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Abstract 

 
INTRODUCTION: Autosomal Dominant Alzheimer’s Disease (ADAD) through genetic 

mutations can result in near complete expression of the disease. Tracking AD pathology 

development in an ADAD cohort of Presenilin-1 (PSEN1) E280A carriers’ mutation has 

allowed us to observe incipient tau tangles accumulation as early as 6 years prior to 

symptom onset.  

 

METHODS: Resting-state functional Magnetic Resonance Imaging (fMRI) and Positron-

Emission Tomography (PET) scans were acquired in a group of PSEN1 carriers (n=32) 

and non-carrier family members (n=35). We applied Connectome-based Predictive 

Modeling (CPM) to examine the relationship between the participant’s functional 

connectome and their respective tau/amyloid-β levels and cognitive scores (word list 

recall). 

  

RESULTS: CPM models strongly predicted tau concentrations and cognitive scores 

within the carrier group. The connectivity patterns between the temporal cortex, default 

mode network, and other memory networks were the most informative of tau burden.  

 

DISCUSSION: These results indicate that resting-state fMRI methods can complement 

PET methods in early detection and monitoring of disease progression in ADAD.  

 

Keywords: ADAD, CPM, rsfMRI, predictive modeling 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.01.24312913doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

1. Introduction 

 

A rare form of AD is genetically determined through autosomal dominant mutations in the 

APP, PSEN1, or PSEN2 genes. One of the most well-characterized autosomal dominant 

AD (ADAD) mutations is Presenilin1 (PSEN1) E280A, which causes early-onset AD 

dementia with nearly 100% certainty [1,2]. Studies on this ADAD cohort established that 

PSEN1 E280A carriers develop Mild Cognitive Impairment (MCI) and dementia around 

the ages of 44 and 49 respectively [3], with the buildup of cerebrospinal fluid (CSF) 

amyloid-β starting around 19 years prior to the onset of the disease [1]. Whereas late-

onset AD is associated with reduced clearance of amyloid-β, ADAD is more related to the 

overproduction of Aβ42 [2]. Studies have also shown the relationship between amyloid-β 

and tau deposition in ADAD subjects [4]. Longitudinal studies have shown that the 

neocortical Aβ42 accumulation starts around 16 years before onset and precedes tau 

accumulations in the entorhinal cortex. Tauopathy then reaches the neocortex and is 

followed by hippocampal atrophy and subsequent cognitive decline [5]. Elevated levels 

of tau deposition were observed within medial temporal lobe regions in amyloid-β positive 

PSEN1 carriers 6 years before clinical onset of AD [4]. 

Advances in PET imaging have allowed the estimation of amyloid-β concentrations 

associated with AD pathology in the brain [6]. In recent years, tau pathology has been 

increasingly associated with brain hypometabolism, patterns of neurodegeneration, and 

clinical manifestation and is related to the changes due to amyloid-β accumulation [4,7]. 

These advances have resulted in predicting subsequent progression towards dementia. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.01.24312913doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

PET scans are the only imaging modality allowing the localization of AD pathology in-vivo. 

However, it is expensive, not readily available, and involves the injection of a radioactive 

substance which has minimal risk for normal subjects but elevated risks for a few patient 

populations like with types of lymphoma [8]. Functional Magnetic Resonance Imaging 

(fMRI) is more readily available and can be possibly used to complement PET-based 

measures to estimate the effect of increased AD pathology on brain function [9]. 

Functional connectivity computed through resting-state fMRI has emerged as a robust 

method to track brain integrity [10] and parcellate the brain into various brain networks 

[11–13]. Cerebral blood flow is altered in AD, especially in the temporal-parietal-occipital 

cortex [14]. This hypometabolism is associated with changes in functional connectivity 

that can be tracked using resting-state scans. Studies showed that amyloid-β and tau 

pathologies are associated with brain network segregation and integration in ADAD 

subjects [9] and changes in functional connectivity between the posterior cingulate cortex 

and medial temporal lobe [2]. Though individuals share common patterns of functional 

brain organization, they also have idiosyncratic differences. Many fMRI studies average 

data across the subject pool to improve the signal-to-noise ratio, but this results in the 

loss of information about individual variations [15–18]. There have been recent efforts to 

further consider individual differences in fMRI studies [19]. One such method, called 

Connectome-based Predictive Modeling (CPM) [20], allows researchers to make 

predictions of a range of cognitive measures like fluid intelligence and attention. [21,22]. 

Although brain-wide association studies may  require large number of subjects [23], 

carefully designed protocols can overcome them [24]. Individual AD progressions and 

neuropathologies are heterogeneous [25–27], hampering early diagnosis and 
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preventative measures [28]. This highlights the need to develop quantitative assays that 

incorporate the complexity of individual differences. 

 
Relating tau and amyloid concentrations to rsfMRI connectivity can help us develop less 

expensive and more easily accessible tools for the early detection and diagnosis of AD. 

In this study, we analyzed the network connectivity of carriers of PSEN1 E280A mutation 

from the Colombia-Boston (COLBOS) cohort (n=32) out of which seven had developed 

MCI, along with age-matched controls (n=35). We first computed the edge connectivity 

across large-scale brain networks defined using the Yeo 2011 atlas [13]. Second, the 

edge connectivity was associated with both cortical tau and amyloid-β concentrations and 

behavioral scores across the two groups using CPM technique. Model performance was 

tested within and across groups.  

 

 

 

2. Methods 

2.1 Participants 

 
The Colombian kindred of about 5000 individuals has a predisposition towards the 

PSEN1 gene. About 1500 are carriers and will develop AD with a near 100% certainty. 

The Massachusetts General Hospital COLBOS longitudinal biomarker study used in this 

project consisted of 32 PSEN1 E280A carriers (including seven MCI) and 35 age-

matched family members (details in table 1). The study was approved by the Institutional 

Ethics Review Board of the University of Antioquia in Colombia and Massachusetts 
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General Hospital in Boston. All subjects gave their informed consent for participation in 

the study. We used the Spanish versions of the neuropsychological task battery from the 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) including word list 

learning, delayed recall tasks along with the Mini Mental State Examination (MMSE) [29] 

as previous studies have shown them to be a robust measure of cognitive decline in this 

population [30].  

Table 1: Demographics and cognitive data table 

 Mean (SD) 

Parameter Controls ADAD Carriers 

  All MCI Non-MCI 

N (# Males) 35 (17) 32 (13) 7 (3) 25 (10) 

Age 36.41 (5.64) 38.31 (6.02) 45.00 (2.94) 36.44 (5.29) 

Education 10.80 (4.15) 9.31 (4.16) 6.57 (4.69) 10.08 (3.64) 

MMSE 28.94 (0.89) 27.00 (3.10) 22.00 (2.98) 28.40 (0.94) 

WLL 20.91 (3.10) 16.88 (5.03) 10.14 (2.23) 18.76 (3.84) 

WL Recall 7.69 (1.24) 5.28 (2.99) 0.71 (0.70) 6.56 (1.96) 

 

MMSE – Mini Mental State Examination; WLL – CERAD Word List Learning; WL Recall 

– Word list recall. 

2.2 MRI Acquisition 

 
The MRI image acquisition was performed on a Siemens 3T Tim Trio system (Siemens 

Healthcare, Erlangen, Germany) at Massachusetts General Hospital using a 12-channel 

head coil.  High-resolution T1-weighted MPRAGE sequences were used for anatomical 

data (voxel size = 1 mm isotropic, 160 slices, TR=2300 ms, TE = 2.98 ms, field of view = 

256 mm). Functional BOLD data was collected using T2* gradient-echo echo-planar 
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imaging (EPI) sequences with a whole head coverage (TR = 3 sec, TE = 30 msec, Flip 

angle = 85°, voxel size = 3 mm isotropic, 47 slices). In the resting-state scan, the subjects 

were asked to remain still, keep eyes open with normal blinking, and fixate on the cross. 

Two resting-state runs were collected where each run was six minutes long with 120 TRs 

with an initial 4 TRs for T1-stabilization.  

2.3 MRI Preprocessing 

 
MRI datasets were preprocessed using the fMRIPrep software version 22.0.2 [31] which 

is implemented using Nipype 1.8.5 [32] and utilizes Nilearn across multiple steps [33]. 

The anatomical data preprocessing included intensity correction, brain tissue 

segmentation using FSL [34], and the Freesurfer recon-all pipeline to align to surface 

space. Functional data were skull stripped, motion corrected, slice time corrected, and 

high-pass filtered (128-sec cutoff). Physiological regressors were extracted to remove 

noise from the BOLD signals followed by co-registration to the reference space using 

Freesurfer [35,36] and CIFTI space using Ciftify pipeline [37]. We demeaned the signal 

across time after the preprocessing pipeline, regressed out the global signal, and 

concatenated across the runs before further network analysis. 

 

2.4 PET Acquisition and preprocessing 

The subjects underwent PET imaging at Massachusetts General Hospital. PET data were 

acquired on a Siemens/CTI ECAT HR Scanner (3D mode; 63 image planes; 15.2 cm axial 

field of view; 5.6 mm trans axial resolution; 2.4 mm slice interval).  [F18] Flortaucipir (FTP) 

images were acquired after a 9.0 to 11.0 mCi bolus injection between 80 and 100 minutes 

in 4 separate 5-minute frames. Each subject’s PET data was co-registered to the T1 
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MPRAGE using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The [F18] 

Flortaucipir (FTP) values were averaged across the Freesurfer ROIs within the Desikan-

Killiany atlas (https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation Freesurfer 

[35,36] as standardized uptake value ratio (SUVR) followed by 8 mm smoothing using a 

gaussian kernel. 11C Pittsburgh compound B (PiB) PET images were acquired after an 

8.5 to 15 mCi bolus injection with 60-minute dynamic acquisition in 69 frames (12x15 

seconds, 57x60 seconds). The data were co-registered to T1 MPRAGE and values were 

spatially averaged over the Freesurfer ROIs and were expressed as distribution volume 

ratio (DVR) with cerebellum as the reference ROI.  

2.5 Connectome-based Predictive Modeling 

 
Connectome-based Predictive Modeling (CPM) is a machine-learning approach to data 

analysis that seeks to associate patterns of functional connectivity in the brains of 

individuals with behavioral and/or cognitive measures [20,22]. Here, we adapt this 

approach to associate MRI functional connectivity with localized PET measurements of 

tau and amyloid-β deposits in addition to behavioral scores. While large subject pools are 

typically required to build accurate CPM models linking functional connectivity to cognitive 

measures, linking two brain measures, namely MRI functional connectivity and PET data 

appears to have much lower subject pool requirements [38,39]. In our approach, we first 

selected a measure (e.g., amyloid-β DVR in a particular ROI) that we want to model, one 

value per subject. We then created a functional connectivity correlation matrix using 

Spearman correlation coefficients computed with SciPy [40]. Here, we used Schaefer 400 

parcellation [12] for the cortex seeds, Yeo-Buckner 17-network atlas for the cerebellum 

[41] and Tian S1 level atlas [42] for the remaining subcortex which includes 32 nodes, for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.01.24312913doi: medRxiv preprint 

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
https://doi.org/10.1101/2024.09.01.24312913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

a total of 449 ROIs. We averaged the resting-state time course data across all vertices or 

voxels that comprise each seed. We then performed a Pearson correlation of each pair 

of time courses to create a 449 x 449 functional connectivity matrix for all participants. 

This matrix represents the individual’s ‘functional connectome’. We then correlated the 

cognitive measure with each edge correlation value in the functional connectivity matrix 

across subjects in our training datasets and created a mask for edges displaying 

significant association using uncorrected p-values < 0.2. We masked the subject’s 

connectivity matrix and averaged out the positive and negative edges separately, giving 

one negative and one positive summed correlation value per subject. These correlation 

values were associated with the behavioral measure and found the relationship between 

the two using Ordinary Least Squares (OLS) regression as implemented in SciPy. We 

divided the subjects into training and testing sets, such that a given model was 

constructed using data from one set of subjects and then applied to a different set of 

subjects. We used a k-fold approach to make predictions for all subjects. We then used 

the averaged mask from the k-fold analysis and the averaged OLS model and made 

predictions on the testing dataset. Therefore, the reported results for a particular 

prediction reflect the average results across multiple models, where the training and 

testing subjects have been varied in the k-fold approach. The results stayed consistent 

with changing the number of folds from 8 to 16 across datasets. 

 

Studies have shown that the progression of the amyloid-β and tau pathologies have 

separate trajectories with neocortical amyloid-β developing earlier followed by increases 

in tau in the entorhinal cortex, hippocampus and associated networks [5]. We computed 
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averaged tau and amyloid-β information across the ROIs from the Desikan-Killiany atlas 

[36]. We then selected different ROIs to model tau and amyloid-β concentrations. The 

choice of ROIs was defined based on the proteinopathy-specific relevance of these 

regions to inform on AD progression, as estimated from earlier studies [2].  We ran our 

CPM model for tau concentrations in the entorhinal cortex, precuneus, hippocampus and 

inferior temporal (IT) cortex, and separately for amyloid-β concentrations in the Frontal 

Lateral Retro splenial (FLR) cortex. Separate CPM models were constructed and 

analyzed for each PET ROI. We also constructed a CPM model linking functional 

connectome with behavioral measures including CERAD word list learning, delayed recall 

scores and the MMSE score. We analyzed the accuracy of our models using Pearson 

correlations between actual and predicted values.  

3. Results 

 

We applied the CPM approach to form associations between functional connectivity and 

tau/amyloid/behavioral values across the different groups. Prior research has estimated 

that amyloid-β accumulates across the neocortex years before symptom onset whereas 

tau accumulations are observed initially in the entorhinal and trans entorhinal cortex 

subsequently spreading to various brain regions including the hippocampus, amygdala, 

and IT [5]. We focused on amyloid-β in the Frontal Lateral Retro splenial (FLR) neocortical 

areas and tau values in the entorhinal cortex, amygdala, hippocampus, and associated 

networks. The CPM approach yields two separate networks for each model, one based 

on the positive connections and the other based on the negative connections.  We 
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therefore obtained positive network and negative network predictions for each ROI of 

interest.  

 

For the PSEN1 carrier group, we obtained significant predictions for tau concentrations 

across entorhinal cortex (Figure 1, Positive network: r(30) = 0.53, p = 0.002; Negative 

network: r(30) = 0.53, p = 0.002), precuneus (Figure 2, Positive network: r(30) = 0.50, p 

= 0.003; Negative network: r(30) = 0.52, p = 0.002), IT (Figure 3, Positive network: r(30) 

= 0.51, p<0.003; Negative network: r(30) = 0.57, p < 0.001) and hippocampus (Figure 4, 

Positive network: r(30) = 0.34, p = 0.054; Negative network: r(30) = 0.38, p = 0.033). The 

predictions for amyloid-β in FLR cortex had moderate effect size although did not cross 

statistical significance (Figure 5, Positive network: r(30) = 0.20, p=0.284; Negative 

network: r(30) = 0.26, p=0.145). We also found significant model accuracy for word list 

recall cognitive score prediction (Figure 6, Positive network: r(30) = 0.45, p<0.006; 

Negative network: r(30) = 0.45, p<0.006) as well as MMSE scores (Positive network: r(30) 

= 0.47, p<0.006; Negative network: r(30) = 0.37, p<0.05) and word list learning scores 

(Positive network: r(30) = 0.48, p<0.005; Negative network: r(30) = 0.34, p<0.01). In 

PSEN1 non-carriers, we found that models were predictive of hippocampal tau (Figure 7, 

r(33) = 0.36, p<0.033). However, CPM models failed to predict the other regional markers 

(precuneus tau, entorhinal tau, amyloid FLR) (all p < 0.05). PSEN1 carriers with MCI were 

crucial for model success, as models trained across carriers without the MCI subjects had 

a moderate effect size (r = 0.25-0.4) but failed to reach significance (p > 0.05). Most tau 

CPM models were successful even without the predictions based on carriers with MCI, 

but with overall lower prediction accuracies (Entorhinal tau - Positive network: r(23) = 0.45, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.01.24312913doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

p = 0.024; Negative network: r(23) = 0.52, p = 0.007; Precuneus tau - Positive network: 

r(30) = 0.58, p < 0.001; Negative network: r(30) = 0.63, p < 0.0001; IT tau - Positive 

network: r(23) = 0.27, p = 0.198; Negative network: r(23) = 0.46, p < 0.022), and again 

the model accuracies failed to reach significance for amyloid-β, word list recall score, and 

hippocampal tau predictions (r = 0.23-0.33, p > 0.05). 

 

In our CPM models trained for various tau and amyloid-β measures across positively 

correlated networks, the most predictive ROIs included inferior parietal lobule (IPL) region 

within the DAN, DMN, cognitive control networks, and medial prefrontal cortex (mPFC) 

along with temporal pole. The somatomotor network, supplementary motor area (SMA) 

and dorsomedial prefrontal cortex (dPFC) were the strongest predictors in negatively 

correlated networks. We also analyzed the subcortical seeds that contributed most to the 

model’s success and identified the anterior thalamus, globus pallidus, and dorsal striatum. 

These findings suggest that the disruption of brain connectivity impacts networks across 

the cortical hierarchy from somatomotor regions to association cortical regions along with 

distributed brain networks. These findings align with the existing literature describing how 

tau and amyloid-β accumulate in the brain [4,5].  
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Figure 1: Connectome-based Predictive Modeling for entorhinal tau: a) We trained and 

predicted the CPM model between functional connectivity and the tau concentrations in 

the entorhinal cortex within the carriers in the COLBOS dataset. The model was trained 
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using either positive edges (left) or negative edges (right) and equally predicted tau values. 

b) For the positive network-based model, the connectivity between IPL, posterior 

cingulate cortex, IT, dorsal attention and temporal cortex is the most predictive of the 

entorhinal tau values. The bottom panels show the degree of each node in the network 

model (total of all functional connections, maximum 448) overlayed on the c) cerebral 

cortex and d) collated across networks represented as a bar plot and scatter plot across 

the positive and negative networks. Here, the strongest predictors in the model were the 

DMN, CCN, DAN along with the IPL and PCC regions. For the negative network-based 

model, the inter-hemispheric connectivity between the somatomotor regions was the most 

predictive of the tau values. The somatomotor, DAN, temporal regions and parts of the 

DMN along medial PFC were the most connected regions in the CPM model. The scatter 

plot shows how different networks (highlighted in Yeo 17 network color scheme) are 

represented along the positive and negative network models. 
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Figure 2: Connectome-based Predictive Modeling for precuneus tau: a) We trained and 

predicted the CPM model between functional connectivity and the tau concentrations in 
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the precuneus within the carriers in the COLBOS dataset. b) Similar to the entorhinal 

cortex, the positive network-based model had the connectivity among IPL, PCC, DAN, 

and IT as the most predictive. c,d) The degree strength of DMN, cognitive control and 

DAN ROIs along the IPL, PCC regions as the strongest predictors in the model. For the 

negative network-based model, we found the inter-hemispheric connectivity among the 

somatomotor, DAN, precuneus, and IT sulcus as strongest predictors. 
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Figure 3: Connectome-based Predictive Modeling for IT tau: a) We trained and predicted 

the CPM model between functional connectivity and the tau concentrations in the IT within 

the carriers in the COLBOS dataset. b) For the positive network-based model, the 

connectivity between IPL, PCC, IT was  the most predictive of the IT tau values. For the 

negative network-based model, the inter-hemispheric connectivity between the 

somatomotor regions was the most predictive of the tau values. c,d) The somatomotor, 

DAN, temporal regions, precuneus, and parts of the DMN along medial PFC were the 

most connected nodes in the CPM model as in other tau models. 
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Figure 4: Connectome-based Predictive Modeling for hippocampal tau: a) We trained and 

predicted the CPM model between functional connectivity and the tau concentrations in 
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the hippocampus within the carriers in the COLBOS dataset. b, c ,d) We saw similar ROI 

contributions to model predictions as seen for earlier models for both positive and 

negative network models. 
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Figure 5: Connectome-based Predictive Modeling for amyloid-β: a) We trained and 

predicted the CPM model between functional connectivity and the amyloid-β 

concentrations in the FLR cortex within the carriers in the COLBOS dataset. b, c, d) Again, 
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as seen for tau CPM models, connectivity between IPL, DAN, IT was the most predictive 

for positive networks and somatomotor, pre-SMA, precuneus, temporal cortex 

connectivity was driving predictions for negative networks. 
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Figure 6: Connectome-based Predictive Modeling for cognitive scores: a) We trained and 

predicted the CPM model between functional connectivity and word list recall total 
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behavioral score within the carriers in the COLBOS dataset. b) We see switched trends 

for the positive and negative networks for the word list recall values as subjects with 

higher tau/amyloid-β concentrations had lower cognitive scores. c, d) We saw the 

contributions of somatomotor connectivity along with temporal cortical regions and mPFC 

for the positive networks and IPL, IT and posterior cingulate cortex connectivity contribute 

towards the prediction using negative network models.  

 

 
Figure 7: Connectome-based Predictive Modeling in PSEN1 non-carriers: We applied the 

CPM modeling between functional connectivity across parcels and the tau concentrations 

in the entorhinal, precuneus, hippocampus and IT. The amyloid-β in FLR cortex and word 

list recall total cognitive scores in the non-carriers within the COLBOS datasets were also 

investigated. We find that the model is weakly predictive for hippocampal values but not 

any others. 
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Figure 8:  Subcortical contributions to the predictive model: Degree centrality of the 

predictive model (separately for positive and negative connections) for entorhinal tau and 

word list recall values trained for PSEN1 carriers. We see a pronounced contribution of 

anterior thalamus, globus pallidus, and dorsal striatum for the model predictions for 

entorhinal tau values. For word list recall values, we find a stronger role for dorsal striatum 

and parts of amygdala as the most significant contributors to models’ predictions. 
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4. Discussion 
 
MRI modalities allow for a rapid non-invasive test for brain health and function, but the 

utility of fMRI for translational purposes has been limited. In this study, we sought to 

establish the relationship between functional connectivity and the accumulation of tau 

tangles and amyloid-β plaques in carriers of an ADAD mutation. We utilized Connectome-

based Predictive Modeling to successfully predict tau and amyloid-β concentrations in 

PSEN1 E280A carriers. The connectivity between the regions in the IT and the IPL in the 

DMN, DAN and somatomotor network were the most predictive aspects of the networks. 

This suggests that these edges are the most influenced by the change in tau values and 

can be useful as potential biomarkers for AD diagnosis in the future. Further node-level 

degree analysis of these models showed strong predictability of DMN nodes in IPL, mPFC, 

dPFC, and somatomotor regions in the model predictions suggesting that large-scale 

networks are disrupted due to tau and amyloid-β spread across the brain. Prior studies 

have shown that greater tau accumulation decreases the within-network connectivity 

DMN regions like precuneus and medial PFC but increases the within and across-network 

connectivity in anterior cingulate and retrosplenial cortex [9]. Our findings complement 

this study, and we now highlight which functional connections were the most predictive of 

tau and amyloid-β burden not limiting to the regions with the most changes in within and 

across network connectivity. We also identified that subcortical ROIs like the dorsal 

striatum, anterior thalamus and globus pallidus are strong predictors of tau deposition. 

This could be due to disruption in large-scale association networks which are distributed 

across parts of the basal ganglia and thalamus [43,44]. Our models also significantly 

predicted behavioral scores like the word list recall, total corrects and MMSE scores. The 
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network maps between the positive and negative networks were switched due to the 

directionality of the scores (lower scores represented higher cognitive decline). 

 

The study was limited to the analysis of tau tangles and amyloid-β plaque deposits in the 

brain and its prediction using resting-state functional connectivity. We did not analyze the 

change across longitudinal sessions, which we can expand on in future studies. The 

resting-state data was collected across two runs of around six minutes each. Though the 

data is usually sufficient, studies have shown that for predictive purposes, more than 

twenty minutes of data give more stable network estimations and hence better results 

[11,16,45]. Another limitation of this study is the use of global parcellations to define the 

nodes used to create brain networks. Although these parcellations are accurate to a large 

degree, recent advances in precision imaging have shown that the inter-subject variability 

might contribute to the loss of important individual features critical to the prediction of the 

tau and amyloid-β pathology. Although we did not account for sex in the model, earlier 

studies have shown differences in clinical symptomatology and tau/amyloid-β pathology 

across sex with boys showing faster decline and poor cognitive abilities as compared to 

girls [46]. Future models with larger samples should consider this.  

 

While CSF- and blood-based biomarkers demonstrated successful disease staging in AD 

[47,48], functional MRI-based approaches provide an in-vivo localization of AD-related 

pathological processes and was successfully used to anticipate tauopathy progression 

[49–51], making both approaches complementary. 
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The present CPM analysis utilizes an OLS approach. Future analyses may benefit from 

a regularized regression approach or from non-linear methods to get a better fit between 

the connectivity and tau/amyloid pathology. Still, CPM provides a useful model for 

prediction within the COLBOS dataset and could be applied to other ADAD studies. It 

helps us to understand network connectivity change related to AD and may help in early 

diagnosis. Studies have also shown that AD progression is heterogeneous across 

subjects, with at least four different kinds of trajectories [25,27,49–52]. Further research 

is required to train models that can predict these different progressions across tau and 

amyloid deposition. We also did not analyze the impact of neuroinflammation of functional 

connectivity which some recent studies pointed out [53].  

 
Another potential limitation of the present network approach is that connectivity estimates 

can vary substantially with preprocessing strategies. Research has shown that 

physiological noise can drive resting-state functional connectivity [54]. Global signal 

regression can also “drive” certain networks, thus, giving wrong network estimates [55]. 

Multiple strategies have been suggested to deal with overall signal noise in the resting-

state fMRI data [56–58]. Freely available tools and pipelines have standardized 

preprocessing approaches [31,59]. However, ,the effect of different variables of the 

preprocessing pipeline, like distortion and motion correction, or and global signal 

regression on network estimates, is still lacking and requires further research. Specifically, 

how the preprocessing strategies for populations with AD can impact connectivity 

estimates and model predictability would require further investigation. Though scientists 

have pointed out that using such Brain Wide Association Studies (BWAS) for small 

populations could affect results and reproducibility [23], proper study design allows 
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reproducible and robust predictions [24].  Here, we analyzed brain-brain correlations 

which we think are more robust, and described important aspects of the brain’s 

organization principles [18].  

 

The ADAD population typically develops clinical symptoms at an earlier age, displaying 

phenotypic changes around the age of 35-40 with dementia setting around mid-40s. The 

near certainty of AD development offers a unique opportunity to examine the progression 

of AD over many years prior to the emergence of clinical symptoms. While ADAD patients 

potentially provide a window into the development of AD in other patient groups, notable 

differences between ADAD and other forms of AD exist. Our study also found that 

connectivity-based models better predicted tau burden than amyloid-β deposits. This 

might be due to the rapid changes in tau accumulations in the ADAD cohort resulting in 

stronger connectivity disruptions. And tau accumulations may be more associated with 

connectivity changes than with amyloid-β deposits. Tau increase in PSEN1 carriers is 

stronger than in late-onset AD patients in line with the rapid decline experienced in the 

subjects [5]. Studies also pointed towards differences in tau and amyloid progression 

across the various forms of AD [4,27,60]. There might be an exponential tau accumulation 

in PSEN1 carriers which would suggest cascading effects across brain regions which 

requires further investigation. Future models should incorporate such nonlinear changes 

in tau accumulation and associated functional connectivity alterations. 

 

Possible future studies of interest include models that can predict growth and changes in 

tau fibrillation and amyloid-β plaques based on current resting-state connectivity 
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measures. We can also utilize an individualized parcellation-based method to improve 

the estimations of subject-level brain connectivity that would better capture the state of 

tau/amyloid-β pathology. 

 
In summary, this study finds strong correlation between resting-state functional 

connectivity measures and both tau/amyloid-β concentrations and behavioral scores in a 

unique dataset of subjects with ADAD. Such connectivity models provide a 

complementary approach to PET scans could and could be used in the clinical setting for 

an early diagnosis of and monitoring of AD. 
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