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Abstract
Chest X-ray (CXR) is a conventional diagnostic tool for
cardiothoracic assessment, boasting a high degree of cost-
effectiveness and versatility. However, with an increasing
number of scans to be evaluated by radiologists, they can
suffer from fatigue which might impede diagnostic accu-
racy and slow down report generation. We describe a pro-
totype computer-assisted diagnosis (CAD) pipeline em-
ploying computer vision (CV) and Natural Language Pro-
cessing (NLP) trained on the publicly available MIMIC-
CXR dataset. We perform image quality assessment, view
labelling, segmentation-based cardiomegaly severity clas-
sification, and use the output of the severity classifica-
tion for large language model-based report generation.
Four certified radiologists assessed the output accuracy
of the CAD pipeline. Across the dataset composed of
377,100 CXR images and 227,827 free-text radiology re-
ports, our system identified 0.18% of cases with mixed-
sex mentions, 0.02% of poor quality images (F1=0.81),
and 0.28% of wrongly labelled views (accuracy 99.4%),
furthermore it assigned views for 4.18% of images which
have unlabelled views. For binary cardiomegaly classifi-
cation, we achieve state-of-the-art performance of 95.2%
accuracy. The inter-radiologist agreement on evaluat-
ing the report’s semantics and correctness for radiologist-
MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agree-
ment) similar to the radiologist-CAD agreement of 0.55
(strict) and 0.93 (relaxed). Our work found and corrected
several incorrect or missing metadata annotations for the
MIMIC-CXR dataset, and the performance of our CAD
system suggests performance on par with human radiolo-
gists. Future improvements revolve around improved text
generation and the development of CV tools for other dis-
eases.
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Introduction

More than a century has passed since its discovery, still, chest
X-ray (CXR) remains a staple non-invasive diagnostic tool in
medical institutions across the globe owing to its versatility,
inexpensiveness, and convenience (1). Thoracic anatomical
structures including the lungs and heart are visualised and
distinguished on a 2D film based on radiodensity variations,
enabling the detection of common cardiothoracic conditions
such as pneumonia, pneumothorax and tuberculosis (2). The
procedure costs only a fraction of more sophisticated imaging
techniques such as computer tomography (CT) or magnetic
resonance imaging (MRI) and can be completed in mere min-
utes, making it an ideal starting point in thoracic imaging (3).
Despite its popularity, CXR faces its own challenges in its
application. Unlike CT and MRI, CXR reduces the 3D pleu-
ral space to a singular plane, leading to structural overlaps
between anatomical features, with over 40% of the lung
parenchyma obscured by the ribs and mediastinum (4). De-
pending on the type and site of a lesion, the visible differ-
ences between the lesion and surrounding structures may be
extremely subtle or even indistinguishable (5, 6).
Apart from technical limitations, human factors also compli-
cate CXR interpretation. Radiologists are subject to cogni-
tive biases, distractions, and fatigue, which negatively impact
their diagnostic acumen and brood errors, potentially leading
to patient harm (7, 8). Furthermore, the ease of performing
a CXR has inadvertently led to widespread over-prescription,
with the average US radiologist workload increasing by 30%
to 70% in under three decades, contributing to significant ra-
diologist burnouts (1, 9, 10). In less privileged regions of the
world, severe radiologist shortages are often observed with
practising radiologists struggling to meet demand (11). It is
therefore perhaps unsurprising that even with numerous tech-
nical advancements and error-mitigating strategies developed
over the years, studies have repeatedly failed to identify any
improvement in radiology interpretive error rates since 1949,
which stands at an uncomfortable 3% to 4% of reports, a siz-
able fraction of which is comprised of CXR (7, 8, 12).
To remedy this chronic deficiency, exploratory efforts have
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been made to incorporate artificial intelligence (AI) technol-
ogy into CXR interpretation in recent years (5). The underly-
ing rationale is that, unlike their human counterparts, AI read-
ers are immune to fatigue, distractions, and may suffer less
from certain types of cognitive biases based on the training
methods, allowing for higher accuracy and consistency (5).
Additionally, AI could significantly relieve the burden of ra-
diologists, especially in times of crisis such as the COVID-19
pandemic, reducing the backlog and improving patient out-
come (13, 14).

Due to the sheer complexity of the CXR interpretation,
most modern approaches employ deep learning methods,
such as training convoluted neural network (CNN) mod-
els (5, 15, 16). Nevertheless, attempts to implement AI in
radiology reading tend to diverge in their philosophy. Some
aim to develop AI-augmented diagnostic tools to assist hu-
man radiologist interpretation, while others are concerned
with creating a system to automate the entire process. For
instance, the CAD system CheXGAT (17) helps radiologists
detect and discern between fourteen chest conditions, while
AI-CenterNet CXR (18) is a fully automated system for de-
tecting and localising eight thoracic conditions. Similarly,
some projects may pursue a comprehensive model for wide-
spectrum usage such as the ones above, while others narrow
their focus to one or few diseases (5, 19). COVID-Net CXR-
2 and Covid-MANet, CNN models developed for detecting
COVID-19 pneumonia, are examples of the latter (13, 14).

The present study produces a focused CAD system for the
automatic detection and reporting of cardiomegaly in CXR.
Cardiomegaly refers to abnormal or pathological enlarge-
ment of the heart, which is often a manifestation of dilated or
hypertrophic cardiomyopathies (20–22). While the aetiology
of both cardiomyopathies is highly complex and not yet fully
elucidated, it is known that both could lead directly to heart
failure syndrome which carries a poor prognosis (20, 23, 24).
Severe cardiomegaly on CXR is immediately apparent to
experienced radiologists on a Posterior-Anterior (PA) CXR,
while more ambiguous cases may require the calculation of
cardiothoracic ratio (CTR) using a PA CXR (Fig 1). Any
value above a threshold (often set between 0.45∼0.55) possi-
bly indicates cardiomegaly (20, 25, 26). The process can be
time-consuming and contain a degree of subjectiveness due
to variations in thresholds used and measurements taken, and
thus may benefit from the implementation of CAD systems.

Several CAD systems have been developed for cardiomegaly
detection and can be categorised into classification-based
and segmentation-based approaches (27). Several transfer
learning models were developed, with one classifying nor-
mal vs cardiomegaly CXR images with an AUC of 0.87,
which is close to the average of similar approaches (28–
30). U-Net-based segmentation models are utilised to auto-
matically calculate CTR for determining cardiomegaly pres-
ence and are considered a feasible option with the advan-
tage of higher explainability over classification-based meth-
ods (31, 32). Nevertheless, the existing cardiomegaly CAD
systems share many of the same limitations. The datasets
used for model creation and testing are often limited in size

due to the rarity of pixel-level labelled CXR data, restrict-
ing model generalisability (27, 32). The final output of these
models is either directly binary, or CTR ratios which are then
used to derive binary decisions (presence or absence of car-
diomegaly) (27, 33). Without the capability of determining
the severity of heart enlargement or producing report-styled
sentences mimicking those written by human radiologists,
the capacity to which these CAD systems can automate car-
diomegaly detection and reporting is limited.
The current study is inspired by existing segmentation-based
cardiomegaly CAD systems and improves upon them by
enhancing generalisability and introducing missing features
crucial to realising full automation in cardiomegaly detection
and reporting. MIMIC-CXR, a massive dataset containing
377,100 CXR images and 227,827 reports, is selected as the
main dataset. A ResNet50 model is first trained using the
dataset for filtering CXR images suitable for cardiomegaly
detection. Lung and heart segmentations and CTR calcu-
lation are subsequently performed on suitable images with
varying degrees of cardiomegaly reported. Statistical tech-
niques are then applied to determine the CTR threshold for
different severity levels of cardiomegaly, ranging from bor-
derline to severe. Finally, natural language processing (NLP)
and large language models (LLM) are leveraged to produce
accurate, believable cardiomegaly report sentences based on
machine predictions. If fully ensembled, the CAD system
only requires an input stream of CXR images and provides
full automation from image quality assessment to report sen-
tence generation, subjective to double checking by human ra-
diologists, as illustrated by the flowchart (Fig2). A cohort of
four radiologists were invited to assess the output quality of
CAD output sentences as human experts.
We hypothesise that coupling the output of computer vision
models with large language models can generate plausible
expert-level radiology report text. Specifically, we aim to:
1) assess the quality of the MIMIC-CXR dataset, including
both images and reports, to prepare it for developing com-
puter vision models, 2) Utilise CXR segmentation algorithms
to derive features relevant to sub-tasks, 3) create a computer
vision model for cardiomegaly classification using labels ex-
tracted from reports using natural language processing tools,
4) combine the output of the computer vision classification
model with large language models to generate plausible med-
ical text, and finally 5) use expert evaluation of the generated
reports to assess the quality of the generated text.

Materials and Methods
MIMIC-CXR dataset. The MIMIC-CXR database (36) was
selected as the primary source of CXR data in this study.
It is publicly available with credentialed access via Phys-
ioNet (37) and includes 377,100 CXR images in both JPG
and DICOM format and 227,827 corresponding free-text ra-
diology reports, all anonymised. The images and correspond-
ing text reports are stored across 10 folders (p10-p19). Ad-
ditionally, the database contains CSV files with image meta-
data and feature annotations acquired with CheXpert (38) and
NegBio (39). In each feature column, 1 represents a positive
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Fig. 1. Chest X-ray views and cardiothoracic ratio calculation from frontal images.
A: Frontal (Posterior-Anterior, PA) chest X-ray image. B: Frontal (Anterior-Posterior,
AP) chest X-ray image. C: Lateral chest X-ray image. D: Frontal chest X-ray image
with normal heart size with the two components of the cardiothoracic ratio (CTR)
indicated. E: Frontal chest X-ray image with enlarged heart size (CTR ≥ 0.5). A, D,
E: images from (34). B, C: images from (35).

mention of the feature, 0 represents negative mentions, and
-1 represents ambiguous mentions. A blank value indicates
the absence of any mention of the feature.
All CXR images in JPG format and their corresponding free
text reports, alongside metadata and annotation CSV files,
were directly downloaded from PhysioNet using command
prompts.
The data user agreement of MIMIC-CXR prohibits sharing
images from the dataset. Images from MIMIC-CXR that are
already in the public domain also fall under this agreement.
The MIMIC-CXR team have confirmed that this policy ap-
plies to all data therefore no disclosure is permitted (private
communication 30 August 2024). We therefore have replaced
the images with similar images from the NIH Chest X-ray
dataset (34) (for frontal PA images) and from (35) (for AP
and lateral images, under a CC BY-NC 3.0 license). In each
of the figures (where relevant) we have indicated the origi-
nal MIMIC ID that the inference is made on so that those
with credentialised access to MIMIC-CXR can inspect the
original data. The report snippets shown here are all synthet-
ically generated, however their context mimics the original
MIMIC-CXR report text. MIMIC-CXR report IDs are dis-
closed in the relevant captions to allow readers with MIMIC-
CXR data access to inspect the original images and reports.

Generation of poor quality images. All images from p10
and p11 folders were scrutinised manually to identify ‘ab-
normal’ images which are those that cannot be properly in-
terpreted by radiologists and would warrant retaking the im-
age. These images contain severe cropping, distortion, and/or
absence of thoracic structures. Upon positive identification,
these images were then used to generate 500 additional ‘arti-
ficial’ abnormal images by applying synthetic and augmenta-
tion techniques to imitate common types of abnormal images
from normal images (see examples in Fig 3A). The ‘genuine’
abnormal images were set aside for testing (see below).

Fig. 2. Flow chart of the computer-assisted diagnosis pipeline. A: Image classifica-
tion models. B: Image segmentation and sentence generation models. Indicated in
red are ‘exit’ steps where the image or result cannot be used by the pipeline.

Computer vision models. Two classification models were
trained on the MIMIC-CXR dataset, one to classify normal
from poor quality images, and a subsequent model to classify
frontal from lateral images as shown in Fig 2A to perform an
image quality control.

Classification. For the normal versus poor quality image clas-
sification model, 500 frontal including both PA and AP views
as well as 500 lateral images were selected at random for the
normal group from the p10 and p11 folders to form the train-
ing set, where each image was manually checked.
For the frontal versus lateral classification model, 1,000 im-
ages from each group were selected from the entire MIMIC-
CXR dataset (p10-p19) through cross-referencing with view
labels reported in the metadata CSV file. Similarly, each
image was manually checked for labels being correctly as-
signed. The test set consists of another 2,000 images (equally
split) selected at random, and manually checked, without
overlapping patients with the training set.
For both models, the training image datasets were randomly
split into training and validation sets at a ratio of 80:20,
enabling real-time model training performance monitoring.
The ResNet50 model (40) was loaded without pre-trained
weights, and all images were resized to 256x256 pixels. Data
augmentation was incorporated into training data loading
which randomly introduced contrast jitter and rotations to all
images for boosting data variability, model versatility and ro-
bustness. Multiple combinations of training parameters and
hyper-parameters were experimented with for performance
optimisation in a grid search-like process with manual tuning.
For both training and validation sets, the batch size was set
to 64, with cross-entropy loss and Adam optimiser (learning
rate of 0.001). 20 epochs were scheduled, with an early stop-
ping condition if both training and validation accuracy sur-
passed 99% at the end of an epoch. The trained model states
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were saved as .pth (PyTorch-trained model) files. Each model
was initialised 10 times with different random states and re-
sults are represented as median with interquartile range.
The trained models were subsequently evaluated on the inde-
pendent test sets. Performance was gauged by overall accu-
racy, as well as precision and recall, with confusion matrices
constructed. To understand the rationale of the model in clas-
sifying images, Grad-CAM (41) was used to create attention
heatmaps to visualise the focus areas of each model, provid-
ing insight into what features it considers distinctive to each
class, as well as catching instances where the model may pre-
dict based on non-relevant features.

Segmentation and cardiothoracic ratio calculation. Good
quality frontal CXR images with cardiomegaly mentions in
their associated reports were then grouped based on the sever-
ity descriptors extracted from text reports. For each frontal
image, segmentation of the lungs and heart was carried out
using the inbuilt default U-Net-based segmentation model in
the Chest X-ray Anatomy Segmentation (CXAS)
package (42) (v0.0.9), generating lungs and heart masks in
the PNG format.
The Maximal Horizontal Diameter (MHD) of the lungs and
heart masks were used to calculate the computer vision-based
CTR (CV-CTR). The MHD was calculated by counting the
number of mask pixels in each row of a given mask image
using opencv-python (v4.9.0.80) and numpy (v1.26.2)
packages, and subsequently taking the 95th percentile value
to eliminate potential outliers caused by sub-optimal segmen-
tation.
If either the lung or heart MHD of an image was 0, it was ex-
cluded from further analysis as segmentation had likely failed
for that image. The CV-CTR for each image was then calcu-
lated by dividing the heart MHD by the lung MHD (Fig 1).
The CV-CTRs were subsequently grouped by severity de-
scriptors from the reports.
Additionally, another set of ratios was calculated using the
total areas, instead of HMD, of heart and lung masks. Areas
were measured by counting the total number of mask pixels
within lung and heart masks, and the Cardiothoracic Area
Ratio (CAR) was calculated by dividing heart by lung area.

Natural language processing tools.

Extracting data from reports. CXR reports containing either
positive or negative mentions of cardiomegaly and its syn-
onyms were filtered by selecting only reports labelled 1 or 0
in the ‘cardiomegaly’ column in the CheXpert CSV, thereby
rejecting any reports with ambiguous mentions or no men-
tions concerning cardiac size. For each selected report, NLP
methods, including text tokenisation and keyword search-
ing, were applied using the NLTK (v3.8.1) package to extract
sentence(s) describing cardiomegaly or cardiac size. Car-
diomegaly mentions were extracted from a total of 137,424
reports through this process, roughly 60% of all MIMIC-
CXR dataset reports.
All adjectives and adverbs from extracted cardiomegaly men-
tions were identified and ranked based on frequency. From

the top 50 most frequent adjectives and adverbs respectively,
severity descriptors (terms that describe the severity of a con-
dition) that appeared in at least 100 reports were selected
for further analysis. Adjectives and adverbs sharing the
same stem (such as mild and mildly) were merged. Car-
diomegaly mentions files containing these severity descrip-
tors were grouped by keyword matching, with any files con-
taining two or more different severity descriptors being dis-
carded.

Comorbidity analysis. Comorbidity analysis was performed
for each report using annotations of 14 conditions in the
CheXpert CSV. The conditions were ‘Atelectasis’, ‘Car-
diomegaly’, ‘Consolidation’, ‘Edema’, ‘Enlarged Cardiome-
diastinum’, ‘Fracture’, ‘Lung Lesion’, ‘Lung Opacity’, ‘No
Finding’, ‘Pleural Effusion’, ‘Pleural Other’, ‘Pneumonia’,
‘Pneumothorax’, and ‘Support Devices’. Any positive men-
tion of the condition in the report (labelled ‘1’ in the CSV)
was considered an occurrence. Ochiai similarity (Eqn. 1) was
calculated between conditions to analyse their degree of as-
sociation (where a is the number of co-occurrences of condi-
tions A and B, b the number of single occurrence of condition
A, and c the number of single occurrence of condition B). We
used Ochiai similarity instead of co-occurrence frequency as
different conditions had varying occurrence frequencies. The
Ochiai similarities among the 14 conditions were used to con-
struct a graph of co-occurrences using the NetworkX pack-
age (v3.1).

Ochiai similarity = a√
(a+ b)(a+ c)

(1)

Report text generation. Previously extracted cardiomegaly
mentions were regrouped with severity categories. The men-
tions were pre-processed to strip periods and all letters were
converted to lowercase to account for minor variations in ex-
pressions. Within each severity category, the most frequently
used sentences for cardiomegaly reporting were counted and
ranked. Expressions that mention other conditions irrelevant
to cardiomegaly and/or patient history were filtered out. The
ten most frequent filtered expressions from each category
were given to MedQBot on Poe (https://poe.com/
medqbot), an LLM originally intended for medical exam
preparation, with a prompt to generate ten similarly concise,
report-styled, cardiomegaly expressions. The prompt used is
listed below, where [severity group] was replaced by each of
the adjectives or adverbs identified above:

Here are some CXR report sentences describ-
ing [severity group] cardiomegaly. Based on
this set of sentences, generate similarly concise
and report-styled sentences describing [severity
group] sentences.

The generated sentences were acquired on 13 March 2024.
They were manually checked for accuracy, style and rele-
vance, with unsuitable sentences (e.g. too verbose, unrelated,
inaccurate, temporal) being discarded.
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Human evaluation. To evaluate our cardiomegaly CAD
pipeline performance, four radiologists (three with 1 to 5
years of experience, and one with 10+ years of experience)
were invited to participate in a small-scale assessment using
the online Qualtrics questionnaire. A total of 40 items were
prepared, each consisting of a frontal CXR image, a report
snippet of the findings section, and a side-by-side question
box where the radiologists indicate to what degree they agree
with each sentence from the snippet based on the image pro-
vided. The radiologists were able to provide reasoning for
any disagreement in a free-text box. Each item was seen by
two radiologists who were blinded to each other’s answers
and were not informed whether the sentences were machine-
generated or from the original MIMIC report. Each radiolo-
gist evaluated a similar number of sentences, with the same
ratio of changed and unchanged sentences.

Category n CM sentences Other sentences

1 8 Unchanged Unchanged

2 8 Unchanged MedQBot

3 12 CAD system Unchanged

4 12 CAD system MedQBot
Table 1. Question composition of radiologist questionnaire. Where ‘unchanged’
indicates the sentences are those from the original MIMIC-CXR reports, ‘CAD sys-
tem’ indicates cardiomegaly sentences are generated with the pipeline described
above, ‘MedQBot’ indicates sentences generated by LLM-paraphrasing.

The questions were divided into four categories (Table 1)
to ensure an even mix of original and machine-generated
sentences, either related or unrelated to cardiomegaly. The
machine-generated cardiomegaly sentences were randomly
selected from the pre-curated list as described before based
on the predicted severity group by the computer vision
model. For question categories 2 and 4, non-cardiomegaly
sentences were rewritten and paraphrased with MedQBot
with the following prompt on 19 March 2024:

For the following paragraph taken from a CXR
report, generate a new paragraph by paraphras-
ing each sentence from the given paragraph,
while maintaining concision and standard CXR
reporting style.

Each radiologist was assigned 20 items (each containing mul-
tiple statements to assess), with each radiologist receiving
roughly the same number of items in each listed category.
The assignment process also ensured that each question was
answered by exactly two radiologists. The radiologists were
not informed of the design or pipeline of this study nor the
composition of the question set or that of their assigned ques-
tions. Their responses were individually downloaded as CSV
from Qualtrics and pre-processed to integrate into a single
data frame using pandas (v2.1.4) with paired responses
for each question, complete with question category and car-
diomegaly relevance.

To assess inter-rater agreement we computed the total agree-
ment by comparing their results for each sentence. We used
two agreement metrics: strict agreement which consisted
of four distinct categories (‘Agree’, ‘Partially Agree’, ‘Dis-
agree’, and ‘Unsure’) and relaxed agreement which merged
‘Agree’ and ‘Partially Agree’ into a single category.

Results
Data quality assessment. We first reviewed the data qual-
ity for several aspects relevant to this study. The MIMIC-
CXR dataset is one of the largest publicly available chest
X-ray radiology datasets, thus containing a considerable de-
gree of data variability. Consequently, only a subset of the
MIMIC-CXR dataset is suitable for developing cardiomegaly
detection CAD systems.
Dataset filtering for downstream applications is complicated
by a host of factors. As mentioned before, frontal CXR is
best suited for cardiomegaly detection, while lateral images
are rarely used and should thus be excluded. Furthermore, the
MIMIC-CXR dataset is not error-proof. We found that 421
patient reports contain mismatched sex mentions (Table 2).
View labels of images were occasionally missing or incor-
rect, for instance, by mislabelling a lateral image as PA/AP. In
addition, a smaller proportion of images suffer from quality
issues severe enough to entirely prevent analysis. To address
this, the CAD system needs to first identify and flag unsuit-
able images to prevent further processing and analysis while
alerting human radiologists. This is accomplished by lever-
aging two ResNet50 classification models as detailed below.

Data quality assessment category n %

Patient reports with mixed sex mentions 421 0.18

Poor quality images 83 0.02

Wrongly labelled views 1,054 0.28

Unlabelled views 15,769 4.18
Table 2. Data quality assessment of the MIMIC-CXR dataset (65,379 patients,
227,827 individual reports, 377,100 images). Indication of mismatched sex men-
tions in reports attributed to the same individual, number (%) of poor quality im-
ages indicated by our poor quality image classification model, and number (%) of
wrongly labelled views (in the metadata) indicated by our view classification model.
All reports and images indicated above were manually checked, and we provide a
spreadsheet in the Supplementary Information with the corrected view labels and
reports likely from different individuals due to sex differences with other reports at-
tributed to the same person identifier.

ResNet50 classification sub-models and metadata quality.
As mentioned, a two-step hierarchical model was developed
to classify CXR images by quality and view for dual pur-
poses. In direct relation to the CAD system itself, the model
provides a filtering step to only allow suitable images to be
assessed by downstream cardiomegaly detection algorithms.
Additionally, the model can also be utilised to help correct
mislabelling and flag flawed images within the MIMIC-CXR
dataset, or potentially any similar CXR datasets.
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Fig. 3. Data description, computer vision model classification results, and model
interpretability. A: Generated poor-quality images due to cropping, noise, distortion,
background and other types (patching) of image manipulations. B: Confusion matrix
of normal versus poor quality classification model with the median [interquartile
range (IQR)] displayed across 10 models initialised with different random states. C:
Example of poor-quality input images and the model attention map. D: Confusion
matrix of frontal versus lateral classification model (median [IQR] across 10 models
initialised with different random states). E: Example of frontal (from (34)) and lateral
(from (35)) input images and the model attention map.

22 abnormal images were identified from p10 and p11 sub-
folders and categorised into five groups based on similar fea-
tures (Fig 3A). For each category, 100 new images were gen-
erated with synthetic and augmentation techniques. Together,
they constituted an abnormal training subset of 500 images to
train the first model to classify normal vs abnormal images.
This model demonstrated high overall accuracy on a test set
with 20 real bad-quality images from the MIMIC-CXR and
1,000 normal images with 85% recall for poor quality class
(Fig 3B). The second model, which differentiates between
frontal and lateral CXR, exhibited much better performance,
with 99.4% accuracy on the test set with 1,000 frontal and
lateral images each (Fig 3D).
For both sub-models (see Fig 2), model explainability was
explored through mapping model attention with Grad-CAM
(Fig 3C, E). Model attention for sub-model 1 is relatively lo-
calised with a region of high intensity on the left. For sub-
model 2, model attention is diffused when frontal images are
encountered, covering most of the image with higher atten-
tion zones covering both lungs. When presented with a lateral
image, model attention is markedly more focused and often
localised to the region just below the diaphragm.

Cardiomegaly severity classification.

Extraction of cardiomegaly mentions using natural lan-
guage processing. Gaining a comprehensive understanding
of the cardiomegaly landscape in the MIMIC-CXR dataset
is paramount to CAD development. ‘Normal’ is the most

common descriptor for heart size with 10,883 cases, fol-
lowed by ‘Mild’ (4,651 cases), ‘Borderline’ (4,172 cases)
and ‘Moderate’ (2,392 cases) when describing positive car-
diomegaly. Generally, descriptor frequency decreases with
increasing perceived severity. ‘Mild to moderate’, ‘Moderate
to severe’ and ‘Severe’, are less commonly used, each with
less than a thousand cases (Figure 4A).

CXR auto-segmentation and cardio-thoracic ratio calcula-
tion. After CV-CTR calculation, severity descriptors were
ranked by median CV-CTR and CAR. For each pair of neigh-
bouring descriptors, t-tests were performed with Šidák cor-
rection to identify statistically synonymous severity descrip-
tors which were then merged to form severity categories.
Threshold values separating each severity level were calcu-
lated separately for both CV-CTR and CAR. For the former,
t-tests were performed for every value between 0 and 1 at
intervals of 0.01 with CV- CTR data of each severity group,
and each value was assigned to the severity group with the
greatest p-value, forming ratio intervals. For CAR, t-tests are
performed in a similar manner with the range of tested values
set between 0 to 0.5 instead. A correlation test between the
two sets of ratios was also carried out to determine whether
the ratios are correlated on a case-by-case basis.
For each descriptor, CV-CTR was calculated for all corre-
sponding PA CXR images with the computer vision model
(Fig 4A). Distributions appear to be normally distributed, al-
though some are slightly skewed, such as the ‘moderate-to-
severe’ category. Data spread is generally bigger in higher
severity groups. The ranking of descriptors by median is
mostly in line with linguistic expectations. 93.8% of mild
cardiomegaly cases were found to have CV-CTR over the
clinical threshold of 0.5 based on the computer vision model,
with upwards to over 98% in severe cardiomegaly, indicating
high recall of the CAD system for cardiomegaly cases.

Data-driven model for severity classification. Significant
overlaps are observed between the distribution of neighbour-
ing descriptors. To identify statistically synonymous sever-
ity descriptors, multiple t-tests were carried out between
CTR distributions of each pair of neighbouring descriptors,
and any neighbouring descriptors with non-significant dif-
ferences were merged into groups, forming a total of seven
severity categories (Fig 4A).
CV-CTR intervals for each severity group were subsequently
established for each severity category (Fig 4B). The upper
threshold for ‘normal’ CTR (0.51) is close to 0.5, mirroring
the clinical threshold for cardiomegaly diagnosis. The ratio
intervals for normal and severe categories are much larger
than intermediates to encompass extreme values. The num-
ber of cases falling into each severity interval varies slightly
compared to the reference distribution of cases based on orig-
inal report descriptors.
Using previously established severity group CV-CTR in-
tervals, a confusion matrix was constructed to evaluate
heart size predictions of the model against MIMIC ground
truths (Fig 4C). At both ends of the severity spectrum, the
model performs relatively well in accurately determining car-
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diomegaly severity. Intermediate severity categories, such as
‘moderate’, saw a drop in accuracy in severity classification,
although the model is still highly accurate for binary classifi-
cation (normal vs cardiomegaly) across all categories exclud-
ing ‘borderline’.
The severity classification based on CV-CTR is similar to the
cardiothoracic area ratio (CAR), defined here as the ratio of
the total heart area and lung area as presented in PA CXR
images. We found the distribution pattern of CV-CAR to
be highly similar to that of CV-CTR, and the two are found
to be positively linearly correlated (R2=0.82), with 90% of
residuals within ±0.09, and with the CV-CAR showing simi-
lar patterns across the 7 severities (Supplementary Materials,
Figure 7).

Report sentence generation using a medical large language
model. Once a severity category prediction has been made by
the computer vision model, it is used as an input argument for
report sentence generation using LLMs. A sentence is picked
at random from the pre-curated list of generated sentences of
the corresponding severity category to constitute the final re-
port sentence. Fig 5 illustrates three examples of report sen-
tence generation based on cardiomegaly severity predictions.
Model prediction for the CXR image in Fig 5A matches that
of the original report, and as such a sentence resembling the
original is generated. Model prediction for the CXR image in
Fig 5B differs from the original by one level of severity and
thus is regarded as a close match, while a mismatch is found
for the CXR image in Fig 5C.

Human evaluation of radiology reports.

Inter-rater agreement. We calculated the strict and relaxed
agreement in three different settings: (1) between our radi-
ologists (strict: 0.487, relaxed: 0.864), (2) between our radi-
ologists and the original MIMIC radiologists on unchanged
sentences (strict: 0.624, relaxed: 0.845), and (3) between our
radiologists and machine-generated sentences (strict: 0.545,
relaxed: 0.929).
Notably, the machine-generated sentences achieved a strict
agreement of 0.545, which was 0.089 lower than the max-
imum strict agreement between our radiologists and the
MIMIC radiologists (0.634). In contrast, the machine-
generated sentences achieved the highest relaxed agreement
(0.929), surpassing the agreement between our radiologists
and the MIMIC radiologists by 0.084.

Comorbidity mentions. We evaluated the relationship be-
tween other mentions in the reports and cardiomegaly. We
show here the most common co-occurrences across all re-
ports, and for those with co-occurrences with cardiomegaly
(Fig 6A) we visualise the CV-CTR in Fig 6B. Between 53%
(lung lesion) and 90% (edema) of patients had these as co-
morbidities with presence of cardiomegaly.

Discussion
MIMIC-CXR Dataset Quality Control. The presence of quality
issues, such as abnormal images and mislabelling within the

Fig. 4. Data-driven severity classification based on natural language extracted la-
bels and computer vision-based cardiothoracic ratio calculation. A: Violin plot of
the cardiothoracic ratio (CTR) based on the computer vision (CV) segmentation
model. Each adjective/adverb relating to cardiomegaly was normalised (i.e. ‘mildly ’
to ‘mild’). Also showing reports without cardiomegaly mentions. Comparison of
CV-CTR across different severity indicators. * = P<0.05, *** = P<0.001. The per-
centage on the right-hand side indicates the proportion of images with a CTR over
0.5 (red dashed line). B: Cardiomegaly severity classification model with thresh-
olds determined by the model, grouping of severity indicators with non-significant
different CV-CTRs between them. The blue line indicates the cut-off for which the
probability of borderline cardiomegaly is larger than normal heart size. The top per-
centage on the right-hand side indicates the proportion of images with a CTR over
0.5 (red dashed line), whereas the bottom percentage indicates the proportion of
images with a CTR over 0.51, the threshold between normal and borderline heart
size (blue dashed line). C: Confusion matrix of the CV-CTR classification model
into the severity classes. Red boxes and percentages indicate the total number
predicted within one category of the labels from radiology reports.
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Fig. 5. Examples of computer vision-based cardiothoracic ratio calculation and
subsequent report text generation. A: Exact match (image from (34); see MIMIC
report s56175428 for original report sentence and associated image). B: Close
match (within 1 category of report text) (image from (35); original MIMIC report
s52317659). C: Mismatch between CAD system and image (image from (34); orig-
inal MIMIC report s57481090).

MIMIC-CXR dataset, is an unexpected finding despite the
relative rarity. Regardless of the underlying causes, if left
unchecked and unbeknownst to researchers, they could pose
significant challenges to ensuring data quality and reliability
in future studies utilising the dataset.
Current literature involving MIMIC-CXR, however, rarely
mentions the dataset quality shortcomings, an odd predica-
ment given the popularity of the dataset. The original jour-
nal describing the MIMIC-CXR dataset does contain a brief
notice of the variability of images caused by image rota-
tion, poor patient positioning and secondary collimation, yet
did not comment on the presence of severe image qual-
ity issues nor instances of mislabelling (36). Out of five
studies published over the past two years involving the use
of MIMIC-CXR images for creating deep learning models,
none has acknowledged any aspects of quality issues within
the dataset (43–47).
The current study sought to ascertain the extent of selected
quality issues within MIMIC-CXR and rectify them for the
benefit of future studies using the same dataset. Manual
identification of bad-quality images or wrong view labels is
possible, but time-consuming considering the overwhelming
number of images involved. ResNet50 model 1 from the
study was used to identify potentially abnormal images, from
which a total of 83 images with severe quality issues were
annotated after human cross-checking. The same principle
was similarly applied to correcting mislabelled views using
model 2, with 1,054 total corrections. Additionally, model

Fig. 6. Evaluation of the cardiothoracic ratio and comorbidities with cardiomegaly.
A: Co-occurrence graph of the other 14 CheXpert observations by report, including
cardiomegaly. Node size indicates the number of reports where the condition is
observed. Line width indicates the association between conditions measured by
Ochiai similarity. B: Violin plot of computer vision-based cardiothoracic ratio for the
most common co-occurrences with other mentions. The percentage on the right-
hand side indicates the proportion of images with a CTR over 0.5 (red dashed line).
Significant differences from the reference group noted, *** = P<0.001.

2 was utilised to classify images previously without view la-
bels with human crosscheck. The augmented image metadata
dataset represents an improvement over the original, serving
to maximise the exclusion of images of bad quality or incor-
rect views in datasets used in future studies.
Conversely, the ResNet50 models themselves may still have
room for improvement. Judging from model attention
heatmaps, model 1 frequently displays a stronger focus
around the edge of the image as opposed to inner zones,
which may limit its ability to identify certain types of ab-
normal images. The hierarchical nature of the models makes
model 1 a potential weak spot, as its moderate false negative
rate increases the chance of an abnormal image continuing
through the CAD system unchecked. However, since abnor-
mal images are rare by nature, the overall impact is likely
limited.

Cardiothoracic Segmentation and Cardiomegaly Detection.
Our computer vision model, developed as part of the CAD
system, exhibited good performance for binary cardiomegaly
classification. As it was not a machine learning model and
instead relied on statistical methods, the need for curating a
training set is eliminated, and all images within the MIMIC-
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CXR dataset can potentially serve as part of the test set. It
has an overall accuracy of 95.2% (0.95 AUC) by using all
images with unequivocal heart size mentions from MIMIC-
CXR as the test set, utilising MIMIC-CXR report diagnosis
as ground truth and 0.51 CV-CTR as the threshold for car-
diomegaly (borderline cases are excluded as they do not fit
into either category). The CAD model has a false negative
rate of 6.6%, indicating that it captures the majority of car-
diomegaly cases, while its false positive rate is 3.2% is re-
flective of high precision of cardiomegaly detection. Note
that these numbers may not fully reflect the model’s true ac-
curacy, as the model is not yet tested on other datasets. Also,
not all cardiomegaly diagnoses from MIMIC-CXR are neces-
sarily correct, as evidenced later. In terms of overall accuracy,
our model proves superior to nearly all existing classification-
based (28) and segmentation-based (27, 30, 31) models (Ta-
ble 3). The test set used in this study (n=19,144) also vastly
outnumbers those used in similar studies (131 to 600) by
magnitudes in terms of total images included.

Study Test data Size AUC Accuracy (%)

(28) ChestX-ray8 600 0.87 79

(31) Local hospital 418 0.96* 91

(30) Local hospital 183 N/A 94.9

(27) Local hospital 131 0.92* 92.3

Ours MIMIC-CXR 19,144 0.95 95.2
Table 3. Comparison of binary cardiomegaly classification performance between
existing models (as reported in publication) and model in the current study. AUC
= Area Under (ROC) Curve. * indicates that the value represents the performance
of the best-performing model within the study or the performance measured on a
specific test set where the model is most accurate. The top result is indicated in
bold, second best underlined.

Furthermore, while these past studies have developed similar
CAD systems for binary cardiomegaly detection, few have
gone to lengths to implement functions for differentiating be-
tween different levels of severity. In contrast, when radiol-
ogists report findings of cardiomegaly, it is often standard
practice to attach a severity descriptor. The current study is
unique in that it identified the most common descriptors used,
grouped synonyms based on statistical analysis and derived
CV-CTR intervals for each severity category, which makes
the CAD output more informative and is indispensable for
downstream report sentence generation.
Our work also explores the subjectivity in severity attribution
in clinical practice. Without any universal guidelines for de-
scriptor selection, radiologists rely on individual judgment to
pick the most appropriate descriptors. This is a process that
permits a significant degree of subjectivity, which is reflected
by the wide distributions of CV-CTR across different descrip-
tors and severity categories (Fig 4B). While fluctuations in
segmentation and computer vision model performance cer-
tainly do contribute to the overlaps, natural subjectivity and
personal biases of radiologists are also likely factors.
Furthermore, responses gathered from the radiologist ques-

tionnaire revealed 4 cases where the responding radiolo-
gist rejected the original MIMIC-CXR judgement of car-
diomegaly, which constitutes 12.5% of all original car-
diomegaly sentences assessed. In nearly half (47.5%) of
all cardiomegaly sentences included in the questionnaire, the
two assessing radiologists disagreed in their response agree-
ment levels. Indeed, the strict agreement between assessing
radiologists is only 0.4878 (0.864 relaxed), indicating a con-
siderable degree of subjectivity in CXR interpretation and re-
porting. Nonetheless, a point of positivity lies in the fact that
the upper threshold of normal CV-CTR determined by statis-
tical analysis (0.51) is nearly identical to the currently used
clinical threshold (0.5), indicating a high level of adherence
in clinical practice.
In addition, studies have shown that CTR may have limited
diagnostic power when compared to cardiac MRI, the gold
standard for cardiac chamber enlargement detection (48, 49).
Therefore, we have explored the CAR as an alternative met-
ric for cardiomegaly detection. While not used clinically,
the concept considers the definition and presentation of car-
diomegaly and has the advantage of considering two dimen-
sions of the heart as opposed to a single dimension used for
CTR calculation. Despite these advantages, we did not ob-
serve a major difference between CTR and CAR in terms of
alignment with cardiomegaly severity. However, the reliabil-
ity of the CAD system may be improved by cross-checking
CV-CTR and CV-CAR derived from the same images, flag-
ging instances where a significant mismatch is found between
predicted severity by both methods.
The study also examined correlations between cardiac en-
largement and various comorbidities. The mention of edema
appeared to be the strongest predictor for enlarged cardiac
size, with CV-CTR greater than 0.5 in over 90% of cases,
only marginally less than mentioning of cardiomegaly itself.
As such, the presence edema may be strongly predictive of
the co-occurrence of cardiomegaly. This reflected the out-
come of the co-occurrence analysis showing a frequent co-
occurrence between the two conditions (Fig 6B).

LLM Sentence Generation and CAD Performance Evalua-
tion. The inclusion of an automatic report sentence genera-
tion module is another feature less commonly found in other
cardiomegaly CAD systems, the addition of which further
enhances user experience by removing the need for manual
text input. Compared to more diverse and complex condi-
tions, the reporting of cardiomegaly has the advantage of be-
ing quite consistent and uncomplicated, which enables LLMs
to imitate their style effectively.
Another strength of the study is the inclusion of radiol-
ogist assessment of the performance of the CAD system,
a rare inclusion with parallels only found in one other
study (30). Whereas most other work in the space of re-
port generation use natural language generation metrics to
evaluate the agreement between generated text and origi-
nal reports (50–52). While the assessment is limited in
scale, it nevertheless helped validate the system’s feasibil-
ity. The current CAD system reached an average agreement
of S:0.545/R:0.929 with our radiologists’ verdicts, compa-
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rable with S:0.624/R:0.845 between our radiologists and
MIMIC, suggesting that the CAD system’s performance may
be non-inferior, or share a comparable level of subjectivity, to
trained radiologists. Our findings indicate that our machine-
generated sentences were on par with the MIMIC radiologists
in assessing the severity of cardiomegaly and the semantics
used to generate the report. In fact, disagreements appear to
be mostly linguistic rather than diagnostic, as evidenced by
the distribution of reasons for disagreement cited, which can
be improved by curating a better set of generated sentences.

Limitations and Future Work. While the preliminary results
offer much encouragement, the study remains a proof-of-
principle at this stage, owing to the lack of large-scale tri-
als involving clinical validation. It is also yet to be tested
on datasets other than MIMIC-CXR. Furthermore, the case-
by-case performance of the computer vision model is depen-
dent on accurate anatomical segmentations, and as such is
vulnerable to errors arising from aberrant segmentations. It
is especially a concern among CXR images where the car-
diac silhouette and/or part of the lungs is obscured by condi-
tions such as pulmonary edema and pleural effusion, which
can significantly diminish the reliability of segmentations ob-
tained with CXAS. A more versatile segmentation model op-
timised for challenging CXR images could greatly benefit the
performance of the model.
Additionally, since PA is the recommended view for car-
diomegaly detection, AP CXR images have been excluded
from analysis, despite the close resemblance of AP CXR to
PA CXR. While AP CXR has the inclination to exaggerate
cardiac size (53), they can, nevertheless, serve as an initial
screening for determining the need for further investigation.
For instance, one study has recommended a CTR ratio of 0.6
as the threshold when using AP CXR for increased speci-
ficity (54). The CAD’s usage scenarios may therefore be ex-
panded by including AP CXR in follow-up studies.
During the preparatory phase in LLM sentence generation, it
was noted that a significant portion of cardiomegaly mentions
includes references to past time points, examples include
‘mild cardiomegaly is unchanged’ and ‘severe cardiomegaly
has improved’. The study did not explore the possibility of
generating sentences capturing multiple time points. How-
ever, it may be feasible by allowing the model to calculate
CTR and make a severity prediction for both the past and
present CXR in question, using any difference as an indica-
tor of change to generate more dynamic sentences.

Conclusion. The present study has developed the essential
framework and components for the assembly of a highly au-
tomated and reliable CAD system for cardiomegaly detec-
tion using PA CXR images. The system holds several ad-
vantages, including a high degree of cost-effectiveness, ex-
plainability in detection, and efficiency in operation. Input
CXR images are first screened to exclude and flag instances
unsuitable for cardiomegaly detection. By calculating CTR
using a computer vision model from deep learning-derived
heart and lung segmentations, high overall accuracy in de-
tecting cardiomegaly and assigning appropriate severity la-

bels is achieved. Furthermore, the model is capable of gen-
erating human-like, report-styled sentences based on the out-
put of the computer vision model. Performance metrics in-
dicate that the ability of the model to generate accurate car-
diomegaly report sentences based on PA CXR is likely to be
non-inferior to human radiologists, although larger trials are
necessary to confirm this judgment. With further optimisa-
tion, the novel CAD system could prove to be a welcome
addition to the radiology toolkit, representing an accessible
and cost-effective method to offer radiologists a second per-
spective to validate their own assessments.
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Fig. 7. Data-driven severity classification based on natural language extracted labels and computer vision-based cardiothoracic area
ratio (CAR) calculation. A: CV-CAR vs CV-CTR with the 7 severity groups from reports indicated by colours. The horizontal red dashed
line represents CV-CTR=0.50 (common threshold for cardiomegaly), the vertical red dashed line represents the CAR value for the
lowest 1% of all cardiomegaly cases (from mild to severe), with 99% of cardiomegaly cases to be found above this threshold. B:
Residual plot based on the line of best fit. The parallel black dashed lines represents the interval where 90% of residuals reside. C:
Violin plot of the CV-CAR for all categories prior to merging categories. D: Violin plot of the CV-CAR after consolidation of categories.
C,D: The red dashed line represents the 1% CAR value threshold for cardiomegaly cases (from mild to severe, as in panel A).
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