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Abstract:  
Background: Mental health encompasses emotional, psychological, and social dimensions, extending beyond the 
mere absence of illness. Shaped by a complex interplay of hereditary factors and life experiences, mental health can 
deteriorate into clinical conditions necessitating intervention. However, the ambiguity between pathological and non-
pathological states, along with overlapping clinical profiles, challenges traditional diagnostic procedures, highlighting 
the need for a dimensional approach in stratified psychiatry. 

Methods: We analyzed comprehensive phenotypic data from ~300 young Danish participants, including 
psychometric assessments, brain imaging, genetics, and circulatory OMICs markers. Using a novel psychometry-
based archetyping approach, we employed soft-clustering analyses to stratify participants based on distinct cognitive, 
emotional, and behavioral patterns, while exploring their genetic and neurobiological underpinnings. 

Results: Five psychometric archetypes were identified, representing a continuum of mental health traits. One 
archetype, characterized by high neuroticism, emotional dysregulation, and elevated stress and depression scores, was 
firmly associated with self-reported mental health diagnoses, psychiatric comorbidities, and family history of mental 
illness. Genetic predisposition to mental health conditions, reflected in polygenic scores (PGSs), accounted for up to 
9% of the variance in archetypes, with significant contributions from neuroimaging-related PGSs. The overlaps 
between broader genetic profiles and archetypes further confirmed their biological foundations. Neuroimaging data 
linked the risk-associated archetype to both regional and global brain volumetric changes, while metabolomic analysis 
identified differentiating metabolites related to mood regulation and neuroinflammation. 

Conclusions: This study demonstrates the feasibility of data-driven stratification of the general population into distinct 
risk groups defined by multimodal mental health signatures. This stratification offers a robust framework for 
understanding mental health variation and holds significant potential for advancing early screening and targeted 
intervention strategies in the young population. 

Keywords: Mental health, Psychometric archetypes, Polygenic scores, Neuroimaging, Metabolomics, Precision 
psychiatry 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.01.24312906doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.09.01.24312906


 
 

INTRODUCTION 
Mental health is a multifaceted and dynamic trait that extends beyond the absence of mental illness 

(MDx). It encompasses emotional, psychological, and social dimensions, affecting how individuals 

perceive, feel, and navigate life's challenges and rewards. Shaped by both genetic predispositions and life 

experiences1, mental health can deteriorate into clinical conditions necessitating intervention. However, the 

line between pathological and non-pathological states is ambiguous, and overlaps in clinical profiles make 

diagnostic boundaries difficult to define. Suggestive of interconnected etiologies, identified risk factors are 

typically non-specifically associated with a range of MDx2,3, and many patients go through a number of 

diagnostic categories over their life course. Collectively, there is compelling evidence4,5, and an emerging 

consensus among clinicians6, that MDx exist on a continuum that includes mental health traits descriptive 

of the general population7,8 – thus challenging the validity of their current categorical diagnostic 

classification. A dimensional approach directed at the identification of prodromal-, intermediate-, and 

transdiagnostic mental health risk signatures is therefore paramount for the implementation of stratified and 

precision psychiatry9,10. 

Recent years have seen significant discoveries concerning the risk landscape of MDx. Genome-wide 

association studies (GWASs), in particular, have provided insight into the genetic architecture of both 

mental health traits and psychiatric conditions11–15. Propelled by a shift in ascertainment strategies toward 

more comprehensively phenotyped cohorts16, the pleiotropic effects and broader phenotypic correlates of 

genetic risk factors are starting to emerge17–20. It has thus been established that genetic predisposition for 

MDx intersects with genetic variations associated with diverse behavioral and mental health traits in the 

general population21,22, including personality4, cognition23, impulsivity24, sleep patterns25, and musicality26. 

Cumulative inherited risk burden in the form of polygenic scores (PGS) rarely explains more than 5% of 

the phenotypic variance in the context of mental health traits. However, capitalizing on the fact that MDx 

exists on a genetic spectrum with phenotypically overlapping traits, enrichment with data from related traits 

significantly increases both predictability for individual MDx, as well as prospective prediction of 

recurrence and psychiatric comorbidity27,28. However, as clinical manifestation is attributable to both 

heritable-, biological-, and lifelong exposure to external factors11, genetic risk alone will always only 

provide limited information about the individual’s current mental health status, clinical profile, and 

trajectory29. Offering a promising solution to this constraint, peripheral markers may encapsulate transient 

and persistent signatures of mental health status and predict mental health outcomes30,31. In this context, 

MDx blood state biomarkers have been identified that reflect dynamic changes in disease course31,32, and 

non-invasive multimodal neuroimaging has identified subtle anatomical and functional brain changes even 
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at the prodromal stage of MDx33. Critically, a combination of PGS and other markers has proven to explain 

more variance of studied complex traits than PGS alone34,35.  

Critically, constituting a significant limitation in current psychiatric research, most insight has been gained 

from the most commonly used case-control study design36. By excluding the large portion of the population 

with mixed symptoms and mental health issues without explicit diagnoses, it thus fails to represent the full 

spectrum of mental health experiences37. In contrast, transdiagnostic approaches, that take into account the 

broader psychometric profiles of individuals and recognize the shared mechanisms across diagnostic 

categories, may be better positioned to elucidate overarching processes underlying psychopathology and 

propel the field towards more personalized diagnostics and therapeutics38.  

Here we utilize a psychometry-based archetyping approach in a representative and deep phenotyped sample 

to identify mental health-associated multimodal signatures in the young Danish population.  

 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.01.24312906doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312906


MATERIALS AND METHODS 

Study population and procedures 

The data were collected under the EU COST Action CA18106. The data is a segment of a larger dataset 

focused on the Neural Architecture of Consciousness, originating from Aarhus University, Denmark from 

which other studies with different aims have been conducted39,40. Parts of the method descriptions have 

been adapted from these previous publications. Participants were recruited from the participant pool of the 

Center of Functionally Integrative Neuroscience at Aarhus University and through local advertisements. 

Inclusion criteria were: a) Anatomically normal brain (no known abnormalities, brain damage, or brain 

surgery); b) Age between 18 and 50 years; c) physically healthy; d) Normal or corrected-to-normal vision; 

e) Normal hearing. Exclusion criteria: a) MR contraindications; b) Use of neuropharmacologicals or other 

medications that may affect neural states; c) Bodily build that does not allow for MR scan; d) Pregnancy; 

e) Skin diseases. Incentives were offered to participants. A total of 351 (210 females) participants were 

selected for this dataset (See Figure S1 and Table S1 for details). The study adhered to ethical standards, 

having received approval from the local ethics committee, De Videnskabsetiske Komitéer for Region 

Midtjylland in Denmark, and complied with all relevant guidelines and regulations. 

Upon enrollment, participants completed the NEO-PI-3 personality test online. Additionally, they 

participated in an extensive online questionnaire session covering various psychological and behavioral 

domains, including awareness, mindfulness, perception, cognition, emotional regulation, anhedonia, 

depression, sleep patterns, impulsivity, and stress (see Table S2 for the full list). Participants also provided 

basic demographic information, including employment status, educational level and field of study, civil 

status, and personal and family history of mental health issues. 

Within approximately 1-2 weeks following the completion of the online sessions, participants underwent a 

1-hour MRI session, which included three sequences: diffusion-weighted imaging (DWI), multi-parameter 

mapping (MPM), and resting-state functional MRI (fMRI). In a separate session, typically within 1-2 weeks 

of the MRI, an IQ test (WAIS-IV) was administered. DNA samples were collected using SK-1S Isohelix™ 

buccal swabs (YouDoBio, Rødovre, Denmark) from 304 participants, and they were invited to donate 

fasting-state blood within two weeks of the MRI session. DNA was extracted using the Isohelix™ Buccal-

Prep Plus DNA Isolation Kit (YouDoBio, Rødovre, Denmark), and the DNA, along with serum and plasma 

samples (n = 198), was stored at -80°C until further processing.  

Psychometry-based archetyping 
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Psychometry-based archetypes of the study participants were created through a soft clustering approach 

using the R package ‘archetypes’41, with the ‘robustArchetypes’42 function. To determine the optimal k 

number of archetypes the minimized residual sum of squares (RSS) was evaluated across varying numbers 

of archetypes using a scree plot analysis, which suggested that five archetypes provided the best fit (Figure 

S2A). This conclusion was further supported by the Calinski-Harabasz score, which was notably higher for 

the five-archetype model compared to other values of k (Figure S2B). Additionally, the Calinski-Harabasz 

score indicated that a membership cutoff of 0.5 or 0.6 for five archetypes was optimal for distinguishing 

these five archetypes (Figure S2B). In order to maximize n, we selected a threshold archetype score of 0.5, 

which still emphasized individuals with a single dominant archetype. All individuals who did not meet this 

requirement were assigned to a ‘mixed archetype’ group. A post hoc Silhouette analysis, conducted with a 

standard distance matrix using the‘factoextra’43 package in R, confirmed that the five extreme archetype 

groups were well-clustered, whereas the mixed etiology group did not form a homogeneous cluster (Figure 

S3).  

Genotyping, relatedness pruning, and removal of ancestry outliers 

Genotyping was performed at Statens Serum Institut (SSI, Copenhagen, Denmark) using the Global 

Screening Array v2 with a multi-disease drop-in (Illumina, San Diego, California) according to the 

manufacturer’s instructions. Genotype calling was performed using GenTrain V3. Quality control (QC) 

was conducted at the marker level, retaining markers that met the following criteria: call rate ≥ 0.98, missing 

difference ≤ 0.02 between cases and controls, minor allele frequency (MAF) ≥ 0.005, and Hardy-Weinberg 

equilibrium (HWE) P-value ≥ 1x10⁻⁷ 

(See https://sites.google.com/a/broadinstitute.org/ricopili/preimputation-qc for further details). 

We phased the full set of merged genotype samples using EAGLE (v2.4.1)44 and imputed the phased data 

with the EUR population of the 1000g-phase-3-v5 (hg19) reference panel using Minimac4 (v1.0.0)45. 

Imputed SNPs with Rsq values <0.3 were excluded from further analysis. 

Principal components were calculated using LDAK, and through visual inspection of the PCA plot, we 

identified and excluded 21 genetic outliers from the analysis (Figure S4). Following this exclusion, 

principal components were recalculated with the remaining individuals and used as covariates in subsequent 

analyses. 

Polygenic scores, genetic prediction, and genetic archetypes 

Polygenic scores (PGSs), were constructed from the largest publicly available summary statistics at the 

time of publication for each trait of interest using MegaPRS46, which have shown good performance for 
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psychiatric traits compared to other advanced PGS methods47. Summary statistics files used for PGS 

construction (Table S3) were prepared and processed using the software program process_sumstats48. The 

MegaPRS software was run using standard settings recommended by the authors 

(https://dougspeed.com/megaprs/) using the BLD-LDAK heritability model and BayesR-SS to construct 

the prediction model. Model parameters were selected using pseudo cross-validation. The 1000 genomes 

from the non-Finnish European subpopulation were used as a reference to estimate SNP-SNP correlations. 

Only SNPs with a minor allele frequency ≥1% and an imputation score ≥0.9 (when available) were included 

for PGS construction. 

Feature selection was performed to rank genetic traits according to their contribution to the archetypes. 

Specifically, Random Forest Regression with Recursive Feature Elimination (RFE) was used, targeting the 

score for each archetype. The dataset was split into training and test sets, and 5-fold cross-validation was 

employed to ensure the robustness of the model. This method iteratively removes the least important 

features and refits the model, thereby identifying the most significant PGSs. Testing for evidence of shared 

etiology between base and archetypes, R2 was used to report the total phenotypic variance explained by the 

PGSs. A significance cutoff of p < 0.05 was applied with no correction for multiple testing. To further 

interpret the contribution of these important features to the model, we applied the Shapley additive 

explanations (SHAP)49 approach, which provided insights into each feature's influence on the individual 

archetype scores.   

Archetypes based on PGS derived from GWAS summary statistics listed in Table S3, were constructed as 

described for psychometry-based archetypes above, and the same approach was used for identifying the 

optimal k number of archetypes and threshold for membership. Scree plot analysis and the Calinski-

Harabasz score both pointed to four archetypes as the optimal fit (Figure S5A-B), with the Calinski-

Harabasz score indicating that a membership cutoff of 0.5 was optimal (Figure S5B). A post hoc Silhouette 

analysis showed that the archetype groups look well clustered and that the individuals in the mixed etiology 

group do not form a homogeneous cluster (Figure S6). 

Magnetic resonance imaging (MRI) 

Imaging was performed on a Siemens Magnetom Prisma-fit 3T MRI scanner. The procedure commenced 

with preliminary scouting scans. This was followed by two sequences of resting-state fMRI, lasting 12 and 

6 minutes respectively. The session also included quantitative multi-parameter mapping (approximately 20 

minutes) to facilitate the synthetic generation of T1-weighted images. Additionally, high-angular resolution 

diffusion imaging (HARDI) was conducted over a period of around 10 minutes, all within a single session 

lasting about one hour. For every participant, we acquired 1500 functional volumes, with a repetition time 

(TR) of 700 ms and an echo time (TE) of 30 ms. The parameters set were: a voxel size of 2.5 mm^3, a field 
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of view (FOV) of 200 mm, and a flip angle of 53°. The HARDI sequence incorporated multiple diffusion 

directions: 75 at b = 2500 s/mm^2, 60 at b = 1500 s/mm^2, 21 at b = 1200 s/mm^2, 30 at b = 1000 s/mm^2, 

15 at b = 700 s/mm^2, and 10 at b = 5 s/mm^2. These different b-shells were acquired in a single series 

with a flip angle of 90°, a TR/TE of 2850/71 ms, a voxel size of 2 mm^3, a matrix size of 100 x 100, and 

84 slices in total. The primary phase-encoding direction was from anterior to posterior (AP), with an 

additional acquisition in the opposite phase-encoding direction (PA) at b = xx s/mm^2 for EPI distortion 

correction. 

To create synthetic T1-weighted images, high-resolution longitudinal relaxation rate (R1) and effective 

proton density (PD) maps were utilized, and obtained through the MPM sequence protocol50,51. Initially, 

these maps underwent thresholding to align with FreeSurfer's required units. The R1 map was transformed 

into a T1 map by inverting its values and applying a zero threshold, followed by a multiplication by 1000. 

Similarly, the PD map was zero-thresholded and scaled up by a factor of 100. These adjustments were 

carried out using FSL maths commands. The FreeSurfer's "mri_synthesize" command was then employed 

to generate a synthetic FLASH image, using the modified T1 (derived from the adjusted R1 map) and PD 

maps. Optional arguments were used to enhance the contrast between gray and white matter, with 

parameters set at 20, 30, and 2.5. In the final step, the synthetic T1-weighted image was reduced by a quarter 

to meet FreeSurfer's expected scale (see Keller et al.52 for further details). 

Metabolomics data generation and analysis 

Serum samples (100 μL each) were randomly distributed across three 96-well plates (batches). Before 

sample preparation, a batch of serum was set aside as external control (EC) samples and stored at −80 °C. 

These EC samples, along with plate-specific pools of all serum samples within each batch, were analyzed 

to ensure quality control. Sample preparation involved extraction in 80% methanol, with samples incubated 

for 45 minutes and then centrifuged. The resulting supernatant was evaporated under nitrogen and 

reconstituted in 95% solvent A (99.8% water, 0.2% formic acid) and 5% solvent B (49.9% methanol, 49.9% 

acetonitrile, 0.2% formic acid). Mass spectrometry analysis was performed using a timsTOF Pro mass 

spectrometer coupled to a UHPLC Elute LC system, Bruker Daltonics (Billerica, MA, US). The analytical 

separation was performed on an Acquity HSS T3 (100 Å, 2.1 mm x 100 mm, 1.8 µm) column (Waters, 

Milford, MA, US). The analysis started with 99% solvent A for 1.5 min, thereafter a linear gradient to 95% 

solvent B for 8.5 min followed by an isocratic condition at 95% mobile phase B for 2.5 min before going 

back to 99% mobile phase A and equilibration for 2.4 min. Metabolomics preprocessing was done using 

the Ion Identity Network workflow in MZmine53,54(version 3.3.9). Before statistical analysis, metabolite 

features present in less than 25% of the samples were removed and features present in fewer than 75% were 
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treated as binary variables (present or absent). This resulted in a final dataset with a total of 1076 metabolite 

features measured, among which 433 features were continuous and 643 were binary variables. Missing 

values for metabolite features with continuous measurements were further subjected to imputation using 

missForest553 and subsequent batch correction was performed by centering and univariance scaling of each 

metabolite per batch. Annotation of metabolite features was performed using mass spectral molecular 

networking through the GNPS Platform, in silico annotation through Network Annotation Propagation, 

Sirius+CSI:FingerID, and deep neural networks in CANOPUS. Detailed descriptions of sample 

preparation, mass spectrometry analysis, preprocessing, annotation, and quality control procedures can be 

found in the Supplementary Material section. 

For the analysis, annotated features of the dataset was divided into predictor variables (metabolites) and 

outcome variables (archetypes). The goal was to identify the most significant predictors for each archetype 

and assess their relevance using a two-step process: feature selection via Ridge Regression and statistical 

inference through Ordinary Least Squares (OLS) regression. A variance threshold filter was applied to 

retain only informative features, with features showing variance below 0.1 excluded as they were unlikely 

to contribute significantly to the predictive models. Subsequently, a correlation matrix was generated to 

assess multicollinearity among the remaining features. Features with an absolute Pearson’s correlation 

coefficient above 0.9 were flagged as highly correlated. To reduce redundancy, only one feature from each 

correlated pair was retained, guided by the upper triangle of the correlation matrix. Ridge Regression was 

independently applied to each archetype (A1, A2, A3, A4, A5), chosen for its regularization properties that 

mitigate multicollinearity and reduce overfitting by shrinking the coefficients of less significant features. 

The top 20 features with the highest absolute coefficients from Ridge Regression were selected for further 

analysis. These top 20 features were then subjected to OLS regression, which provided unbiased estimates 

of the relationships between features and outcomes, including coefficient estimates, p-values, and 

confidence intervals for formal hypothesis testing. The null hypothesis for each feature was that its 

regression coefficient was zero, indicating no relationship with the outcome. A p-value threshold of 0.05 

was used to determine statistical significance, with features below this threshold considered significantly 

related to the outcome. 

Statistical analysis 

Relevant statistical analyses and plotting were performed in the R Statistical Computing environment 

v4.3.1 (https://www.r-project.org/). 
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RESULTS  

Deep psychometric profiling reveals five distinct archetypes 

Psychometric data were collected from 351 research volunteers (~60% female) sampled from the young 

Danish population (mean age ~ 24.4 years; Figure S1). The cohort was predominantly composed of 

university and college students (~80%), with smaller proportions being full-time employed (7%) or 

unemployed (8.3%). Approximately 38% of participants reported being single (Table S1). Noteworthy, 

~13% of participants had a history of MDx, including ~6% reporting multiple MDx diagnoses, with 

depression (MDD), anxiety and phobia, attention deficit hyperactivity disorder (ADHD), and stress-related 

disorders being the most prevalent diagnostic entities (Figure S7) - thus roughly reflecting the Danish 

population average for this age group56.  

Recognizing the continuous nature of mental health traits,  we employed a soft-clustering method, archetype 

analysis57, on 258 individuals with complete psychometric data to stratify the sample based on their broadly 

characterized cognitive, emotional, and behavioral patterns (Table S2). By identifying extreme 

psychometric profiles on individual scales and positioning individuals within the phenotypic spectrum as 

convex combinations of these extremes, our analysis revealed five stable psychometric archetypes (A1-5) 

(Figure 1A and Figure S2-3). Each participant was thus assigned archetypal memberships based on their 

quantitative archetype scores. Most individuals (55%) were mainly affiliated with one dominating 

archetype (membership > 0.5), whereas 45% were located in the middle of the phenotype distribution with 

moderate contributions from two or more archetypes (mixed group) (Figure 1B). Although a gender bias 

was seen for the A2-4 archetypes, differences in gender and age did not appear to define the archetypes 

(Figure S8). By focusing on individuals at the extreme of the archetypal distribution (>0.5 score for any 

archetype), we delineated the defining psychometric features of each archetype. Differences in facets of 

personality were unsurprisingly a significant contributing factor (Table S4). Specifically, A1 (22 members) 

was characterized by high neuroticism and low extraversion and conscientiousness scores; A2 (24 

members) by high openness score; A3 (26 members) by low agreeableness scores; A4 (39 members) by 

low openness scores; and A5 (30 members), being the antithesis of A1, with low neuroticism scores and 

high extraversion and conscientiousness scores (Figure 1C and Table S4). Variation in other 

psychometrics that were to some degree correlated with personality measures (Figure S9 - e.g. perception, 

cognition, impulsivity, perceived stress, sleep patterns, mindfulness, emotional regulation, hedonic tone, 

and interoceptive awareness) further shaped the archetypes (Figure 1C and Table S4). In alignment with 

the marked differences in neuroticism score between archetypes, individuals in the A1 archetype scored 

significantly higher than the rest of the sample in the commonly applied depression screening tools58, the 

CES-D depression scale (Figure 1C-D ; Mann-Whitney U test: pA1 = 0.012). This trend was also evident 
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across several other psychometric scales related to emotional regulation, impulse control, and cognitive 

function, which are often associated with mental health risks59–61 (Figure 1C). Supporting the robustness 

of the association between archetypes and contributing psychometric measures, quantitative archetype 

scores from the entire cohort, and not only individuals with extreme scores, revealed similar associations 

(Figure S10). Consequently, in subsequent analyses, we used both archetype membership and quantitative 

archetype scores to enhance the statistical power for discovery. 

 

Psychometric archetypes are associated with differences in the prevalence of mental health diagnoses 

In order to evaluate the clinical relevance of the archetypes, we assessed the distribution of participants' 

self-reported diagnoses across the archetypes and their correlation with archetype scores. While having a 

dominant archetype did not significantly increase the likelihood of having a diagnosis compared to the 

mixed archetype group (Tables S5, Kruskal–Wallis test: p = 0.052), individual archetypes were associated 

with, respectively, increased (risk archetypes) or decreased (resilient archetypes) prevalence of MDx 

diagnoses (Figure 1B). In line with its characteristic high neuroticism and depression scores, the prevalence 

of MDx diagnoses was significantly higher in the A1 archetype compared to the average among 

participants, with nearly one-third reporting one or more MDx diagnoses (Figure 1B and Table 1; relative 

risk (RR) = 2.4, 95% CI 1.2-4.8, pA1 = 0.012). Notably, reported diagnoses were not restricted to specific 

diagnostic categories but broadly represented the most common neurodevelopmental, anxiety, mood, 

personality, stress, eating, and substance-related disorders (Table 1). In contrast, A5 was protective against 

MDx, with only one self-reported case in this group (Figure 1B and Table 1; RR = 0.25, 95% CI 0.04-

1.78, pA5 = 0.17).  

We then analyzed the correlation between individual archetype scores and the prevalence of MDx 

diagnoses, encompassing both single and comorbid conditions, as well as family history of MDx. The A1 

score exhibited a strong positive correlation with both diagnosed MDx (Figure 1E; Pearson’s correlation 

coefficient: pA1 = 0.0085) and psychiatric comorbidity (Figure 1E; Pearson’s correlation coefficient: pA1 

=0.0096), thus highlighting the A1 score as a significant marker of mental health risk. The significant 

correlation between A1 scores and MDx diagnoses among first-degree relatives (Figure 1E; Pearson 

coefficient test, p = 0.0118) further suggests that individuals with a strong affiliation to the A1 archetype 

have an inherited predisposition to mental health problems. Whereas on average one quarter of individuals 

in the cohort reported having first-degree relatives with diagnosed MDx, the distribution was not even 

across archetypes (Table 1; Kruskal-Wallis test: p = 0.024), with the highest proportion (45%) seen in the 

A1 archetype. 
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While an elevated familial risk was observed for the A2 archetype (Figure 1E and Table 1; Pearson’s 

correlation coefficient: pA2 = 0.0128), A2 archetype affiliation was not significantly associated with an 

increased risk of MDx diagnosis, nor did A2 scores show a significant correlation with MDx diagnoses 

(Figure 1E and Table 1). At the opposite end of the archetype spectrum, the A3 score was significantly 

negatively correlated with familial risk of MDx (Figure 1E; Pearson’s correlation coefficient: pA3 = 

0.0458), and a similar trend was seen for the A4 and A5 scores (Figure 1E), which both displayed 

significant negative correlations with psychiatric comorbidity (Pearson’s correlation coefficient: pA4 = 

0.0225 and pA5 = 0.0176). The A5 scores was further significantly negatively correlated with single MDx 

diagnoses (Figure 1E; Pearson’s correlation coefficient: pA5 = 0.0031). 

 

Heritable factors contribute significantly to the formation of psychometric archetypes 

To assess whether archetypes represent distinct, biologically grounded entities influenced by 

inherited genetic variation, we aimed to quantify the genetic contribution to the archetypes. Given the 

limitations of our sample size, we opted for an alternative to direct heritability analysis by evaluating 

whether the variance in archetype scores could be explained by polygenic scores (PGS) derived from a 

wide range of mental health-related traits, including behavioral, cognitive, and neuroimaging traits (Table 

S3). Ranking of the PGSs according to their contribution to the archetypes revealed that different archetypes 

are driven by distinct sets of genetic influences, with few top-ranked PGS features shared between 

archetypes – and none shared between the A1 and A5 archetypes (Table S6-10). For the A1 archetype, top-

ranked PGSs mostly related to neuroimaging traits (Table S6), whereas the A5 archetype was influenced 

by PGSs relating to both neuroimaging, cognitive, behavioral and clinical traits. The latter included broad 

genetic risk disposition to psychopathology, measured in a cross disorder GWAS, as well as ADHD, 

neuroticism, extraversion (Table S10). For the A2-4 archetypes, top-ranked PGSs mainly included 

neuroimaging and cognitive traits, but also PGSs relating to sleep patterns, impulsivity, musicality (A2), 

risk tolerance (A4) and substance use (A2 and A3) (Table S6-10). 

To interpret the contribution of these genetic factors to individual archetype, we assessed their influence on 

archetype scores using the Shapley additive explanations (SHAP) approach. This highlighted distinct 

patterns in how the same genetic risks contributed to different archetypes. For instance, genetic 

predisposition to the impulsive personality trait, perseverance, contributed positively to the A4 score 

(Figure S11C), but negatively to the A3 score (Figure S11B). Similarly, PGS for various traits relating to 

attention, displayed opposite direction of effect on the A1, A2 and A4 scores (Figure 2A and Figure S10A 

and C). The analysis further showed that PGSs derived from GWASs on major psychiatric disorders 

contributed with positive effect to the A1 score (autism spectrum disorder (ASD); Figure 2A), but with 
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negative effect on A5 score (Cross disorder and ADHD; Figure 2B) and A2 score (ADHD – adult subtype; 

Figure S10A). An exception to this trend, was PGSs relating to cannabis use disorder, which contributed 

with negative effect to both the A1 and A3 scores (Figure 2A and Figure S10B). For the neuroimaging 

traits, the direction of effect did in some instances differentiate between archetypes, i.e. PGS for cortical 

average thickness in the caudate anterior cingulate region contributed with a strong negative effect to A1 

score (Figure 2A), but with a similar strong negative effect to the A2 score (Figure S10A). Generally, 

genetic predisposition to several brain imaging traits showed a strong impact on the model output for the 

A1 score. This included a negative impact of PGS relating to regional cortical surface area (e.g. entorhinal 

cortex) and accumbens volume, and positive impact for PGS for cortical thickness (e.g. insula) and surface 

area (pars orbitalis) (Figure 2A). 

To determine how much of the variance in archetype categories and archetype scores could be explained 

by genetic contributions in the form of PGSs, we attempted archetype prediction to establish the coefficient 

of determination (R2) for each trait. Notably, up to 9% of the variance in archetype scores could be explained 

by the PGS model based on life satisfaction, positive affect, neuroticism, and depressive symptoms, 

collectively captured in a well-being62 PGS (Table S11). In contrast, when we categorized individuals into 

binary archetype groups, the strongest correlations emerged with brain imaging traits, particularly those 

related to cortical thickness, where the PGS explained up to 8% of the variance (Table S11). Discerning 

the specific genetic influences that shape the individual archetypes, we again found that PGSs for several 

brain imaging traits, particularly changes in cortical surface area, contributed significantly to the A1 

archetype (Figure 2C). PGSs for well-being and the clinical phenotypes cross-disorder, anxiety, and ASD 

each additionally accounted for a significant portion of the variance in the A1 score (Figure 2D). For the 

A2-4 archetypes, PGSs associated with cognitive traits all explained a significant part of the variance 

(Figure 2D), supplemented with PGSs for personality traits like Openness (A2) and Extraversion (A3), risk 

tolerance and clinical traits such as BP and panic disorder (A2). PGSs related to EEG brain activity 

measures, further significantly influenced both the A2 and A4 scores (Figure 2C-D). For the resilient A5 

archetype, PGSs showed significant correlations with a range of clinical traits, including suicide, ASD, 

cross-disorder, and ADHD (Figure 2C-D). 

To determine whether the collective genetic predisposition to the included MDx-related traits forms a 

broader genetic signature associated with psychometry-based archetypes, we captured the variance across 

the complete set of PGSs in genetic-based archetypes. From this approach, four PGS archetypes emerged 

(A1PGS-A4PGS - Figure 3A and Figure S5-6), mainly defined by differences in genetic predisposition for 

various neuroimaging-, cognitive-, and behavioral traits (Figure 3B and Figure S12). Notably, the defining 

neuroimaging-linked PGSs revealed contrasting genetic characteristics between the A1/A3 and the A2/A4 
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PGS-based archetypes in terms of genetic predisposition to volumes of subcortical structures (e.g., 

thalamus, accumbens, and amygdala). Particularly for the A4PGS archetype, PGS for suicide (Figure 3B), 

as well as clinical MDx traits such as cross disorder, anxiety, ADHD, alcohol use disorder, MDD, stress 

disorders, schizophrenia, borderline personality disorder and OCD all explained part of the variance in the 

archetype score (Figure S12). Accordingly, the A4PGS archetype displayed a significant overrepresentation 

of individuals with a self-reported MDx diagnosis (Figure 3A and Table S12; Mann-Whitney U test: pA4PGS 

= 0.00055), and the A4PGS archetype score was significantly positively correlated with CES-D score and 

neuroticism – which, despite its markedly different genetic characteristics, was also the case for the A2PGS 

score (Figure 3C). In line with this finding, the overlap between the psychometry-based risk A1 archetype 

and the two PGS-based archetypes (A2PGS and A4PGS) was significant (Fisher’s Exact test: p = 0.0044), with 

approximately 80% of individuals affiliated to the psychometry-based a1 risk archetype belonging to these 

genetic archetypes. Conversely, more than 80% of individuals in the resilient A5 psychometric archetype 

were members of the A1PGS and A3PGS archetypes (Figure 2D).  

 

Neuroarchitectural features define individual archetypes 

Building on the suggested link between genetic predispositions for specific neuroimaging traits and 

psychometry-based archetypes, we leveraged the extensive imaging data from our samples to determine 

whether these genetic predispositions manifest as distinct neuroarchitectural differences across the 

identified archetypes. Focusing on brain volumetric and structural measures emphasized by the genetic 

data, we assessed the correlation between these MRI measures and PGSs derived from GWASs targeting 

the same neuroimaging traits. Except for measures of cortical thickness, all neuroimaging measures showed 

a positive correlation with the calculated PGSs (Figure S13), with statistically significant correlations 

observed in the context of whole brain volume (Pearson’s correlation coefficient: p = 0.00054), cortical 

surface area in the cingulate isthmus (Pearson’s correlation coefficient: p = 0.000037), and nucleus 

accumbens (Pearson’s correlation coefficient: p = 0.0075) (Figure 4A-C and Figure S13A-I). 

Subsequently, we examined the association between neuroimaging measures and archetype scores. While 

no measure was discriminatory across archetypes (Table S13), in support of their biological underpinnings, 

some individual archetype scores were significantly associated with various neuroimaging traits (Figure 

4D and Table S14). In particular, thinning of the insula and frontal pole regions of the cortex was 

significantly associated with the A3 scores (Figure 4 D, p = 0.0013 and p = 0.0112, respectively), whereas 

cortical surface area in the cingulate isthmus was significantly associated with A4 scores (Figure 4 D, p = 

0.0255). Whereas not significant (Figure S14), in accordance with the negative correlation between PGS 

for enthorinal surface area and A1 scores, entorhinal cortical surface area was negatively correlated with 
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the A1 score (Figure 4D). Similarly matching the genetic prediction, cortical surface area in the pars 

orbitalis was smallest in members of the resilient A5 archetype and subcortical volumes generally smaller 

in the A1 archetype compared to, particularly, the A5 archetype (Figure 4D).  

 

Archetypes are associated with distinct circulating metabolite signatures 

To identify potential circulatory markers that could differentiate between the various archetypes, we 

performed an analysis of fasting-state blood metabolites across our sample. After thorough quality control 

(QC) procedures, we obtained quantitative data for a total of 433 compounds, with annotations available 

for 121 of these metabolites. Despite the relatively small proportion of samples with available blood 

profiles, we identified 11 annotated metabolites that were associated with one or more of the quantitative 

archetype scores (Figure 5). We found the highest number of discriminative metabolites for the A1 

archetype score, which was significantly associated with high levels of 9-decenoylcarnitine, Betaine, 

Indole-3-lactic acid, and a phosphocholine metabolite (PC(O-18:0/2:0)) (Figure 5 and Table S14). 

Notably, whereas not significant, all of these compounds were negatively correlated with the A5 archetype 

score. Similarly, the another phosphocholine metabolite (PC(0:0/18:1)) and Kynurenine were both 

significantly negatively correlated with the A5 scores, but positively correlated with the A1 score – thus 

collectively forming a blood signature that differentiates between the risk and protective archetypes (Figure 

5). 
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DISCUSSION  

Mental health challenges are diverse and widespread, influenced by cultural, socioeconomic, and 

environmental factors63. They affect our thoughts, feelings, and behaviors and often require intervention. A 

major issue in mental health care is the high rate of misdiagnosis, relabeling, and underdiagnosis. This often 

stems from categorical diagnostic practices that emphasize observable symptoms over underlying causes. 

Such an approach can be inadequate because it overlooks the clinical variability, overlapping symptoms, 

and evolving nature of mental health conditions. Moreover, the persistent stigma surrounding mental illness 

discourages many from seeking help, contributing to the underdiagnosis and inadequate treatment of mental 

health issues. Consequently, many individuals continue to suffer in silence, with their conditions remaining 

unnoticed, misunderstood, and untreated—further exacerbating their symptoms and hindering recovery.  

To address these challenges, it is essential to affirm the biological basis of mental illness and leverage this 

understanding to develop more comprehensive and personalized approaches to mental health care. This 

study introduces a psychometry-based archetyping approach to stratify the young population according to 

cognitive, emotional, and behavioral profiles related to mental health. Unlike traditional psychiatric 

research, which often focuses on extreme cases using case-control study designs64, our method aims to 

capture a broader and more representative spectrum of mental health issues. Although mental health 

conditions affect all age groups, they are particularly prevalent among young adults (18-30 years old), with 

up to 25% experiencing a mental health disorder annually65. By targeting a demographic disproportionately 

affected by mental health disorders and sampled near the mean age of onset for the most common 

conditions, our approach seeks to pair these psychometric archetypes with biological markers - offering a 

promising framework for biology-informed risk-stratification.  

 

Psychometric Archetypes and Mental Health Risk 

Our identification of five distinct psychometric archetypes underscores the continuous and 

multifaceted nature of mental health traits. These archetypes capture a broad spectrum of cognitive, 

emotional, and behavioral patterns, each differentially associated with mental health outcomes. The A1 

archetype, characterized by high neuroticism and low extraversion, emerged as a significant risk archetype, 

with an increased prevalence of mental health diagnoses and psychiatric comorbidities. This finding is 

consistent with existing literature that links neuroticism to mental health risks, particularly anxiety and 

mood disorders66. However, the implications of these archetypes extend beyond personality traits alone, as 

evident by the contribution of psychometric measures with only limited correlation to neuroticism score, 

i.e. anhedonia (SHAPS), impulsivity (BIS), and emotional processing (TAS). Additionally, cognitive styles 
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associated with the A1 archetype, such as negative thinking patterns (CES-D) and heightened emotional 

reactivity (PSS), may further contribute to the development and persistence of mental health issues. Thus, 

the A1 archetype represents a convergence of psychometric factors that collectively increase the risk for 

MDx. Conversely, the A5 archetype, defined by low neuroticism and high extraversion, appeared to be 

protective against MDx, with a notably low prevalence of self-reported diagnoses. This protective effect 

may be attributed not only to personality traits but also to enhanced awareness (MAIA), mental imagery 

(VVIQ), creativity (MSI), sleep patterns (ESS), and positive coping strategies (MMQ, CFQ, and DERS) 

providing a generally more capable and optimistic outlook on life. The delineation of these psychometric 

archetypes provides valuable insights into the diverse ways in which cognitive, emotional, and behavioral 

patterns interact to influence mental health outcomes.  

 

Archetypes have a biological foundation 

By leveraging PGSs derived from a broad spectrum of mental health traits, we demonstrate that 

these genetic profiles account for a substantial proportion of the variance in archetype scores. This finding 

not only supports the biological foundation of these psychometric profiles but also highlights their 

etiological connections with clinical traits. Particularly, our analysis revealed that PGSs related to mental 

health traits, such as life satisfaction, neuroticism, depressive symptoms, and clinical conditions like ASD, 

bipolar disorder, and cross-disorder, significantly contribute to shaping psychometric archetypes. Notably, 

up to 9% of the variance in archetype scores could be explained by PGSs for well-being traits, illustrating 

a robust genetic influence from these psychometric dimensions. Additionally, PGSs for brain imaging traits, 

such as cortical thickness, also contributed significantly, with up to 8% of variance explained. Highlighting 

its etiological relatedness to clinical mental health conditions, the risk associated A1 score was significantly 

associated with PGSs for neurodevelopmental disorders like ASD and general psychopathology captured 

through cross-disorder PGS scores. Notably, while ASD and suicide PGS both explained a significant 

proportion of the variance in the A1 and A5 scores, individually, their direction of effect was opposite in 

the two archetypes.   

An intriguing aspect of our study is the identification of composite genetic profiles (PGS-based archetypes 

that integrate genetic risk across hundreds of mental health and neuroimaging traits) that display a 

significant overlap with psychometry-based archetypes. This overlap underscores the genetic consistency 

of these archetypes and supports their biological relevance. For instance, the A1 psychometric risk 

archetype showed a notable overlap with the risk-associated PGS-based archetypes, specifically A4PGS and 

A2PGS. The A4PGS and A2PGS archetypes, however, exhibit distinct genetic characteristics. The A4PGS 

archetype is characterized by low PGSs for sleep measures, educational attainment, and suicide, indicating 
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a genetic profile divergent from the A2PGS, which is associated with high PGSs for these same variables. 

This distinction suggests the presence of two etiologically distinct sub-groups within the A1 risk archetype. 

Despite their differences, A2PGS and A4PGS share significant correlations with subcortical MRI-estimated 

volumes. Both PGS-based archetypes are also linked to higher depression scores and associated 

psychometric measures, though they diverge in aspects such as impulsivity, awareness, and personality 

traits. This overlap in neuroimaging traits but divergence in other psychometric characteristics point to 

nuanced genetic influences that differentiate these sub-groups within the broader A1 risk archetype. 

By leveraging PGSs derived from genetic studies on neuroimaging traits, we show that the genetic 

predispositions for specific neuroimaging traits are reflected in distinct neuroarchitectural features 

associated with each archetype. In line with the strong negative impact of PGS derived from GWAS on 

cingulate isthmus cortical surface area on the A4 score, MRI-derived measure of this area was significantly 

negatively correlated with the A4 score. Similarly, the reduced entorhinal surface area liked to the A1 score, 

was predicted by the PGS for this neuroimaging measure. This is consistent with clinical MRI studies, 

which have found volume of entorhinal cortex to be reduced in patients with depression67 and 

schizophrenia68 – although studies have been conflicting69.  However, while cortical thickness in the frontal 

pole and insula area was significantly negatively correlated with the A3 score, neither of these were 

predicted by the PGS for these measures. Albeit not statistically significant, the smaller whole brain volume 

observed in the A1 risk archetype is consistent with previous findings linking reduced brain volume to 

higher mental health risks70. These neuroarchitectural differences not only reinforce the biological validity 

of the identified archetypes but also highlight the potential for integrating neuroimaging data into 

personalized mental health assessments. 

 

Circulating Metabolite Signatures and Mental Health 

Our study identified distinct circulating metabolite signatures associated with specific archetypes, offering 

potential biomarkers to differentiate between varying mental health profiles. The A1 archetype, linked to 

higher neuroticism and increased mental health risks, showed significant correlations with several 

metabolites, including Betaine, 9-decenoylcarnitine, Indole-3-lactic acid, and the phopshocholine 

metabolite, O-18:0/2:0, among which, several are neuroactive with potential links to mental health and 

biological processes underlying psychopathology. Betaine, for instance, is a known osmolyte involved in 

methylation processes crucial for homocysteine metabolism and it has a documented role as 

neuromodulator in the nematode nervous system71. Proper methylation is essential for maintaining mental 

health, and disruptions in this pathway have been linked to various psychiatric disorders, including 
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depression and anxiety in preclinical models72–74. Additionally, and imbalanced homocysteine metabolism 

has been linked to both depression and schizophrenia75,76. 9-Decenoylcarnitine, an acylcarnitine involved 

in mitochondrial energy production, plays a role in neuroprotection and cholinergic neurotransmission77. 

Altered levels of 9-decenoylcarnitine have been observed in schizophrenia, underlining its potential as a 

biomarker for psychopathology78. Indole-3-lactic acid, a tryptophan metabolite produced by gut microbiota, 

has been reported to play a role neuronal developmental processes79, and alterations in indole levels have 

been linked to severity of depression and anxiety scores in patients with clinical depression80. Interestingly, 

another compound acting in the tryptophan pathway, Kynurenine, similarly known for its role in 

neuroinflammation and neurotoxicity, was negatively correlated with the A5 score. Current evidence 

suggests that a functional imbalance in the synthesis of Tryptophan metabolites causes the appearance of 

pathophysiologic mechanisms that leads to various neuropsychiatric diseases81. Finally, opposing levels of 

phosphocholine metabolites (O-18:0/2:0 and 0:0/18:1) in the A1 and A5 archetypes suggest that these 

archetypes are defined by alterations in phospholipid metabolism. Such alterations are linked to 

neuroinflammation, cell membrane integrity and signaling in the brain, and accumulating evidence suggests 

a broad implications of phospholipids in the etiopathologies of MDx82. 

 

Perspectives 

This study leverages a psychometry-based archetyping approach in a deeply phenotyped young Danish 

population to explore the complex interplay between genetic predispositions, neuroarchitectural features, 

and circulating metabolite profiles associated with mental health. By identifying distinct psychometric 

archetypes and linking them to heritable factors, neuroimaging traits, and blood metabolites, we provide a 

comprehensive characterization of mental health variation within the general population and highlight the 

potential of combining layers of data to advance precision psychiatry. While this study offers valuable 

insights, it is important to acknowledge its limitations. The sample size, although deeply phenotyped, may 

limit the generalizability of our findings. Future studies with larger, more diverse populations are needed 

to validate our results and explore the potential for applying this archetyping approach in clinical settings. 

Additionally, the cross-sectional nature of the data limits our ability to draw conclusions about causality, 

and longitudinal studies are necessary to understand the dynamic interactions between genetic 

predispositions, neuroarchitectural changes, and mental health trajectories. 
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Figure 1 | A) Representation of the five archetypes (A1-5) projected in dimensions following principal component analysis. Each 
dot represents an individual, with color codes representing the each of the five archetypes. Strength of colors represents the level 
of archetype affiliation. Only individual a dominating archetype affiliation is shown (membership > 0.5). B) Pie chart showing 
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the percentage of individuals with a dominating affiliation to one of the five archetypes, as well as the relative distribution of self-
reported MDx diagnoses among the archetypes. C) Heatmap showing the psychometric characteristics of each of the five 
archetypes. All variables were rank-normally transformed, and test of significance of differences between individuals in a given 
archetype and all other individuals indicated (Mann-Whitney U test). D) Plot of CES-D scores for each of the five archetypes and 
the mix group. E) Correlations between archetype scores and respectively any self-reported MDx diagnoses, more than one 
diagnosis (comorbid MDx), as well as MDx diagnoses among first degree relatives. Values statistically different from zero are 
marked as ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. 
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Figure 2 | Shapley additive explanations (SHAP) analysis of impact on model of top-tanked PGSs A) A1 scores B) A5 scores. Y-
axis indicates the feature names in order of importance from top to bottom, whereas X-axis represents the SHAP value, which 
indicates the degree of change in log odds.  The color of each point on the graph represents the value of the corresponding 
feature, with red indicating high values and blue indicating low values. C) Heatmap showing coefficient of determination (R2) for 
PGSs with nominally significant prediction (p > 0.05) for the A1 score, and D) the A5 score.    
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Figure 3 | A) Pie chart showing the percentage of individuals with a dominating affiliation to one of the four PGS-based 
archetypes, as well as the relative distribution of self-reported MDx diagnoses among these archetypes. B) Heatmap showing the 
neuroimaging-linked PGSs that define each of the four PGS-based archetypes. All variables were rank-normally transformed, and 
test of significance of differences between individuals in a given archetype and all other individuals indicated (Mann-Whitney U 
test). C) Heatmap showing the behavior-, cognition, and MDx-linked PGSs that define each of the four PGS-based archetypes. 
All variables were rank-normally transformed, and test of significance of differences between individuals in a given archetype 
and all other individuals indicated (Mann-Whitney U test). D) Sankey plot showing the relative overlap of individuals between 
the five psychometry-based archetypes and the four PGS-based archetypes. Overlap between risk associated as well as resilience-
associated psychometry and PGS-based archetypes are highlighted in dark grey.   
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Figure 4 | Correlation between neuroimaging traits measured by MRI and PGSs calculated for the same traits. Each dot represent 
an individual. A) brain volume, B) cortical surface area (cingulate isthmus) C) nucleus accumbens. D) Heatmap showing rank 
norally transformed values for each trait and for each archetype (A1-5). Statistically significant results from linear regression are 
marked by ∗p < 0.05, ∗∗p < 0.01 E) Forest plot showing MRI measures that differ significantly between archetypes.  
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Figure 5 | Forest plot showing the association between archetype and annotated blood metabolites.  
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Table 1 | Distribution of self-reported diagnoses across archetypes

A1 A2 A3 A4 A5 Mixed
# of Individuals 22 24 26 39 30 117
 with any MDx diagnosis 7 (32%) 5 (21%) 3 (12%) 6 (15%) 1 (3%) 12 (10%)
 with comorbid MDx diagnoses 3 (14%) 3 (13%) 2 (8%) 3 (8%) 0 (0%) 4 (3%)
 with first-degree relatives with MDx diagnosis 10 (45%) 10 (42%) 4 (15%) 6 (15%) 8 (27%) 27 (23%)

Diagnostic entities:
 ADHD 2 2 2 0 0 2
 Anxiety or phobia 2 1 0 3 1 3
 Depression 4 2 2 5 0 8
 Substance use disorder 1 0 1 0 0 1
 Personality disorder 1 0 0 1 0 0
 Self-harm 0 1 1 0 0 0
 Eating disorder 2 1 0 0 0 0
 Stress related disorder 3 1 2 0 0 3

Archetypes
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