ceará 713.36 775.02 1122.91 494.57 889.5

Distrito Federal 2419.85 3545.86 2110.1 2540.79 2553.86
Esṕırito Santo - - - - -

Goiás 3474.26 4057.95 3436.14 3546.32 9081.64
Maranhão 507.33 477.82 279.01 790.43 498.86

Mato Grosso 841.84 1102.02 524.69 535.29 1565.5
Mato Grosso do Sul 681.83 735.97 604.91 2354.96 1294.5

Minas Gerais 20838.81 27981.08 14765.98 11173.39 46475.79
Pará 386.59 481.63 255.89 939.14 1011.86

Paráıba 479.25 735.24 177.42 385.86 393.86
Paraná 8195.76 12612 7558.59 4754.68 16972.29

Pernambuco 975.58 1147.88 769.57 1370.32 1585.29
Piaúı 241.91 247.18 214.02 158.86 487.21

Rio de Janeiro 2882.21 8094.71 2302.94 11372.46 5840.71
Rio Grande do Norte 370.4 494.38 249.93 256.39 274.43

Rio Grande do Sul 5442.33 6910.77 5441.37 2456.43 6150
Rondônia 214.77 273.16 189.38 348.57 267.5
Roraima 61.58 61.47 41.89 45.89 57.71

Santa Catarina 9879.94 8960.95 8800.07 6889.75 13280.21
São Paulo 56458.59 45628.1 43625.64 49304.36 98125.07

Sergipe 103.47 173.06 108.79 552.18 196.14
Tocantins 251.01 364.25 202.12 208.32 243.43

Table 2. MAE obtained for each state and nowcasting approach. Red and blue
represent the best and the second best performances respectively (the lowest and the
second lowest error).
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DCGT DC GT InfoDengue Naive
Acre 0.41 0.43 0.27 0.28 1.29

Alagoas 1.33 1.71 0.35 1.03 5.88
Amapá 2.94 4.34 0.29 3.35 71.04

Amazonas 0.21 0.35 0.16 0.25 0.62
Bahia 13.36 0.6 0.65 0.45 1.8
Ceará 0.44 0.63 0.33 0.23 0.96

Distrito Federal 0.31 1.84 0.26 0.43 0.42
Esṕırito Santo - - - - -

Goiás 0.27 0.38 0.25 0.24 1.01
Maranhão 0.94 1.31 0.42 0.44 1.28

Mato Grosso 0.39 0.6 0.21 0.21 1.23
Mato Grosso do Sul 0.67 0.41 0.19 0.58 4.42

Minas Gerais 0.37 2.78 0.24 0.79 2.1
Pará 0.46 0.47 0.21 0.34 1.92

Paráıba 0.56 1.88 0.15 0.23 0.49
Paraná 0.56 0.37 0.21 0.14 0.63

Pernambuco 0.63 1.49 0.32 0.29 1.02
Piaúı 0.33 0.79 0.23 0.58 1.57

Rio de Janeiro 0.86 0.71 0.22 0.4 0.9
Rio Grande do Norte 0.45 1.25 0.16 0.19 0.34

Rio Grande do Sul 2.01 0.63 0.59 0.21 0.64
Rondônia 0.53 0.52 0.44 0.36 1.63
Roraima 0.82 0.78 0.72 0.45 1.3

Santa Catarina 2.15 0.57 0.43 0.35 0.85
São Paulo 0.56 1.31 0.35 0.45 1.32

Sergipe 0.3 0.73 0.2 0.48 0.93
Tocantins 0.36 0.46 0.23 0.23 0.44

Table 3. RMSPE obtained for each state and nowcasting approach. Red and blue
represent the best and the second best performances respectively (the lowest and the
second lowest error).
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DCGT DC GT InfoDengue Naive
Acre 0.34 0.39 0.22 0.22 1.07

Alagoas 0.94 1.18 0.3 0.55 2.73
Amapá 1.88 2.05 0.24 1.53 40.38

Amazonas 0.18 0.31 0.13 0.23 0.52
Bahia 5.26 0.48 0.5 0.39 1.12
Ceará 0.38 0.43 0.22 0.18 0.86

Distrito Federal 0.27 1.04 0.22 0.4 0.37
Esṕırito Santo - - - - -

Goiás 0.22 0.28 0.22 0.2 0.96
Maranhão 0.78 0.82 0.34 0.37 1.13

Mato Grosso 0.34 0.48 0.18 0.16 1.17
Mato Grosso do Sul 0.41 0.32 0.18 0.46 2.21

Minas Gerais 0.3 1.46 0.2 0.42 1.77
Pará 0.3 0.31 0.17 0.31 1.76

Paráıba 0.36 1.16 0.12 0.19 0.39
Paraná 0.31 0.31 0.18 0.12 0.56

Pernambuco 0.46 0.88 0.29 0.27 0.98
Piaúı 0.28 0.55 0.19 0.31 1.45

Rio de Janeiro 0.46 0.57 0.18 0.35 0.83
Rio Grande do Norte 0.33 0.7 0.13 0.17 0.25

Rio Grande do Sul 0.99 0.57 0.51 0.18 0.6
Rondônia 0.47 0.5 0.39 0.34 1.47
Roraima 0.62 0.64 0.53 0.39 1.05

Santa Catarina 1 0.43 0.38 0.28 0.75
São Paulo 0.51 0.66 0.33 0.39 1.27

Sergipe 0.23 0.45 0.16 0.44 0.84
Tocantins 0.29 0.4 0.19 0.2 0.31

Table 4. MAPE obtained for each state and nowcasting approach. Red and blue
represent the best and the second best performances respectively (the lowest and the
second lowest error).

September 2, 2024 16/26

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.24312934doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312934
http://creativecommons.org/licenses/by/4.0/


DCGT DC GT
Acre 1 1 1

Alagoas 0.79 0.79 0.71
Amapá 0.5 0.71 0.93

Amazonas 1 0.86 1
Bahia 0.14 0.29 0.29
Ceará 0.64 0.79 0.71

Distrito Federal 0.36 0.64 0.36
Esṕırito Santo - - -

Goiás 0.43 0.64 0.36
Maranhão 0.21 0.43 0.57

Mato Grosso 0.43 0.43 0.79
Mato Grosso do Sul 0.79 1 0.79

Minas Gerais 0.43 0.57 0.43
Pará 0.5 0.64 0.5

Paráıba 0.71 0.64 0.93
Paraná 0.43 0.36 0.36

Pernambuco 0.57 0.64 0.71
Piaúı 0.71 0.93 0.79

Rio de Janeiro 0.79 0.64 0.71
Rio Grande do Norte 0.71 0.86 0.86

Rio Grande do Sul 0.29 0.21 0.29
Rondônia 0.86 0.86 1
Roraima 0.46 0.57 0.79

Santa Catarina 0.29 0.36 0.21
São Paulo 0.07 0.43 0.14

Sergipe 0.86 0.71 0.93
Tocantins 0.93 1 1

Table 5. 95% coverage probabilities obtained for each state and nowcasting approach.
Red and blue represent the best and the second best performances respectively (the
highest and the second highest coverage probabilities).
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DCGT DC GT
Acre 1369.75 1496.42 934.25

Alagoas 940.72 1078.19 999.65
Amapá 357.29 396.01 350.97

Amazonas 673.59 1183.24 611.41
Bahia 4701.96 9283.53 4196.98
Ceará 2282.71 2590.75 2768.77

Distrito Federal 2904.71 10230.87 2930
Esṕırito Santo - - -

Goiás 6422.55 9791.6 4802.93
Maranhão 414.36 695.88 326.71

Mato Grosso 1661.14 1760.56 1533.96
Mato Grosso do Sul 2893.6 3580.1 2048.75

Minas Gerais 17764.49 44231.53 15694.19
Pará 498.1 1035.91 491.75

Paráıba 873.72 1367.52 785.07
Paraná 11586.03 20746.87 9641.61

Pernambuco 1640.81 2390.35 1880.34
Piaúı 512.8 1202.53 492.37

Rio de Janeiro 6039.16 12327.16 4817.5
Rio Grande do Norte 972.67 1587.1 822.89

Rio Grande do Sul 5405.35 6932.19 3999.01
Rondônia 887.8 1032.86 654.64
Roraima 124.69 128.45 138.4

Santa Catarina 10271.47 12404.89 5301.92
São Paulo 31365.06 52015.13 28757.8

Sergipe 328.61 393.69 356.98
Tocantins 1161.9 1624.41 1215.73

Table 6. Average width of 95% uncertainty intervals obtained for each state and
nowcasting approach. Red and blue represent the best and the second best
performances respectively (the smallest and the second smallest interval width).
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Fig 4. Boxplots of differences between the nowcasts and actual cases in Brazilian states.
Models are sorted in ascending order of their mean absolute difference.
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Fig 5. Best nowcasting models in different states according to different metrics.
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Fig 6. Predictions of the models used in the study from week 10 to week 23 of 2024
(March 3 to June 2, 2024). The ”True number of cases” line represents the reported

cases after 10 weeks, which are used to evaluate the performance of the models.
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Dengue Tracker website 374

Timely and accurate information on dengue cases is crucial for prevention and control. 375

We developed the Dengue Tracker website 376

(https://diseasesurveillance.github.io/dengue-tracker/) to provide weekly updates on the 377

number of official dengue cases per state in Brazil, as well as at the country level. 378

Additionally, the website provides corrected case counts incorporating information from 379

Google Trends (using our GT model) and also the InfoDengue results. We believe these 380

reports will assist policymakers in understanding dengue levels and guide their decisions. 381

Each week, the number of dengue cases is downloaded through InfoDengue’s API, 382

and the Google Trends information for the specific keywords is downloaded from 383

https://trends.google.com/trends/. Data are download from the last 5 years up to the 384

week we are interested in nowcasting. At the country level, Dengue Tracker shows the 385

dengue incidence rate through an interactive choropleth map. Besides, it depicts the 386

time series of the number of cases, the fitted model, and the corrections from both our 387

model and InfoDengue’s for each state in a plot with the shape of Brazil. Reports are 388

also provided for each state. The website is built using RMarkdown (34) and GitHub 389

Pages. The graphic components are built using ggplot2 (35), plotly (36), geofacet 390

(37) and leaflet (38). 391

Discussion 392

Reporting delays in surveillance data make traditional surveillance systems ineffective 393

for planning and control. In this paper, we compared the usefulness of integrating 394

Google Trends information for dengue nowcasting in Brazil with other analytical 395

approaches that rely solely on reported data. Specifically, we evaluated the error and 396

uncertainty produced by approaches that used only Google Trends information (GT), 397

only dengue case data (DC), and a combination of both (DCGT). In addition, we 398

compared these results with the nowcasting algorithm provided in InfoDengue and a 399

naive approach, where the number of cases in a given week was nowcasted as the 400

number of cases reported in the previous week. 401

Our study demonstrates the effectiveness of combining Google Trends information 402

with reported case data for nowcasting dengue in Brazil. We show that using the 403

reported number of cases as the nowcast for the following week, as done in the naive 404

approach, is insufficient for real-time monitoring since it significantly underestimates 405

the actual number of dengue cases. Overall, the GT model demonstrates the lowest 406

error across most states, outperforming other models in all metrics, with InfoDengue 407

ranking second. In contrast, neither DCGT nor DC provides significant improvements 408

in nowcasting accuracy. The results, as illustrated through boxplots and accuracy 409

metrics, confirm that incorporating Google Trends data effectively enhances predictive 410

performance. Regarding uncertainty, we lack uncertainty intervals for InfoDengue since 411

the nowcasts are provided at the municipality level. Among the remaining models, GT 412

generally has the narrowest intervals while achieving the highest coverage rate. In 413

contrast, DCGT generates significantly narrower uncertainty intervals compared to DC 414

but slightly lowers the coverage rate. Overall, GT improves predictive accuracy and 415

reduces uncertainty. 416

In our study, we excluded Esṕırito Santo from model comparisons because the state 417

ceased reporting dengue cases. However, it is possible to fit an appropriate GT model 418

using historical data and continue nowcasting with Google Trends data, even after 419

reporting has stopped — this approach was actually implemented on the Dengue 420

Tracker website. Another noteworthy case is Rio de Janeiro, where changes in the 421

notification system’s infrastructure and workflow were introduced during the epidemic 422
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to achieve a faster response. This shift was not captured by InfoDengue, leading to 423

nowcasts that significantly overestimated the actual number of cases from March to 424

April, whereas GT’s nowcasts were much closer to the true figures. 425

One limitation of our study is that Google Trends data is inherently biased since not 426

all individuals use Google to search for dengue-related information. This bias may result 427

in underrepresentation of specific populations or regions, potentially affecting the 428

accuracy of our models. Further research is needed to understand how different 429

population groups use Google to search for dengue information, how to select 430

dengue-related keywords that accurately reflect disease transmission, and to develop 431

models that integrate Google Trends and dengue case data in the most effective way. 432

In this study, we employed statistical models that excluded the most recent weeks of 433

incomplete information to generate dengue nowcasts. Although this approach allowed 434

us to demonstrate the superior performance of approaches using Google Trends data 435

compared to models relying only on reported cases, further work could be done to 436

develop models that utilize incomplete data to further improve predictive accuracy. 437

In addition, the models used in this study are limited in their ability to detect sudden 438

changes in dengue incidence, since they heavily rely on historical data. This limitation 439

hinders their effectiveness in identifying abrupt outbreaks or sharp increases in cases. 440

Future research will explore more flexible approaches to improve responsiveness. 441

Additionally, we will investigate the incorporation of variables like climate and 442

socio-economic factors, known to influence dengue transmission, into future models. 443

Moreover, we intend to develop spatial models that allow us to obtain nowcasts at finer 444

geographical resolutions, such as microgregion or municipality levels (39). This 445

enhancement will provide localized nowcasts, enabling more precise public health 446

interventions. 447

Effective and timely communication of dengue activity levels is crucial for planning 448

and response efforts in public health. To address this need, we also developed Dengue 449

Tracker (https://diseasesurveillance.github.io/dengue-tracker/index.html), a system 450

designed to aggregate, analyze, and visualize dengue case data. This system provides 451

weekly nowcasts at the state level in Brazil, aiding decision-makers and the public in 452

understanding current risk levels. The Dengue Tracker website is updated weekly and 453

features interactive maps and time series plots that dynamically present the latest 454

dengue information across Brazil. By integrating our nowcasting models that use 455

Google Trends information into this platform, the website delivers real-time alerts and 456

trend analyses for better disease prevention and control. 457

In conclusion, our study presents a promising approach to improving dengue 458

surveillance in Brazil, emphasizing the potential of integrating digital data with 459

traditional epidemiological models. This integration significantly enhances situational 460

awareness for public health authorities and the general public alike, facilitating 461

responses to changes in dengue activity levels, ultimately reducing the impact of dengue 462

and improving the health and well-being of the population. 463
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