1 Brief Report
2 **Phosphatidylethanolamines are the main lipid class altered in red blood cells** 3 **Phosphatidical mines are the main lipid class are the main lipid class are from patients with VPS13A disease/chorea-acanthocytosis**

- 4 Kevin Peikert, MD^{1,2,3}, Adrian Spranger¹, Gabriel Miltenberger-Miltenyi, MD⁴, Hannes Glaß,
- Kevin Peikert, MD^{5,21}", Adrian Spranger*, Gabriel Miltenberger-Miltenyi, MD*, Hannes Glaß,
PhD¹, Björn Falkenburger, MD^{5,6}, Christian Klose, PhD⁷, Donatienne Tyteca, PhD⁸, Andreas
Hermann, MD PhD^{1,2,3,9}
¹Tran
-
- Hermann, MD PhD^{1,2,3,9}
¹Translational Neurodegeneration
University of Rostock, Germany , Björn Falkenburger, MD^{5,6}, Christian Klose, PhD⁷
1908, Mann, MD PhD^{1,2,3,9}
1908, Pational Neurodegeneration Section "Albrecht Kossel", Department
1906, Sermany
1907 – The Transdisciplinary Neurosciences Rostock (CT 9 PhD*, Björn Falkenburger, MD*^{, v}, Christian Klose, PhD´, Donatienne Tyteca, PhD°, Andreas
6 Hermann, MD PhD^{1,2,3,9}
¹Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Med 6 Hermann, MD PhD^{4,2,3,3}

Translational Neurodegenerat

8 University of Rostock, Germany

9 ² Center for Transdisciplinary N

0 ³ United Neuroscience Campus

1 ⁴ Instituto de Medicina Molecu

2 ⁵ Department of N ¹Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock,
-
- 1 Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, Omversity Medical Center Rostock,
8 Diniversity of Rostock, Germany
9 ² Center for Transdisciplinary Neurosciences Rostock (CTNR), Uni 8 B. Center for Transdisciplinary Ne

8 ² Center for Transdisciplinary Ne

8 ³ United Neuroscience Campus I
-
- 9 Center for Transdisciplinary Neurosciences Rostock (CTNR), Onversity Medical Center Rostock, Rostock, Germany
0 ³ United Neuroscience Campus Lund-Rostock (UNC), Rostock site
1 ⁴ Instituto de Medicina Molecular João L
- 10 United Neuroscience campus Lund-Rostock (UNC), Rostock site
11 ⁴ Instituto de Medicina Molecular João Lobo Antunes, Faculdade
12 ⁵ Department of Neurology, Technische Universität Dresden, Dres 11 Instituto de Medicina Molecular João Lobo Antanes, Faculdade de Medicina, Oliversidade de Esboa, Fortugal
12 ⁵ Department of Neurology, Technische Universität Dresden, Dresden, Germany
13 ⁶ Deutsches Zentrum für Neu
- 12 Department of Neurology, Technische Universität Dresden, Dresden, Germany
13 ⁶ Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
14 ⁷ Lipotype GmbH, Dresden, Germany
-
- 13 ⁶ Deutsches Zentrum für Neurodegenerative Erkrankungen,
14 ⁷ Lipotype GmbH, Dresden, Germany
15 ⁸ CELL Unit, de Duve Institute, UCLouvain, Brussels, Belgium
16 ⁹ Deutsches Zentrum für Neurodegenerative Erkrankun
- 14 Lipotype GmbH, Dresden, Germany
15 ⁸ CELL Unit, de Duve Institute, UCLouv
16 ⁹ Deutsches Zentrum für Neurodegen 15 ^{er} CELL Unit, de Duve Institute, UCLouvain, Brussels, Belgium
16 ^{er 9} Deutsches Zentrum für Neurodegenerative Erkrankungen (
17 9 16 Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- 17
18
19

- 18 **Corresponding Author:**
19 Prof. Andreas Hermann, MD, PhD; Translational Neurodegeneration Section "Albrecht
20 Kossel"; Department of Neurology; University Medical Center Rostock; Gehlsheimer Straße
-
- 19 Prof. Andreas Hermann, March Schwarz, March 20 Rossel"; Department of Neurology; University Medical Center Rostock; Gehlsheimer Straße

20 18147 Rostock, Germany; Phone: +49(0)381 494-9511; e-Mail:

22 Andreas.Hermann@m 21 20, 18147 Rostock, Germany; Phone: +49(0)381 494-9511; e-Mail:
22 Andreas.Hermann@med.uni-rostock.de
23 **Running Title:** Lipidomics in VPS13A disease
25 **Word count (up to 1700 words, abstract 150):** 1707, 151
-
-
- 24
- 22 Andreas.Hermann@med.uni-rostock.de
23
24 **Running Title:** Lipidomics in VPS13A disease
25 **Word count (up to 1700 words, abstract 150):** 1707, 151
26 **Eigures/tables (up to 2):** 2 23
24 **Andreas Title:** Lipidomics in VPS13A dise
25 **Word count (up to 1700 words, abstract
26 Figures/tables (up to 2):** 2 24 Running Title: Lipidomics in V1 313A disease
25 **Word count (up to 1700 words, abstract 150
26 Figures/tables (up to 2): 2
27 References (up to 40): 26
28 Financial Disclosure/Conflict of Interests: CK
29 other than tha**
-
-
- 25 Word count (up to 1700 words, abstract 150). 1707, 151
26 Figures/tables (up to 2): 2
27 References (up to 40): 26
28 Financial Disclosure/Conflict of Interests: CK is CTO and s
29 other than that none related to the ma 26 Figures/tables (up to 2): 2
27 **References (up to 40):** 26
28 **Financial Disclosure/Confli**
29 other than that none relate
30 **Funding Sources:** This stud
31 supported by Rostock Acad 27 References (up to 40): 26
28 Financial Disclosure/Conf
29 other than that none relat
30 Funding Sources: This students apported by Rostock Aca
-
- 29 other than that none related to the manuscript.
20 **Funding Sources:** This study was funded by the M
31 supported by Rostock Academy of Science (RAS)
32 Schilling-Stiftung für medizinische Forschung im
33
- 28 Financial Disclosure, Conflict of Interests: CK is CTO and shareholder of Lipotype GmbH,
29 other than that none related to the manuscript.
30 **Funding Sources:** This study was funded by the MeDDrive grant (TU Dresden). 30 Funding Sources: This study was funded by the MeDDrive grant (TO Dresden). K.f. 1.5
31 Supported by Rostock Academy of Science (RAS). A.H. is supported by the Hermann u
32 Schilling-Stiftung für medizinische Forschung i
- 32 Schilling-Stiftung für medizinische Forschung im Stifterverband.
33
33
35
36 32 Schilling-Stiftung für medizinische Forschung im Stifterverband.
33
33
35
36
- 33
34
	-
-
- 35
- 35
- 37

38 **Abstract**
39 **Background:** VPS13A disease (chorea-acanthocytosis) is an ultra-rare disorder caused by loss 39 Background: VISISA disease (enoted acanthocytosis) is an ultra-rare disorder caused by loss
30 of function mutations in *VPS13A* characterized by striatal degeneration and by red blood cell
42 membrane contact sites.
0 40 of function mutations in VFS13A characterized by striatal degeneration and by red blood cell
41 (RBC) acanthocytosis. VPS13A is a bridge-like protein mediating bulk lipid transfer at
43 **Objectives:** To assess the lipid membrane contact sites.

43 Objectives: To assess the lipid composition of patient-derived RBCs.

44 Methods: RBCs collected from 5 VPS13A disease patients and 12 control subjects were

45 analyzed by mass spectrometry (li

22 membrane contact site
43 **Objectives:** To assess the
44 **Methods:** RBCs collected
45 **Besults:** While we found

43 Objectives: To assess the lipid composition of patient-derived RBCs.
44 **Methods:** RBCs collected from 5 VPS13A disease patients and 1.
45 **analyzed by mass spectrometry (lipidomics).**
46 Results: While we found no si 44 Methods: RBCs collected from 5 VPS13A disease patients and 12 control subjects were
analyzed by mass spectrometry (lipidomics).
Results: While we found no significant differences on the overall lipid class level, alte 46 **Results:** While we found no significant differ
47 an certain species were detected: phosphatic
48 length and higher unsaturation were inc
49 ceramide, phosphatidylcholine and sphingon 47 In certain species were detected: phosphatidylethanolamine species with both longer chain
48 Interpretise were detected: phosphatidylethanolamine species with both longer chain
49 Internations and sphingomyelin species 148 length and higher unsaturation were increased in VPS13A disease samples. Specific
149 ceramide, phosphatidylcholine and sphingomyelin species were also altered.
150 **Conclusions:** The presented alterations of particula

Ength and higher increased in VPS121 in VPS121 disease correlations: The presented alterations of particular lipid species in RBCs in VPS13A disease

conclusions: The presented alterations of particular lipid species in RB Example, phosphatid, phonon and sphingon, subsequently and species in RBCs in

50 **Conclusions:** The presented alterations of particular lipid species in RBCs in

51 contribute to 1) the understanding of acanthocyte format 51 contribute to 1) the understanding of acanthocyte formation and 2) future biomarker
52 identification. Lipid distribution seems to play a key role in the pathophysiology of VPS13A
53 disease.
54 11 contribute to 1) the understanding of acanthocyte formation and 1) future biomarkers
52 identification. Lipid distribution seems to play a key role in the pathophysiology of VPS13A
53 disease.
54 53 disease.
54
55
55
56

- 54
55
- 54
53
55
56
57
- 55
-

57

- 58
- 58
- 60
- 61
- 62
- 62
-
- 63

65 **Introduction**
66 VPS13A disease (formerly known as chorea-acanthocytosis) is a neurodegenerative disorder 67 of the young adulthood and an important differential of Huntington's disease¹. Together
68 with XK disease (McLeod syndrome) it has been classified as neuroacanthocytosis syndrome
69 as it is characterized by striata of the young adulthood and an important differential of Huntington's disease". Together
with XK disease (McLeod syndrome) it has been classified as neuroacanthocytosis syndrome
as it is characterized by striatal degenerat For a sit is characterized by striatal degeneration and the presence of deformed red blood cells

70 (RBCs), referred to as acanthocytes². Typical clinical manifestations include a variety of

71 movement disorders (cho (RBCs), referred to as acanthocytes². Typical clinical manifestations include a variety of
movement disorders (chorea and dystonia with orofacial predominance, in later stages
parkinsonism), epilepsy, behavioral and cogn 70 (RBCs), referred to as acanthocytes^s. Typical clinical manifestations include a variety of
71 movement disorders (chorea and dystonia with orofacial predominance, in later stages
72 parkinsonism), epilepsy, behavioral parkinsonism), epilepsy, behavioral and cognitive impairment as well as peripheral neuro-
and myopathy¹.
The autosomal-recessive condition is caused by biallelic pathogenic variants in the VPS13A
gene leading in most cas

73 and myopathy .
74 The autosomal-recessive condition is caused by biallelic pathogenic variants in the *VPS13A*
75 gene leading in most cases to a complete loss of the respective protein, VPS13A/chorein³.
76 VPS13A bel 73 and myopathy*.
74 The autosomal-r
75 gene leading in
76 VPS13A belong
77 neurodegenerati The autosomal-recessive condition is caused by biallelic pathogenic variants in the *VPS13A*

gene leading in most cases to a complete loss of the respective protein, *VPS13A/chorein*³.
 VPS13A belongs to a family of gene leading in most cases to a complete loss of the respective protein, VPS13A/chorein".
To VPS13A belongs to a family of 4 proteins, VPS13A-D, that are all related to
neurodegenerative or neurodevelopmental disorders, su The method of the state (VPS13C) or ataxia (VPS13D)⁴⁻⁶. Only recently, VPS13A has been assigned to the new protein superfamily of (VPS13C) or ataxia (VPS13D)⁴⁻⁶. Only recently, VPS13A has been assigned to the new protein
superfamily of bridge-like lipid transfer proteins (BLTPs)^{7,8}. Forming hydrophobic grooves
that span between two organellar me (VPS13C) or ataxia (VPS13D)⁴ \cdot . Only recently, VPS13A has been assigned to the new protein
superfamily of bridge-like lipid transfer proteins (BLTPs)^{7,8}. Forming hydrophobic grooves
that span between two organellar superfamily of bridge-like lipid transfer proteins (BLTPs)'³. Forming hydrophobic grooves
that span between two organellar membranes at membrane contact sites, these proteins
mediate direct bulk lipid transfer, most lik mediate direct bulk lipid transfer, most likely selective for phospholipids⁹. VPS13A localizes
82 between the endoplasmic reticulum and mitochondria, lipid droplets or the plasma
83 membrane⁹. At the plasma membrane, i mediate direct bulk lipid transfer, most likely selective for phospholipids³. VPS13A localizes
B2 between the endoplasmic reticulum and mitochondria, lipid droplets or the plasma
membrane⁹. At the plasma membrane, it h membrane⁹. At the plasma membrane, it has been shown to form a complex with the

84 putative scramblase $XK^{10,11}$. In support of a pathomechanistic role of altered membrane lipid

85 distribution and supply in VPS13A membrane⁹. At the plasma membrane, it has been shown to form a complex with the
putative scramblase XK^{10,11}. In support of a pathomechanistic role of altered membrane lipid
distribution and supply in VPS13A disease, e B4 putative scramblase XK^{20,22}. In support of a pathomechanistic role of altered membrane lipid
85 distribution and supply in VPS13A disease, elevated levels of several sphingo- and
86 phospholipids have been recently f 86 phospholipids have been recently found in the striatum of VPS13 patients¹². Also, in
87 Huntington's disease, a distinct shift in the sphingolipid profile of the caudate has been
88 reported¹³.
89 In this explorator phospholipids have been recently found in the striatum of VPS13 patients⁴⁴. Also, in
87 Huntington's disease, a distinct shift in the sphingolipid profile of the caudate has been
88 reported¹³.
89 In this exploratory s

187 Huntington's disease, a distinct shift in the sphingolipid profile of the caudate has been

188 reported¹³.

189 In this exploratory study, we aimed to study the lipid composition of RBCs from VPS13A

189 patients fo 88 reported¹³.
89 In this expl
90 patients for
91 disease as
92 rearrangem Between the study of the line of the line of the line of the disease as a high proportion are acanthocytic. 2) RBCs are "products" of a complex
89 In this expansion of membranes and organelles during erythropoiesis¹⁴ pot 91 disease as a high proportion are acanthocytic. 2) RBCs are "products" of a complex
92 rearrangement of membranes and organelles during erythropoiesis¹⁴ potentially requiring
93 membrane lipid transfer. 3) RBCs are – i examplement of membranes and organelles during erythropoiesis¹⁴ potentially requiring
93 membrane lipid transfer. 3) RBCs are - in contrast to brain tissue - easily obtainable. RBC
94 lipid composition may therefore be a rearrangement of membranes and organelles during erythropoiesis¹⁴ potentially requiring
93 membrane lipid transfer. 3) RBCs are – in contrast to brain tissue – easily obtainable. RBC
94 lipid composition may therefore be 94 lipid composition may therefore be an ideal biomarker candidate.
33 94 lipid composition may therefore be an ideal biomarker candidate.

95
96

97

97 **Methods**
98 Five genetically confirmed VPS13 patients (4 males, 1 female, mean age 45.6, min 32, max 52 years) and 12 healthy controls (9 males, 3 females, mean age 40.7, min 23, max 56 years)

were included in this study. Demographic and clinical data of patients are shown in Table S1.

The study was approved by the ethics 99 were included in this study. Demographic and clinical data of patients are shown in Table S1.

99 were included in this study. Demographic and clinical data of patients are shown in Table S1.

99 (EK45022009, EK78022015 101 The study was approved by the ethics committee at the Technische Universität Dresden
102 (EK45022009, EK78022015). All participants gave written informed consent in accordance
103 with the Declaration of Helsinki.
104 102 (EK45022009, EK78022015). All participants gave written informed consent in accordance
103 with the Declaration of Helsinki.
104 EDTA blood samples were processed in accordance to the sample preparation guidelines
105

with the Declaration of Helsinki.
104 EDTA blood samples were processed in accordance to the sample preparation guidelines
105 from Lipotype GmbH (Dresden, Germany; see supplementary material). Mass spectrometry-
106 based 104 EDTA blood samples were processed to the DTA blood samples were processed from Lipotype GmbH (Dresden, 4
105 based lipid analysis was perfored to AES analysis was perfored to AES active Orbitrap mass spectre 105 from Lipotype GmbH (Dresden, Germany; see supplementary material). Mass spectrometry-
106 based lipid analysis was performed by Lipotype GmbH as previously described using a
107 QExactive Orbitrap mass spectrometer (Th 106 based lipid analysis was performed by Lipotype GmbH as previously described using a
107 QExactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Darmstadt, Germany)¹⁵.
108 Table S2 shows the list of analyzed l 107 Charta spectrometer (Thermo Fisher Scientific, Darmstadt, Germany)¹⁵.
108 Table S2 shows the list of analyzed lipid classes and the respective structural detail level of
109 the analysis.
110 Lipid data was analyzed QExactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Darmstadt, Germany)⁵⁵.
108 Table S2 shows the list of analyzed lipid classes and the respective structural detail level of
110 Lipid data was analyz

109 the analysis.
110 Lipid data was analyzed in mol% for better comparability. An occupational threshold was
111 applied to filter lipid (sub)species that were not adequately measured to solidify findings
112 (see supplem 110 Lipid data w
111 applied to fi
112 (see supplem
113 Multiple t-te 111 applied to filter lipid (sub)species that were not adequately measured to solidify findings
112 (see supplementary material).
113 Multiple t-tests on all remaining (sub)species were performed (without assuming a
114 co

112 (see supplementary material).

113 Multiple t-tests on all remaining (sub)species were performed (without assuming a

114 consistent standard deviation). In order to account for multiple testing, the Benjamini

115 Hoc 113 Multiple t-tests on all remand
114 consistent standard deviation
115 Hochberg procedure with a fa
116 different levels: lipid class lev 114 consistent standard deviation). In order to account for multiple testing, the Benjamini
115 Hochberg procedure with a false discovery rate of 5% was used. Analysis was performed at
116 different levels: lipid class lev 115 Hochberg procedure with a false discovery rate of 5% was used. Analysis was performed at
116 different levels: lipid class level, lipid (sub)species level, structural or functional category
117 level as well as grouped 116 different levels: lipid class level, lipid (sub)species level, structural or functional category
117 level as well as grouped by chain length/double bounds number/OH-groups number. For
118 visualization of the results 117 level as well as grouped by chain length/double bounds number/OH-groups number. For
118 visualization of the results on the lipid (sub)species level, a Vulcano plot was generated.
119
Results 118 visualization of the results on the lipid (sub)species level, a Vulcano plot was generated.
119
120 **Results**

119
120

119
119
120 **Results** on the results on the results of the results of the results of the was no statistically significant difference in age and sex distribution between the **Results**
121 There was no statistically significant difference in age and sex distribution between the two 122 groups analyzed in this study (Table S3). $\frac{1}{2}$ groups analyzed in this study (Table S3).

124 Classes. In total, 575 lipid species and subspecies were measured. After application of the
125 occupational threshold, 313 lipid species and subspecies remained for further analysis. Out
126 of the 23 classes, 13 were 125 occupational threshold, 313 lipid species and subspecies remained for further analysis. Out
126 of the 23 classes, 13 were easily detectable including ceramide (Cer), cholesterol (Chol),
127 hexosylceramide (HexCer), l 126 of the 23 classes, 13 were easily detectable including ceramide (Cer), cholesterol (Chol),

127 hexosylceramide (HexCer), lyso-phosphatidylcholine (LPC), phosphatidylcholine (PC),

128 phosphatidylethanolamine (PE), ph 127 hexosylceramide (HexCer), lyso-phosphatidylcholine (LPC), phosphatidylcholine (PC),
128 phosphatidylethanolamine (PE), phosphatidylcholine-ether (PE O-), phosphatidylinositol (PI),
129 phosphatidylserine (PS) and sphin management (Heraus, 1991 prosphatidylcholine ether (PE O-), phosphatidylinositol (PI),
129 phosphatidylserine (PS) and sphingomyelin (SM), in agreement with previous reports on
130 RBCs ¹⁶. Moreover, we were able to dete morphatidylserine (PS) and sphingomyelin (SM), in agreement with previous reports on
130 RBCs ¹⁶. Moreover, we were able to detect additional species such as lyso-
131 phosphatidylethanolamine (LPE), phosphatidate (PA) a 130 RBCs ¹⁶. Moreover, we were able to detect additional species such as lysophosphatidylethanolamine (LPE), phosphatidate (PA) and phosphatidylcholine-ether (PC O-).
132 On the lipid class level, no relevant differences

RBCs ²⁶. Moreover, we were able to detect additional species such as lysophosphatidylethanolamine (LPE), phosphatidate (PA) and phosphatidylcholine-ether (PC O-).
132 On the lipid class level, no relevant differences bet 132 On the lipid class level, no relevant differences between healthy controls and VPS13A
133 patients could be detected (Fig 1A). The most distinct difference was seen in the PI class with
134 less mol% in the disease gro patients could be detected (Fig 1A). The most distinct difference was seen in the PI class with

134 less mol% in the disease group, however, this did not reach statistical significance (p=0.07,

135 q=0.51). Also, after 134 less mol% in the disease group, however, this did not reach statistical significance (p=0.07,
135 q=0.51). Also, after grouping the lipids into structural (glycerophospholipids, sphingolipids,
136 and sterols) or funct q=0.51). Also, after grouping the lipids into structural (glycerophospholipids, sphingolipids,

and sterols) or functional categories (lyso vs. membrane lipids), analysis did not reveal

137 striking differences (Fig 1 B, and sterols) or functional categories (lyso vs. membrane lipids), analysis did not reveal
137 striking differences (Fig 1 B, C), as was the case for the number of double bounds and
138 hydroxyl groups of the lipids (Fig 1 137 striking differences (Fig 1 B, C), as was the case for the number of double bounds and
138 hydroxyl groups of the lipids (Fig 1 D, E). Likewise, while there was a tendency of decrease of
139 lipids with medium length f 138 hydroxyl groups of the lipids (Fig 1 D, E). Likewise, while there was a tendency of decrease of
139 lipids with medium length fatty acid chains (30-36 C-atoms) and of increase of lipids with
140 very long chains (39-4 139 lipids with medium length fatty acid chains (30-36 C-atoms) and of increase of lipids with
140 very long chains (39-44 C-atoms) in the patient group compared to control, none of these
141 differences reached statistica 140 very long chains (39-44 C-atoms) in the patient group compared to control, none of these
141 differences reached statistical significance (Fig 1 F).
142 On the lipid species and subspecies level, however, distinct diff

141 differences reached statistical significance (Fig 1 F).
142 On the lipid species and subspecies level, however, distinct differences with small effect size
143 (fold change) were observed. The increase of Cer34:1;2 was 142 On the lipid species and subspecies level, however,
143 (fold change) were observed. The increase of Cer34
144 2 A, B). Most of the (sub)species with significant cha
145 belonged to the PE or PE O- classes. Within the 143 (fold change) were observed. The increase of Cer34:1;2 was the most significant finding (Fig

144 2 A, B). Most of the (sub)species with significant change after Benjamini Hochberg procedure

145 belonged to the PE or 2 (fold change) belonged to the PE or PE O- classes. Within the PEs, a shift in the fatty chain lengths became
146 (b) obvious: PE subspecies with longer fatt 145 belonged to the PE or PE O- classes. Within the PEs, a shift in the fatty chain lengths became
146 obvious: PE subspecies with longer fatty acid chains tended to be increased, species with
147 shorter chains to be decr 146 obvious: PE subspecies with longer fatty acid chains tended to be increased, species with

147 shorter chains to be decreased (Fig. 2 C). This is in line with the (nonsignificant) shift that has

148 been observed in t 147 shorter chains to be decreased (Fig. 2 C). This is in line with the (nonsignificant) shift that has
148 been observed in the overall chain length analysis (Fig. 1 F). In addition, decrease of single PC
149 and SM speci 148 been observed in the overall chain length analysis (Fig. 1 F). In addition, decrease of single PC
149 and SM species were also detected.
150 **Discussion** 149 and SM species were also detected.
150
151 **Discussion**

150
151

150
150
151 **Discussion** 151 Discussion

152 VPS13A disease has recently become paradigmatic for a new pathophysiological concept in

153 neurodegeneration: disturbed bulk lipid transfer at membrane contact sites^{2,9,17}. VPS13A is a

154 bridge-like protein ena neurodegeneration: disturbed bulk lipid transfer at membrane contact sites^{2,3,27}. VPS13A is a
154 bridge-like protein enabling direct bulk lipid transfer between intracellular membranes. It
155 seems that disturb 155 seems that disturbances of this process are central for VPS13A and related diseases although
156 the exact role of bulk lipid transfer in neuronal and other mainly affected cells such as RBCs
157 is subject of further 156 the exact role of bulk lipid transfer in neuronal and other mainly affected cells such as RBCs
157 is subject of further research.
158 Based on these recent molecular developments in the field, we studied for the first

157 is subject of further research.
158 Based on these recent molecular developments in the field, we studied for the first time the
159 lipid composition of RBCs from VPS13A patients using state-of-the-art lipidomics anal 158 Based on these recent molecured
159 lipid composition of RBCs fro
160 RBCs are clearly affected by
161 deficient RBCs reflect at leas 159 lipid composition of RBCs from VPS13A patients using state-of-the-art lipidomics analysis.

160 RBCs are clearly affected by the disease as acanthocytosis is a core feature and VPS13A

161 deficient RBCs reflect at lea THE TRISS AND RECS are clearly affected by the disease as acanthocytosis is a core feature and VPS13A
161 deficient RBCs reflect at least partly the pathophysiology of the disease^{1,18-20}. Therefore,
162 RBCs may be an ea 160 RBCs are clearly affected by the disease as acanthocytosis is a core feature and VPS13A
161 deficient RBCs reflect at least partly the pathophysiology of the disease^{1,18-20}. Therefore,
162 RBCs may be an easily acce deficient RBCs reflect at least partly the pathophysiology of the disease \sim 2014. Therefore,
162 RBCs may be an easily accessible surrogate and biomarker for pathology of the nervous
163 system. Of note, there i 165 of acanthocytes $21,22$. Second, in liver failure where acanthocytosis is observed, irregularities
166 in lipid metabolism, particularly an excess of chol, have been associated with the
167 deformation of RBCs²³. On 164 development of acanthocytosis. First, hypo-/abetalipoproteinemia leads to the appearance
165 of acanthocytes $21,22$. Second, in liver failure where acanthocytosis is observed, irregularities
166 in lipid metabolism, 165 of acanthocytes ^{21,22}. Second, in liver failure where acanthocytosis is observed, irregularities
166 in lipid metabolism, particularly an excess of chol, have been associated with the
167 deformation of RBCs²³. On of acanthocytes ^{21,22}. Second, in liver failure where acanthocytosis is observed, irregularities
166 in lipid metabolism, particularly an excess of chol, have been associated with the
167 deformation of RBCs²³. On the 167 deformation of RBCs²³. On the other side, lipid analysis in the "pre-lipidomics era" has not
168 revealed consistent differences in RBCs from neuroacanthocytosis patients¹⁸.
169 In line with that, our study did not

deformation of RBCs²³. On the other side, lipid analysis in the "pre-lipidomics era" has not
168 revealed consistent differences in RBCs from neuroacanthocytosis patients¹⁸.
169 In line with that, our study did not sho revealed consistent differences in RBCs from neuroacanthocytosis patients²⁰.
169 . In line with that, our study did not show a generalized major disturbance of li
170 . revealed interesting distinct changes at the lipid 170 revealed interesting distinct changes at the lipid species and subspecies level, including PE
171 (O-) and Cer, but also single PC, and SM (sub)species.
172 PE play a central role in autophagosome formation and is a re

171 (O-) and Cer, but also single PC, and SM (sub)species.
172 PE play a central role in autophagosome formation and is a regulator of autophagy²⁴, a
173 process which has been shown to be impaired in VPS13A disease, as 172 PE play a central role in autophagosome formation
173 process which has been shown to be impaired in
174 presence of membrane remnants^{19,20}, and which
175 Moreover, the relative abundance of PE specie PE play a central role in autophagosome formation and is a regulator of autophagy²⁴, a
173 process which has been shown to be impaired in VPS13A disease, as reflected by the
174 presence of membrane remnants^{19,20}, and presence of membrane remnants^{19,20}, and which is essential during erythropoiesis.

175 Moreover, the relative abundance of PE species highly evolves during reticulocyte

176 maturation into RBCs: longer and more unsatura presence of membrane remnants^{29,20}, and which is essential during erythropoiesis.
175 Moreover, the relative abundance of PE species highly evolves during reticulocyte
176 maturation into RBCs: longer and more unsaturate maturation into RBCs: longer and more unsaturated PE species decrease whereas smaller
177 and more saturated PE species increase (Minetti et al., BioRxiv,
178 https://doi.org/10.1101/2023.06.02.543386). Interestingly, we s 177 and more saturated PE species increase (Minetti et al, BioRxiv, https://doi.org/10.1101/2023.06.02.543386). Interestingly, we showed here a reverse "acyl chain remodeling": The former group increased in VPS13A patients https://doi.org/10.1101/2023.06.02.543386). Interestingly, we showed here a reverse "acyl
179 chain remodeling": The former group increased in VPS13A patients while the latter
180 decreased, suggesting impairment of RBC ma 179 chain remodeling": The former group increased in VPS13A patients while the latter
180 decreased, suggesting impairment of RBC maturation. Therefore, these findings may be
181 related to acanthocyte formation during ery 180 decreased, suggesting impairment of RBC maturation. Therefore, these findings may be
181 related to acanthocyte formation during erythropoiesis and the pathophysiology of VPS13A
182 disease. Supporting this possibility 181 related to acanthocyte formation during erythropoiesis and the pathophysiology of VPS13A
182 disease. Supporting this possibility, Cer, PC and PE species were also shown to be affected in
6 182 disease. Supporting this possibility, Cer, PC and PE species were also shown to be affected in 6

hypobetalipoproteinemia, another acanthocyte-related disease²². Interestingly, Csf1, a
184 Vps13-like BLTP, has been shown to transfer PEs to the ER for GPI anchor synthesis²⁵.
185 Also, as PE is a non-bilayer for Vps13-like BLTP, has been shown to transfer PEs to the ER for GPI anchor synthesis²⁵.

Also, as PE is a non-bilayer forming lipid, especially with longer chain length²⁶, an incr

186 longer PE species might at least p Also, as PE is a non-bilayer forming lipid, especially with longer chain length⁴⁶, an increase of
186 Longer PE species might at least partially explain the morphological alterations of
187 acanthocytes. Moreover, non-bi 186 longer PE species might at least partially explain the morphological alterations of
187 acanthocytes. Moreover, non-bilayer lipids may affect integration of proteins into
188 membranes, their lateral movement and thei

188 membranes, their lateral movement and their function²⁷.
189 Cer act as the foundational element for complex sphingolipids and is important in cellular
190 signaling. Accordingly, abnormal Cer levels have been associa membranes, their lateral movement and their function".
189 . Cer act as the foundational element for complex sphing
190 . signaling. Accordingly, abnormal Cer levels have
191 . neurodegenerative conditions²⁸.
192 . The r 199 Signaling. Accordingly, abnormal Cer levels have been associated with several
191 neurodegenerative conditions²⁸.
192 The rather distinct lipid alterations may be viewed as unexpected considering the function of
193

191 neurodegenerative conditions²⁸.
192 The rather distinct lipid alterations may be viewed as unexpected considering the function of
193 VPS13A as lipid transfer protein. However, as most of the altered lipids are phos neurodegenerative conditions²⁹.
192 . The rather distinct lipid alteratior
193 . VPS13A as lipid transfer protein.
194 . this finding is consistent with the transferring protein⁹. Also, quan 193 VPS13A as lipid transfer protein. However, as most of the altered lipids are phospholipids,
194 this finding is consistent with the suspected role of VPS13A as (specifically) phospholipid
195 transferring protein⁹. A this finding is consistent with the suspected role of VPS13A as (specifically) phospholipid
195 transferring protein⁹. Also, quantitative analyses might not have captured localized changes
196 in membrane composition wit 195 transferring protein⁹. Also, quantitative analyses might not have captured localized changes
196 in membrane composition without major disturbances of overall lipid content. Furthermore,
197 variations within the RBC transferring protein". Also, quantitative analyses might not have captured localized changes
196 . in membrane composition without major disturbances of overall lipid content. Furthermore,
197 . variations within the RBC p 197 variations within the RBC population (e.g., acanthocytic vs. non-acanthocytic) could have
198 masked specific alterations in a subgroup of cells. As VPS13A plays a role in lipid transfer
199 between organellar membrane masked specific alterations in a subgroup of cells. As VPS13A plays a role in lipid transfer
199 between organellar membranes and as mature RBCs lack such organelles, the pathogenic
200 process occurs potentially mainly du 1981 between organellar membranes and as mature RBCs lack such organelles, the pathogenic
1981 process occurs potentially mainly during erythropoiesis. Therefore, quantitative lipid analysis
1981 might reveal more pronounc 199 between organism membranes and as mature rate in membranes againsts, the pathogens
1990 process occurs potentially mainly during erythropoiesis. Therefore, quantitative lipid analysis
1991 might reveal more pronounced 201 might reveal more pronounced alterations in RBC precursor cells. Another limitation of this study relates to the low number of patient samples due to the ultra-rarity of the disease which might have resulted in an insu 202 study relates to the low number of patient samples due to the ultra-rarity of the disease
203 which might have resulted in an insufficient statistical power to detect even more sub2tle
204 changes.
205 The RBC lipidomi 203 which might have resulted in an insufficient statistical power to detect even more sub2tle
204 changes.
205 The RBC lipidomics data presented are not conclusive with the data derived from post
206 mortem brain tissue¹

204 changes.
203 The RBC lipidomics data presented are not conclusive with the data derived from post
206 mortem brain tissue¹². This is partially due to the differences in covered lipid classed by the
207 measurements. 205 The RBC
206 mortem l
207 measurer
208 RBCs and 206 The RBC lipidomics and presented are not contribute that are not concluded to the measurements. However, this may also point to different effects of VPS13A deficiency in RBCs and the brain.
208 RBCs and the brain.
209 206 mortem brain tissue⁴⁴. This is partially due to the differences in covered lipid classed by the measurements. However, this may also point to different effects of VPS13A deficiency in

208 RBCs and the brain.
209 In summary, the alterations of particular lipid species in RBCs in VPS13A disease contributes
210 to the pathophysiological understanding. Further studies need to focus on lipid composition
211 209 In summary, the alternal the brain.
209 In summary, the alternal
211 of RBC precursor cel 210 to the pathophysiological understanding. Further studies need to focus on lipid composition
211 of RBC precursor cells and on potential localized changes in distinct RBC membrane domains.
21 of RBC precursor cells and 211 of RBC precursor cells and on potential localized changes in distinct RBC membrane domains.

211 of RBC precursor cells and on potential localized changes in distinct RBC membrane domains. 211 of RBC precursor cells and on potential localized changes in distinct RBC membrane domains.

213 biomarker for VPS13A disease which is a prerequisite for future clinical studies²⁹.
214
215 **Acknowledgments**
216 We thank the nations and control subjects for participating in this study. We are grateful to Glenn

214
215

biomarker for VPS13A disease which is a prerequisite for future clinical studies⁴⁹.
214 .
Acknowledgments
216 . We thank the patients and control subjects for participating in this study. We are grate
217 . (†) and Gin 215 **Acknowledgments**
216 We thank the patients and control subjects for participating in this study. We are grateful to Glenn 217 (t) and Ginger Irvine as the founders of the Advocacy for Neuroacanthocytosis Patients 218 (www.naadvocacy.org) and to Susan Wagner and Joy Willard-Williford as representatives of the NA 219 Advocacy USA (www.naadvocacyusa.org). We thank the advocacies for their support and research 220 funding. We also thank Dr. Jenny Leopold (Institute for Medical Physics and Biophysics, Faculty of 221 Medicine, Leipzig University, Germany) for her expert advice.

222 K.P. is supported by the Rostock Academy of Science (RAS), A.H. by the "Hermann und Lilly Schilling-223 Stiftung für medizinische Forschung im Stifterverband". D.T. is Senior Research Associate of Belgian

224 F.R.S.-FNRS.
224 F.R.S.-FNRS.

225
225 225
226

- 226 **Authors' Roles**
227 KP, HG, AH study design. KP and AH: patient recruitment, KP, AS, HG execution. KP, AS, GMM, BF,
- 228 CK, DT data analysis. KP, AH: funding acquisition. AH: supervision, project administration; KP, AS,

229 GMM, DT – writing. All authors - editing of final version of the manuscript. 230

230
231

231 Fi<mark>nancial Disclosures of all authors (for the preceding 12 months)</mark>
232 KP: Received funding from the Rostock Academy of Science (RAS) and the Deutschen Gesellschaft für

233 Parkinson und Bewegungsstörungen e.V. Stock Ownership in medically-related fields.

234 AH has received personal fees and non-financial support from ITF Pharma, Biogen and Desitin during

235 the conduct of the study outside of the submitted work. He received funding from the Schilling

- 236 Stiftung für medizinische Forschung im Stifterverband, VDI/BMBF, ESF, target ALS foundation outside 237 Stiftung für medizinische Forschung im Stifterverband, VDI/BMBF, ESF, target ALS foundation outside
237 Stifterverband, Stifterverband, Stifterverband, VDI/BMBF, ESF, target ALS foundation outside the submitted
-
- 237 the submitted work.
238 CK is CTO and shareholder of Lipotype GmbH.
- 239 AS, GMM, HG, BF, DT have no financial disclosure to declare. 239 AS, GMM, HG, BF, DT have no financial disclosure to declare.

-
-
-
-
-
-

Figures
247 Figure 1

249 Fig 1 Lipidomics analysis on lipid class (A), structural category (B), functional category (C) level.
250 Structural analysis of lipids in respect to number of double bounds (D), fatty acid chain length (E), and 251 Structural analysis of \mathcal{L} respectively. The number of hydroxyl groups (F), and the number of hydroxyl groups (E), and the number of hydroxyl groups (E), and the number of hydroxyl groups (E), and the number of h 251 number of hydroxyl groups (F).
252 *Ctrl* controls, *VPS13A* VPS13A patients, *Cer* Ceramide, *Chol* Cholesterol, *HexCer* Hexosylceramide, *LPC*

253 lyso-Phosphatidylcholine, *LPE* lyso-Phosphatidylethanolamine, *PA* Phosphatidate, *PC (O-)*
254 Phosphatidylcholine-(-ether), *PE (O-)* Phosphatidylethanolamine-(-ether), *PI* Phosphatidylinositol, *PS* Phosphatidylcholine (-ether), PE (O-) Phosphatidylethanolamine (-ether), PI Phosphatidylinositol, PS 255 Phosphatidylserine, SM Sphingomyelin, GPL glycerophospholipids, SL sphingolipids, ST sterols, LYS 256 lyso lipids, MEM membrane lipids. 256 lyso lipids, *MEM* membrane lipids.
257 **Figure 2**

258 259 Fig 2 Lipidomics analysis on species and subspecies level. Volcano blot showing all analysed
260 (sub)species (A). The horizonal dotted line represents the threshold of statistical significance after 261 Benjamini Hochberg procedure with a false discovery rate of 5%. (B) shows all significantly different 262 (sub)species between healthy control and VPS13A disease groups. (C) Relative change of 263 Phosphatidylethanolamine (PE) subspecies in VPS13A disease sorted by fatty acid chain length and 264 double bond number; results are expressed as percentage of controls (healthy control values were 265 set 100%). 265 set 100%).
266 *Ctrl* controls, *VPS13A* VPS13A patients, *Cer* Ceramide, *Chol C*holesterol, *HexCer* Hexosylceramide, *LPC*

267 lyso-Phosphatidylcholine, LPE lyso-Phosphatidylethanolamine, PA Phosphatidate, PC (O-) 267 lyso-Phosphatidylcholine, LPE lyso-Phosphatidylethanolamine, PA Phosphatidate, PC (O-)
268 Phosphatidylcholine (-ether), PE (O-) Phosphatidylethanolamine (-ether), PI Phosphatidylinositol, PS 268 Phosphatidylcholine (-ether), PE (O-) Phosphatidylethanolamine (-ether), PP Phosphatidylinositol, PS
269 Phosphatidylserine, *SM* Sphingomyelin 269 Phosphatidylserine, SM Sphingomyelin

-
- 270
271
- 271
-
- 272
- 273
- 275
- 275
- 277

278

278 • **References**
279 • 1. Peikert K, Dobson-Stone C, Rampoldi L, et al. VPS13A Disease. *GeneReviews® [Internet]*. 280 University of Washington, Seattle; 1993; 2002 [updated 2023].

281 2. Walker RH, Peikert K, Jung HH, Hermann A, Danek A. Neuroacanthocytosis Syndromes: The

ر کی بی کی کی کی کی کی ہے ۔
282 Clinical Perspective. *Contact (Thousand Oaks)*. 2023;6:25152564231210339. 282 Clinical Perspective. *Contact (Thousand Oaks)*. 2023;6:25152564231210339.
283 doi:10.1177/25152564231210339

284 3. Dobson-Stone C, Velayos-Baeza A, Filippone LA, et al. Chorein detection for the diagnosis of 285 chorea-acanthocytosis. Ann Neurol. Aug 2004;56(2):299-302. doi:10.1002/ana.20200

286 4. Velayos-Baeza A, Vettori A, Copley RR, Dobson-Stone C, Monaco AP. Analysis of the human

287 VPS13 gene family. Genomics. Sep 2004;84(3):536-49. doi:10.1016/j.ygeno.2004.04.012

288 5. Lesage S, Drouet V, Majounie E, et al. Loss of VPS13C Function in Autosomal-Recessive

289 Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

290 Am J Hum Genet. Mar 3 2016;98(3):500-513. doi:10.1016/j.ajhg.2016.01.014

291 6. Seong E, Insolera R, Dulovic M, et al. Mutations in VPS13D lead to a new recessive ataxia with

292 spasticity and mitochondrial defects. Ann Neurol. Jun 2018;83(6):1075-1088. doi:10.1002/ana.25220

293 7. Braschi B, Bruford EA, Cavanagh AT, Neuman SD, Bashirullah A. The bridge-like lipid transfer

294 protein (BLTP) gene group: introducing new nomenclature based on structural homology indicating

204 protein (BLTP) gene group: introducing new nomenclature based on structural homology indicating
295 shared function. H*um Genomics*. Dec 02 2022;16(1):66. doi:10.1186/s40246-022-00439-3 295 shared function. Hum Genomics. Dec 02 2022;16(1):66. doi:10.1186/s40246-022-00439-3

2006 8. Kumar N, Leonzino M, Hancock-Cerutti W, et al. VPS13A and VPS13 and VPS13
297 - proteins differentially localized at ER contact sites. *J Cell Biol*. Oct 1 2018;217(10):3625-3639. 297 proteins differentially localized at ER contact sites. J Cell Biol. Oct 1 2018;217(10):3625-3635.
298 doi:10.1083/jcb.201807019 298 doi:10.1083/jcb.201807019
299 9. Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins:

300 Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol. Jul 05 2023;doi:10.1146/annurev-300 Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol. Jul 05 2023;doi:10.1146/annurev-

301 - cellbio-120420-014634
302 - 10. - Park JS, Neiman AM. XK is a partner for VPS13A: a molecular link between Chorea-303 Acanthocytosis and McLeod Syndrome. Mol Biol Cell. 10 2020;31(22):2425-2436. 304 doi:10.1091/mbc.E19-08-0439-T

305 11. Guillén-Samander A, Wu Y, Pineda SS, et al. A partnership between the lipid scramblase XK 306 and the lipid transfer protein VPS13A at the plasma membrane. Proc Natl Acad Sci U S A. Aug 30 307 2022;119(35):e2205425119. doi:10.1073/pnas.2205425119

308 12. Miltenberger-Miltenyi G, Jones A, Tetlow AM, et al. Sphingolipid and Phospholipid Levels Are ية التاريخية ويناولون المستقلة ويناولون المستقلة في المستقلة المستقلة المستقلة ويناولون المستقلة ويناولون المس
309 Altered in Human Brain in Chorea-Acanthocytosis. *Mov Disord*. Aug 2023;38(8):1535-1541. 309 Altered in Human Brain in Chorea-Acanthocytosis. Mov Disord. Aug 2023;38(8):1535-1541.

310 doi:10.1002/mds.29445
311 13. Phillips GR, Saville JT, Hancock SE, et al. The long and the short of Huntington's disease: how 312 the sphingolipid profile is shifted in the caudate of advanced clinical cases. Brain Commun. 313 2022;4(1):fcab303. doi:10.1093/braincomms/fcab303

314 14. Moras M, Lefevre SD, Ostuni MA. From Erythroblasts to Mature Red Blood Cells: Organelle 315 Clearance in Mammals. Frontiers in physiology. 2017;8:1076. doi:10.3389/fphys.2017.01076

316 15. Sampaio JL, Gerl MJ, Klose C, et al. Membrane lipidome of an epithelial cell line. Proc Natl

317 Acad Sci U S A. Feb 01 2011;108(5):1903-7. doi:10.1073/pnas.1019267108

 32008

318 16. Leidl K, Liebisch G, Richter D, Schmitz G. Mass spectrometric analysis of lipid species of 319 16. Leidlin, Liebisch G, Richter D, Schmitz G, Mass spectrometric analysis of lipid species of
319 human circulating blood cells. *Biochim Biophys Acta*. Oct 2008;1781(10):655-64. 319 human circulating blood cells. Biochim Biophys Acta. Oct 2008;1781(10):655-64.

 $12[°]$

321 17. Peikert K, Danek A. VPS13 Forum Proceedings: XK, XK-Related and VPS13 Proteins in
322 Membrane.Lipid.Dynamics.Contact2023.

-
- 323 18. Adjobo-Hermans MJ, Cluitmans JC, Bosman GJ. Neuroacanthocytosis: Observations, Theories
- 324 and Perspectives on the Origin and Significance of Acanthocytes. Tremor Other Hyperkinet Mov (N Y).
- 325 2015;5:328. doi:10.7916/D8VH5N2M
- 326 19. Lupo F, Tibaldi E, Matte A, et al. A new molecular link between defective autophagy and
- ری ہے۔
327 erythroid abnormalities in chorea-acanthocytosis. *Blood*. Dec 22 2016;128(25):2976-2987. 327 erythroid abnormalities in chorea-acanthocytosis. Blood. Dec 22 2016;128(25):2976-2987.
-
- 328 doi:10.1182/blood-2016-07-727321
329 20. Peikert K, Federti E, Matte A, et al. Therapeutic targeting of Lyn kinase to treat chorea-
- 330 acanthocytosis. Acta Neuropathol Commun. May 2021;9(1):81. doi:10.1186/s40478-021-01181-y
- 331 21. Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res.
- 332 May 2015;56(5):945-62. doi:10.1194/jlr.R052415
- 333 22. Cloos AS, Daenen LGM, Maja M, et al. Impaired Cytoskeletal and Membrane Biophysical
- 334 Properties of Acanthocytes in Hypobetalipoproteinemia A Case Study. Frontiers in physiology.
- 335 2021;12:638027. doi:10.3389/fphys.2021.638027
- 336 23. Sharma R, Holman CJ, Brown KE. A thorny matter: Spur cell anemia. Ann Hepatol. 337 2023;28(1):100771. doi:10.1016/j.aohep.2022.100771
- 338 24. Hsu P, Shi Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases.
- ى من كان كان المراكب ون المراكب ون المراكب .
339 Biochim Biophys Acta Mol Cell Biol Lipids. Jan 2017;1862(1):114-129. 339 Biochim Biophys Acta Mol Cell Biol Lipids. Jan 2017;1862(1):114-129.
340 doi:10.1016/j.bbalip.2016.08.003
-
- 340 doi:10.1016/j.bbalip.2016.08.003
341 25. Toulmay A, Whittle FB, Yang J, et al. Vps13-like proteins provide phosphatidylethanolamine
- 342 for GPI anchor synthesis in the ER, J Cell Biol. Mar 07 2022;221(3)doi:10.1083/jcb.202111095
- 343 26. de Kruijff B. Lipid polymorphism and biomembrane function. Curr Opin Chem Biol. Dec
- 344 1997;1(4):564-9. doi:10.1016/s1367-5931(97)80053-1 344 1997;1(4):564-9. doi:10.1017;1016/s1367-5931(97)80053-1

345 27. van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and
346 integral membrane proteins via changes in the lateral pressure profile. *Biochim Biophys Acta*. Nov 03

347 2004;1666(1-2):275-88. doi:10.1016/j.bbamem.2004.06.010

348 28. Clausmeyer L, Fröhlich F. Mechanisms of Nonvesicular Ceramide Transport. Contact

349 (Thousand Oaks). 2023;6:25152564231208250. doi:10.1177/25152564231208250

- 350 29. Peikert K, Glaß H, Federti E, et al. Targeting Lyn Kinase in Chorea-Acanthocytosis: A
- 350 29. Peikert K, Glaß H, Federti E, et al. Targeting Lyn Kinase in Chorea-Acanthocytosis: A 351 Translational Treatment Approach in a Rare Disease. J Pers Med. May 10
352 2021;11(5)doi:10.3390/jpm11050392
- 352 2021;11(5)doi:10.3390/jpm210003