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Abstract 1

Avian influenza A(H5N1) poses a public health risk due to its pandemic potential should the virus 2

mutate to become human-to-human transmissible. To date, reported influenza A(H5N1) human cases 3

have typically occurred in the lower respiratory tract with a high case fatality rate. There is prior 4

evidence of some influenza A(H5N1) strains being a small number of amino acid mutations away from 5

achieving droplet transmissibility, possibly allowing them to be spread between humans. We present a 6

mechanistic within-host influenza A(H5N1) infection model, novel for its explicit consideration of the 7

biological differences between the upper and lower respiratory tracts. We then estimate a distribution 8

of viral lifespans and effective replication rates in human H5N1 influenza cases. By combining our 9

within-host model with a viral mutation model, we determine the probability of an infected individual 10

generating a droplet transmissible strain of influenza A(H5N1) through mutation. For three mutations, 11

we found a peak probability of approximately 10−3 that a human case of H5N1 influenza produces at 12

least one virion during the infectious period. Our findings provide insights into the risk of differing 13

infectious pathways of influenza A(H5N1) (namely avian-human vs avian-mammal-human routes), 14

demonstrating the three-mutation pathway being a cause of concern in human cases. 15

1 Introduction 16

The influenza virus family is responsible for influenza infections (colloquially referred to as the ‘flu’) 17

in a variety of animals including humans, other mammals and birds. There are four main influenza 18

types (A-D); within type A influenza there is substantial public health concern around the avian 19

influenza A(H5N1) subtype, commonly known as bird flu. Influenza A(H5N1), which we will refer 20

to as H5N1 influenza, is highly pathogenic in avian species and considered panzootic, being widely 21

distributed in wild and domesticated birds [1]. There have been 911 reported cases of human H5N1 22
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influenza worldwide as of 23 May 2024 [2]. These reported cases have generally been severe, with a case 23

fatality rate of 53% [3] although, at the time of writing, there is little evidence for human-to-human 24

transmission of H5N1 [4]. Nonetheless, the high prevalence of the infection in the avian population is 25

causing mounting concerns that under the right circumstances, an H5N1 strain could mutate to allow 26

human-to-human transmission. If this were to occur, transmission between humans is likely to allow 27

increased spread of the virus (at similar levels to the seasonal flu) with a resultant pandemic amongst 28

humans. 29

Previous flu pandemics, and seasonal flu outbreaks, are primarily infections of the upper respiratory 30

tract (URT) [5] due to the presence of SAα2,6 receptors that these strains preferentially bind to 31

for cell entry. H5N1 influenza, however, preferentially binds to SAα2,3 receptors present in the avian 32

respiratory and intestinal tracts [6–10], and these receptors are primarily found in the lower respiratory 33

tract (LRT) in humans. This not only makes it much more difficult for initial human infection to occur, 34

but also means that droplet transmission (the main source of seasonal flu transmission) is not viable, 35

hence the current lack of human-to-human transmission of H5N1 influenza. However, with suitable 36

mutations within humans, H5N1 influenza could evolve the ability to infect the URT as well as the 37

LRT. This is cause for concern for two reasons. Firstly, infections in the LRT may lead to greater 38

mortality due to increased risk of pneumonia and other related fatality risks [11]. Secondly, with the 39

ability to infect the URT, human-to-human transmission becomes more likely, increasing the pandemic 40

potential of H5N1 influenza [6, 8, 9]. 41

Prior studies found that five amino acid substitutions in H5N1 influenza were required for human-to- 42

human transmission to be possible at the time those experiments were conducted, with two of these 43

mutations having already been seen in viruses sampled from the avian population [6]. It is believed 44

that the other three mutations are unlikely to evolve in avian species as they are deleterious to the 45

virus in birds. Consequently, between three and five mutations are likely required to take place in 46

humans for droplet transmission to be likely. 47

For pandemic preparedness, it is crucial that we have suitable tools available to quantify the chance 48

of an infected individual generating a droplet transmissible strain of H5N1 influenza through muta- 49

tion. However, the probability of such mutations in H5N1 influenza occurring within a human host is 50

presently unknown. To enable modelling analysis of this problem, there are two key limitations in the 51

existing modelling literature. The first is that previous models of H5N1 influenza within-host infection 52

dynamics in humans do not take into account the differences between the two tracts (URT and LRT). 53

Although there have been modelling efforts to account for the binding specificities of H5N1 influenza 54

in different areas of the respiratory tract [7], and it is understood that fluid dynamic effects/having 55

multiple patches impact contagion dynamics [12–14], to our knowledge no current research explicitly 56

models H5N1 influenza infection dynamics in the LRT and URT. The second is that although poten- 57

tial mathematical frameworks for the modelling of advantageous mutations (such as those required 58

for droplet transmissibility) do exist in the literature, these have explored the implications of the 59

frameworks as opposed to explicitly finding the mutation probabilities [6, 15, 16]. 60

In this paper, we present a combined modelling framework to address these two notable methodolog- 61

ical gaps. The first modelling component is a novel within-host two-patch (both upper and lower 62

respiratory tract), ODE infection model for H5N1 influenza. By inferring patch-dependent disease 63

parameters, we seek to capture the biological differences in spreading capability of H5N1 influenza in 64

the two parts of the respiratory tract. The second modelling component is an enhanced branching 65

process model (BPM) for H5N1 influenza virus mutation, building on the work of Russell et al. [6]. 66

Informed by the within-host model outputs, and including the distribution of infection lifespans and 67

real-time replication number estimates, we use the BPM to provide a more realistic estimate on the 68

evolutionary dynamics of a human H5N1 influenza infection. Combined, our modelling framework is 69

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


generalisable to other respiratory pathogens, allowing researchers to estimate the mutation chances 70

for a pathogen mutating specific traits. 71

2 Methods 72

Herein we summarise the three main methodological components of our study. We begin with a de- 73

scription of the novel within-host deterministic infection model and its calibration to both the canonical 74

H5N1 influenza dataset and case fatality rate (Section 2.1). This is followed by the introduction of 75

the branching process model for viral mutation and how it incorporated the within-host model re- 76

sults (Section 2.2). Finally, we list the methods and model realisations used to calculate both the 77

time dependent proportion of mutant virions in a host and the probability that a human-to-human 78

transmissible strain could arise from an infection (Section 2.3). 79

To simulate the within-host infection model (and its proxies) and the branching process model we 80

used Python 3.11 with packages: Numpy (version 1.26.4), Matplotlib (version 3.84), Scipy (version 81

1.13.0) and Pickle (version 4.0). We conducted the Approximate Bayesian Computation scheme for 82

fitting the within-host model in R 4.3 using the packages: tvmtnorm (version 1.6), KScorrect (version 83

1.4.0) and deSolve (version 1.40). A repository containing the data and code used to conduct this 84

study can be found at https://github.com/joshlooks/avianflu. 85

2.1 Within-host infection model explanation and fitting 86

Our within-host model for H5N1 influenza infection introduced key biological processes not present in 87

other models in the literature. This model development subsequently forms the basis of the remaining 88

results presented in this paper. Here we outline the canonical dataset used for fitting the intra-host 89

model (Section 2.1.1), provide the biological description of the infection model (Section 2.1.2) and 90

state the corresponding ODE system (Section 2.1.3). We then explain how the model parameters 91

were calibrated using literature (Section 2.1.4) and an Approximate Bayesian Computation scheme 92

(Section 2.1.5). Lastly, introducing mortality into our two-patch model was of utmost importance 93

for informing how likely human-to-human transmission may be. The relatively high case fatality rate 94

of H5N1 influenza could hamper its ability to mutate in the body since those infected may be likely 95

to die before the virus has a chance to mutate to become human-to-human transmissible. We thus 96

conclude this section by outlining how we fit the model outputs to mortality data (Section 2.1.6). 97

2.1.1 Data 98

We made use of the ubiquitous dataset in the literature corresponding to the viral titres of eighteen 99

hospitalised H5N1 influenza patients in Vietnam in 2004 and 2005 [17]. As the raw data were not 100

publicly available, we estimated the viral titre values from Supplementary Figure 1 in de Jong et al. 101

[17]; given the large variation in the data point values we expect our estimation procedure to have 102

little effect on the takeaways presented. The titrations were formed from pharyngeal swabs taken 103

after presentation at the hospital. These measurements corresponded to the viral load in the URT 104

only, with viral loads varying in many orders of magnitude between patients on the same estimated 105

day post-infection (Fig. 1). We anticipated that this characteristic of the data, and the small, noisy 106

sample, could pose issues around parameter identifiability and model generalisation to an ‘average 107

infection’ during model fitting. Nonetheless, this dataset is the most recent and complete human 108

infection data available for H5N1 influenza. Prior studies attempting to calibrate models to these 109

data have gathered an understanding of related biological processes [7, 18]. It thereby provides an 110

entry point for calibration of our proposed model and the exploration of its infection dynamics. 111

3

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://github.com/joshlooks/avianflu
https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


3 4 5 6 7 8 9
Time (days post infection)

102

103

104

105

106

107

108

109

Vi
ra

l T
itr

e 
(T

CI
D 5

0/m
l)

Fig. 1. Viral titres from pharyngeal swabs of hospitalised H5N1 influenza patients in
Vietnam. Data from de Jong et al. [17], where viral RNA loads were measured in throat swabs
obtained at admission from 18 H5N1 patients. We used this dataset to calibrate all models included
in this paper.

2.1.2 Deterministic two-patch infection model description 112

We first built a deterministic two-patch ordinary differential equation infection model, with the URT 113

and LRT each having their own internal processes. The URT and LRT then interact via the diffusion 114

of the free virus between each patch and an advection term, describing the movement of free virus 115

between patches via physical movement of fluid. The advection term can be considered the transfer 116

of mucus (through coughing or mucociliary clearance by cilia) from the LRT to the URT. A graphical 117

depiction of the above processes is shown in Fig. 2. 118

For the within-patch processes (the cells subfigure in Fig. 2), we modelled each respiratory tract 119

compartment as having a set of uninfected epithelial cells (or ‘target cells’, T ) to which the H5N1 120

influenza virions (V ) may bind. After infection by a virion, the cells move into an eclipse/latent 121

phase (E) where they are infected by the virus but do not produce any additional virions. After an 122

exponentially-distributed period of time, the cells leave the latent phase and enter the infected phase 123

(I), producing free virions. LRT models for Influenza A have been studied previously; we based our 124

more complex two-patch model on a model of the infection in the LRT by Handel et al. [19]. We note 125

in particular that the key difference between the URT patch and the LRT patch is that it is generally 126

considered that the URT can be modelled using a ‘target-cell limited’ approach. In other words, there 127

is limited immune response in the URT and the dynamics of the virus are entirely governed by the 128

number of uninfected cells alive. Thus, we only considered an immune response in the LRT patch. 129

The adaptive immune response (X) has a humoral component comprised of B-cells and antibodies, as 130

well as a cellular component, comprised of T-cells. The humoral component causes the IR to increase 131

proportionally to the viral load in the LRT, and the clonal expansion of the T-cells causes the IR to 132

grow exponentially, as in Handel et al. [19]. X can be considered to represent antibodies in the host. 133
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Fig. 2. LRT and URT explicit within-host respiratory infection model schematic.
Compartments listed are uninfected/target cells (T ), free virions (V ), eclipse/latent cells (E),
infected/virion-producing cells (I) and the adaptive immune response (X). Note that the subscripts
U,L represent the URT- and LRT-based compartments respectively. The different colours represent
the processes in the URT (in blue) and in the LRT (red). Arrows show the spread of the contagion
through the host. The dashed arrows in the virus compartment indicate the coupling of the two
patches through advection and diffusion. Parameters descriptions are found in Table 1.
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2.1.3 ODE system 134

The within-host dynamics of H5N1 infection obeyed the following system of ordinary differential equa- 135

tions. We note that a subscript U denotes that the compartment / parameter is for the URT, while 136

a subscript L denotes that the compartment / parameter is for the LRT. 137

138

dTU

dt
= −βUTUVU

dEU

dt
= βUTUVU − gEU

dIU
dt

= gEU − dIU

dVU

dt
= pUIU − cVU − γβUTUVU −D(VU − VL) + aVL

dTL

dt
= −βLTLVL

dEL

dt
= βLTLVL − gEL

dIL
dt

= gEL − dIL

dVL

dt
= pLIL − cVL − γβLTLVL − kVLX +D(VU − VL)− aVL

dX

dt
= fVL + rX

with βU and βL the rate of infection in the URT and LRT, g the latent transition rate of infected cells, 139

d the mortality rate of infected virus producing cells , pU and pL the virus production rate in the URT 140

and LRT, c the morality rate of free virions, γ the conversion rate between infection and viral titre, f 141

the recruitment rate of adaptive immune response, r the expansion rate of adaptive immune response 142

and k the kill rate of adaptive immune response, D the rate of diffusion and a the rate of advection. 143

2.1.4 Model parameterisation from the literature 144

We obtained values from the literature for a subset of parameters in our ODE model. From Dobrovolny 145

et al. [18], we set the latent state duration of infected cells (1/g) as 1/4 days, the lifespan of infected 146

virus producing cells (1/d) to be 1/5.2 days and the lifespan of free virions (1/c) as 1/2 day. We also 147

highlight that Dobrovolny et al. [18] noted that their values were consistent with other research in the 148

area. 149

For the immune parameters, we took the approach found in Handel et al. [19]. Although this was 150

fitted to mice data, studies have shown that the mice immune system is a suitable analogue for the 151

immune system found in humans in vivo [20]. Further, parameters are likely transferable through 152

the comparison of mice and human metabolic rates - mice have a metabolic rate seven times that of 153

humans [21]. We converted from plaque-forming unit (pfu) into TCID50 (Tissue culture infectious 154

dose 50%), with pfu being proportional to TCID50 by a factor of 0.56 [22]. 155

It was also important to select an initial number of target cells and initial viral load. We took the 156

estimated values of TU = 4× 108, TL = 6.25× 109 from Ciupe and Tuncer [23], which were calculated 157
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using the average surface area of an epithelial cell and of the human respiratory tract. We took the 158

initial viral load (V0 = 1.3× 103 TCID50/ml) from the fitted values of the single-target-cell model in 159

Dobrovolny et al. [7]. 160

There was little information in the literature regarding rate of infection βU and βL, virus production 161

rate pU and pL, conversion rate between infection and viral titre γ, rate of diffusion D or rate of 162

advection a. These parameters of interest were also chosen as they have been found to have the 163

biggest impact on the observed disease dynamics [7, 14, 18]. It is also worth noting that setting 164

γ = 0 leads to similar results (and is normally ignored in human models [14, 18, 19]). This parameter 165

represents the conversion rate between the viral titre (in TCID50) and the number of free virions used 166

to infect a target-cell. Setting this parameter to zero indicates that there is no noticeable change in 167

the viral titre due to the infection of target-cells. By re-introducing this parameter (allowing it to 168

be non-zero), we gained an extra degree of freedom in the model that allowed for more biologically 169

realistic parameter values and peak shapes to be observed during parameter fitting. 170

We state the default model parameters, for non-fitted parameters, in Table 1. Some of the selected 171

parameter values are similar to literature values for models fitted to H1N1 infection data within 172

humans [24–26]. However, previous studies on H5N1 influenza infection in humans found that these 173

values gave good fits to the data, and that the other aforementioned parameters that we fitted for 174

were the main contributors to viral dynamics [7, 18]. 175

2.1.5 Model calibration and parameter inference 176

To calibrate the model, we made use of the dataset outlined in Section 2.1.1. We note that these data 177

correspond to the viral load in the URT only, meaning we could only fit the model dynamics based on 178

the URT compartments. Parameter identifiability is a problem for most mathematical biology models, 179

and this was especially true for our fitting process as we had less than 20 data points available, all of 180

which corresponded to hospitalised individuals who died from the infection. 181

To fit the parameters we employed an Approximate Bayesian Computation Sequential Monte Carlo 182

M Nearest Neighbours (ABC-SMC-MNN) method based on the pseudo-code found in Minter and 183

Retkute [27], using methods originally developed by Filippi et al. [28] and Toni et al. [29]. Due to 184

the lack of data, and its continuous nature, an exact likelihood function for data fitting is difficult to 185

justify, thus we adopted an ABC inference scheme. With large order of magnitude differences across 186

our data points, we chose the summary statistic (c) to be the model error on a log-scale, where y is 187

the data, N is the number of data points and x is the model predictions: 188

c =

N∑
i=1

(log (yi)− log (xi))
2

We chose the perturbation kernel to be a truncated-multivariate-normal distribution (truncated to 189

take into account the prior). For the prior distributions, we assumed log-uniform prior distribution 190

for all variables (see Table 1 for the prior distribution ranges). We selected log-uniform priors as it is 191

an uninformative prior and because the parameters were likely to be skewed towards lower orders of 192

magnitude (such that our prior belief was the parameters being uniform on a log-scale). We informed 193

the parameter ranges of the priors by first taking a least-squares fit (to both the normal and log-scale 194

data); we then took a wide range around those values to define the prior bounds. Furthermore, we 195

also assumed the spreading rate in the LRT (βL) to be greater than that in the URT (βU ). This 196

is because H5N1 influenza preferentially binds to proteins more commonly found in the LRT as the 197

type of receptor expression in the LRT is more similar to the avian respiratory tract [7, 30–32]. The 198
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Table 1. List of model parameters and their descriptions. For fixed parameters we state
their value and associated references. For inferred parameters we list their prior distribution (we use
lU as a notation for the log-uniform distribution). We provide unit information for each parameter
in parenthesis after the parameter description.

Parameter Value Prior
βU Rate of infection, URT

(day−1)
- lU(1× 10−8, 1× 10−6)

βL Rate of infection, LRT
(day−1)

- lU(1× 10−7, 1× 10−5)

1/g Productively infected cells
(days)

1/4 [18] -

1/d Lifespan of infected, virus-
producing cells (days)

1/5.2 [18] -

pU Virus production rate, URT
(day−1)

- lU(1× 10−4, 1)

pL Virus production rate, LRT
(day−1)

- lU(1× 10−4, 1)

1/c Lifespan of free virions (days) 1/2 [18] -
γ Conversion between infec-

tious virions and TCID50 /
PFU (unitless)

- lU(1× 10−6, 2× 10−3)

f Recruitment rate of adaptive
immune response (day−1)

0.56 × 2.8 × 10−6/7 [19] (fig
6)

-

r Expansion rate of adaptive
immune response (day−1)

0.27/7 [19] (fig 6) -

k Kill rate of adaptive immune
response (day−1)

20 [19] -

D Rate of diffusion of free viri-
ons (day−1)

- lU(1× 10−3, 1)

a Rate of advection (day−1) - lU(1× 10−3, 1)

chosen hyper-parameters for the algorithm were to run the method adaptively, with an error tolerance 199

in the first generation of 180. The error tolerance for subsequent generations was then set at the 40th 200

percentile of the previous generations’ particles. We set the algorithm to terminate either after 10 201

generations, or when the error tolerance changed by less than 1% between subsequent generations. 202

We ran the algorithm for the full ten generations, with a final (adaptive) error threshold of 141.58 203

(compared to a 142.1 tolerance in the previous generation). The error threshold in the final generation 204

had similar error to the least-squares fit value of 120.9. 205

2.1.6 Mortality 206

It is currently believed that a leading cause of death amongst H5N1 influenza patients is a phenomenon 207

known as a ‘cytokine storm’ [33]. This occurs when the immune response to the virus is elevated to 208

the point where the body overwhelms itself, causing massive inflammation and ultimately death [34]. 209

Since a cytokine storm results from the immune system’s sustained response to viral load, for our 210

two-patch model we took cumulative viral load as a proxy for mortality. In particular, we considered 211

8
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the integral of the logarithm of the viral load over time as our metric for mortality: 212∫ t

0
log (VU (s) + VL(s))ds > M

with M a constant. To determine the value of M , we took the case fatality rate of 53% given in Sah 213

et al. [3] and found the value of M that corresponded to said case fatality rate from the results of our 214

stochastic simulations. In doing so, we set M = 162.280. 215

We also conducted a sensitivity analysis of our results to a lower case fatality rate of 20%. This value 216

was taken from Dobrovolny et al. [18] for individuals treated with neuraminidase inhibitors and lead 217

to a higher M value of 177.328. 218

Introducing the proxy for mortality given above, we calculated the total length of infection for each 219

of our infection simulations. We considered the infection to be finished when either a patient dies or 220

their total viral load fell below VU + VL < 104, i.e. 221

T = sup
t
{t ∈ R+ : 1{patient alive}(t)[VU (t) + VL(t)] > 104}

From this, we calculated an empirical distribution for T that we used to model viral mutations within 222

humans (Fig. 3(a)). When taking a case fatality rate of 53%, most of the empirical distribution 223

for T occurred between eleven to thirteen days post infection, having reasonable correspondence to 224

previously recorded infections of (and modelling efforts for) H5N1 influenza infections lasting for 225

around ten days [6, 7, 18]. When instead assuming a case fatality rate of 20%, most of the empirical 226

distribution for T was between twelve and fifteen days (Fig. 3(b)). 227
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Fig. 3. Viral lifespan (T ) distributions under each case fatality rate assumption. The
assumed case fatality rates were (a) 53% and (b) 20%, respectively. We obtained the viral lifespan
distributions by determining when either the viral load dropped below 104 or the integral under the
log curve reached a value M . We performed the fitting method outlined in Section 2.1.6.
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2.2 Mutation modelling and viral dynamics 228

From outputs that could be generated from our two-patch within-host model, we next needed an 229

additional modelling component that would enable us to calculate the proportion of virions with 230

zero, one, two, three, four and five mutations, and the probability that any given virion within the 231

body had this number of mutations. In this section we outline our adapted stochastic branching 232

process mutation model used for this purpose. This model contains biologically informed values for 233

key model parameters, informed by the incorporation of results from the within-host infection model, 234

thus providing a prominent modelling advance. 235

We adapted the stochastic branching process mutation model for viral mutation introduced in Russell 236

et al. [6], in which viral replication occurs at fixed time intervals of length ∆ with a mutation rate 237

µ and replication rate r. The total number of viruses with j mutations at each time step tk = k∆ 238

(with k ∈ N and tk < T ), N (j)
tk

, is then given as a Poisson random variable: 239

N
(j)
tk

∼ Poi(r
5∑

i=0

N
(i)
tk−1

µij)

where 240

µij = P(Mutates from i to j mutations) =


µj−i for i < j

1− 1{i < 5}
∑5

j=i+1 µ
j−i for i = j

0 otherwise

Note that the rate of N (j)
tk

is a summation due to the additive property of the Poisson random variable. 241

We adapted the above process to allow for model parameters to be informed from the fitted within- 242

host infection model. We allowed r to be a function of time, r(tk), rather than a fixed value. Our 243

branching process was thus instead defined by: 244

N
(j)
tk

∼ Poi(r(tk)
5∑

i=0

N
(i)
tk−1

µij)

The function r(tk) represents the viral replication rate as derived from our two-patch within-host 245

model. To define it, we first express a partition P of [tk, tk+1] such that tk = τ0 < τ1 < · · · < τm = tk+1 246

with τi+1 − τi = δ where δ is the rate at which the ODE system is updated when solved numerically. 247

It is then given by the product of the weighted sum of the number of virions created and destroyed 248

at each time step δ in each tract: 249

r(tk) =
m∏
l=1

∑
S∈{U,L}R

(S)
τl K

(S)
τl V

(S)
τl−1

Vτl

which is dependent on these four functions (with S ∈ {U,L}, denoting whether the value corresponds 250

to the URT or LRT and N,V,D, p, I, c, V, β, T, k,X and V are as described in Section 2.1.3): 251

The growth rate of new virions R
(S)
τl = 1 +

N
(S)
τl −N

(S)
τl−1

Vτl−1

, 252

253
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The death rate of existing virions K
(S)
τl = 1−

D
(S)
τl −D

(S)
τl−1

Vτl−1

, 254

255

The rate of virion production dN (S)

dt
= p(S)I(S), 256

The rate of virion removal dD(S)

dt
= cV (S) + β(S)T (S)V (S) + 1{S=L}kXV (S). 257

2.3 Mutant virion proportions and probabilities 258

Our final piece of analysis involved exploring the time dependent proportion of mutant virions in a 259

host and the probability that a human-to-human transmissible strain could arise from an infection. 260

Previous studies have found that up to two of the required five H5N1 influenza mutations can naturally 261

occur in birds [6]. Depending on the number of mutations that have occurred prior to the human 262

H5N1 influenza case, mutant virions then require either three out of three, four out of four, or five out 263

of five of the required mutations for droplet transmission. Results from the branching process model 264

allowed us to inform the probability that at any given time during the infection, the human host has at 265

least one virion with the necessary number of mutations required for human-to-human transmission. 266

Note that we term ”X out of X mutations” for instances where the required total five mutations to 267

achieve droplet transmission could be obtained during the infection episode of the human case (i.e. 268

acquiring three or more mutations during the human infection case episode). 269

We ran the branching process model for viral mutation over the 1000 posterior predictive trajectories 270

acquired via the procedure outlined in Section 2.1.5. We initialised the starting viral load as 106 271

virions in each realisation. Our reasoning for that choice is as follows. The initial viral count in our 272

two-patch within-host model was 1.3×103 TCID50/ml. For influenza A virions, the viral count per ml 273

is around four orders of magnitude greater than the TCID50/ml value [35]. Using these two pieces of 274

information, this gave us a viral density of approximately 107 virions per ml. Then, taking an initial 275

infected droplet of size 10−1ml, we arrive at an initial viral count of 106 virions. In these simulations 276

we also took ∆ (the period between replications) to be six hours, noting that δ (the update rate of 277

the two-patch within-host model solutions) is 0.001 days. This corresponds to the virions making two 278

replication cycles (one from cRNA to vRNA and then back to cRNA) every 0.5 days, as in Russell 279

et al. [6]. 280

We ran two sets of simulations of the branching process model. The first was a set of one million BPM 281

realisations (1000 copies of each of the 1000 sets of parameter samples in the posterior distribution), 282

seeding the infection with an initial viral load of 106 virions. 283

The second was a set of 1000 BPM realisations (one for each of the parameter sample sets in the 284

parameter posterior distribution) with 106 × 106 initial virions (to simulate one billion people, but 285

combining BPMs to save on computation time). This provided a higher precision in the calculation 286

of mutation virus proportions. 287

We also calculated the probability that an individual had at least one virion exhibiting a specific 288

number of mutations. This provided another indication of the likelihood of an infection mutating to 289

allow for human-to-human droplet transmission. This probability calculation was, however, intractable 290

for the BPM that simulated one billion people as it required being able to differentiate between 291

individuals (not possible here as we combined BPMs as it is computationally expensive to run the 292

number of individual realisations needed to achieve the required level of precision). We thus introduced 293
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an upper-bound estimate for this probability at time t. Using this approximation allowed for a 294

probability approximation to be produced for a much higher number of BPM realisations. 295

The approximation was as follows. Let Vt be the (mean) virion count for an individual at time t, 296

and V
(i)
t be the (mean) number of virions with i mutations for an individual at time t. Additionally, 297

given an (average) infected individual, let A be the event that this individual has no virions with i 298

mutations at time t and Bk be the event that virion k in this individual does not have i mutations at 299

time t, where k = 1, 2, ..., Vt. Then, 300

P(An individual at time t has at least one virion which has undergone i mutations) 301

= 1− P(A) 302

= 1− P(
⋂Vt

k=1Bk) 303

= 1−
∏Vt

k=1 P(Bk |
⋂

j<k Bj) 304

≤ 1−
∏Vt

k=1 P(Bk) 305

= 1−
∏Vt

k=1(1−
V

(i)
t

Vt
) 306

= 1− (1− V
(i)
t

Vt
)Vt = p̂

(i)
t , i = 0, 1, 2, 3, 4, 5 307

308

To justify the inequality, we first note that if an arbitrary virion at the current timestep has imutations, 309

the probability that any other virion has that number of mutations would increase. This is because 310

there is a chance that virions with the same number of mutations could have the same parent. The 311

joint probability events (Bk |
⋂

j<k Bj) takes into account this positive correlation (but the event Bk 312

by itself does not), i.e. P(Bk |
⋂

j<k Bj) ≥ P(Bk) 313

Additionally, since each virion is equally likely to mutate, we used the proportion of virions with i 314

mutations to get that P(Bk) = 1− V
(i)
t

Vt
∀k. 315
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3 Results 316

3.1 Fitting the two-tract within-host respiratory infection model to H5N1 in- 317

fluenza viral titre data 318

Having developed our within-host respiratory infection model, with infection dynamics in the LRT 319

and URT modelled explicitly, it was important to ascertain whether it could reproduce the observed 320

H5N1 influenza viral titres (Fig. 1) whilst maintaining biologically reasonable parameters. Resultant 321

parameter posteriors would then be used as inputs to the branching process model. 322

We ran the ABC-SMC-MNN routine and obtained 1000 samples of the posterior distribution for seven 323

fitted parameters: βU , βL, pU , pL, γ, D and a (Fig. 4). We note that even for the posteriors that 324

had similarities to a log-uniform distribution (βL, pL, γ,D, a), the range and probability mass of these 325

distributions shifted compared to the prior. This is reinforced by a least-squares fit producing a 326

similar profile to the median of the posterior-predictive distribution (Fig. 5(a)). The least-squares fit 327

parameters can be found in Section S1. 328

Comparing the inferred posterior distributions for the URT and LRT spreading rate parameters, the 329

95% credible interval for the spreading rate in the URT (βU ∈ [2.24×10−7, 3.47×10−7]) was generally 330

at a lower range than in the LRT (βL ∈ [1.09×10−7, 1.18×10−6]). This difference possibly corresponds 331

to the preferential binding of H5N1 influenza to the epithelial cells in the LRT than in the URT. The 332

production rate in the URT (pU ∈ [0.348, 0.608]) was higher than in the LRT (pL ∈ [0.00488, 0.044]), 333

likely due to the higher target-cell count (and thus maximum production rate) in the LRT. There 334

was a clear negative correlation between βU and pU (relating to the previous discussion), which is to 335

be expected as an increase in the spreading rate would lead to target-cells being infected sooner and 336

hence a larger infection time available to produce virions (meaning that a lower pU is required) and 337

vice-versa. The 95% credible interval for γ was at a low range of [2.72× 10−6, 2.97× 10−4], indicating 338

that the parameter was needed to delay the peak time, but only at smaller values. The 95% credible 339

intervals for the diffusion (D ∈ [0.00141, 0.0680]) and advection (a ∈ [0.0414, 0.731]) coefficients are 340

quite wide, possibly indicating that the intra-patch processes contribute more than the inter-patch 341

processes to the viral dynamics. 342

Through simulation of our model using the 1000 parameter sets representing samples from the target 343

posterior distribution, we next checked the correspondence between the posterior predictive distribu- 344

tion for VU and the empirical viral titre data (Fig. 5(a)). As the data is wide ranging - the smallest 345

viral titre measured had a value of around 104TCID50/ml with the highest being at over 108 - the 346

likelihood surface has many steep local minima giving a tight posterior interval. However, it can also 347

be seen that the least squares solution (Section S1) lies close to the median produced by the ABC 348

method, giving confidence about the validity of the solution. The predictive interval lay within the 349

middle range of the dataset. The qualitative shape (including peak height and time) of the median was 350

very similar to other models [7, 14, 18, 36]. For the least-squares optimisation we chose five different 351

starting parameter sets and selected the resultant local mode with the lower error. Although not 352

guaranteed, we are confident that this is likely the global optima as multiple starting points converged 353

to this value. This outcome supports the parameter posterior distributions acquired by the ABC 354

approach successfully incorporating the posterior. 355

Lastly, inspection of the peak time distribution of viral titre realisations from the posterior predictive 356

distribution showed almost all of the density of peak viral titre occurring between 4.7 and 5 days post 357

infection (Fig. 5(c)). This observation provided further assurance in the concordance between the 358

fitted model and the empirical data. 359
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Fig. 4. Parameter posterior distributions. We obtained 1000 samples of the target posterior
distribution using the ABC-SMC-MNN method outlined in Section 2.1.5. Diagonal panels show the
marginal distributions for: rate of infection in the URT (βU ) and the LRT (βL), virus reproduction
rate in the URT (pU ) and the LRT (pL), conversion rate between infection and viral titre (γ), rate of
diffusion of free virions (D) and the rate of advection (a), respectively. Off-diagonal panels show
bi-parameter distributions, where the contour shading intensity corresponds to the probability
density value (lighter for higher probability density). Parameters (βL, pL) in the LRT tended to be
higher than the URT (βU , pU ), agreeing with the biological preference for H5N1 influenza to infect
the LRT.
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3.2 Viral dynamics and branching factor by survival status 360

Having acquired posterior predictive trajectories for the viral load, we fit the resultant values using 361

the mortality proxy (Section 2.1.6). This process allowed for the separation of simulated stochastic 362

viral dynamics into individual who cleared the infection and those who died (Fig. 6(a)). 363

Noting that the virion count is proportional to the viral titre (and so should follow the same dynamics), 364

we can see that the median shape of the BPM is similar to the median of the within-host ODE model 365

(comparing Fig. 6(a) to Fig. 5(a)). However, we do see a secondary peak in the viral count in many of 366

the infections. These correspond to a delayed, and high, peak in the lower respiratory tract. We also 367

see that individuals with this second peak are those who survived infection. Indeed, while this second 368

peak is higher, the infection dies off much earlier, and so these individuals have a lower sustained viral 369

load (and thus the area under the curve in the mortality proxy, is lower). 370

For the posterior distribution of replication rates (r(t)) trajectories, in the majority of realisations 371

r(t) between days zero and four was essentially constant (Fig. 6(b)), corresponding to the exponential 372

growth of v (Fig. 6(a)). All of the trajectories also display a second increase in replication rates around 373

day seven. In particular, individuals who died as a result of infection saw a slightly delayed and higher 374

second peak in r(t), corresponding to the more sustained viral load exhibited (Fig. 6(a)). Studying 375

the relationship between viral lifespan and peak replication rate (r(t)), there was minimal correlation 376

between the two variables (Fig. 6(c)). 377

When instead considering a case fatality rate of 20%, with individuals on average surviving longer 378

given a lower case fatality rate, the range of viral lifespan was slightly shifted; those who died generally 379

had a lifespan between 11.5 and 14 days (Fig. 3(b)). This contrasted to the viral lifespan distribu- 380

tion obtained in our main analysis (using a case fatality rate of 53%), with more individuals being 381

overwhelmed and dying, or alternatively clearing the virus after around 12 days (Fig. 3(b)). Despite 382

these changes to the viral lifespan distribution, we observed similar viral dynamics. In particular, the 383

peak time of infection was unaffected as decreasing the fatality rate merely meant that the individual 384

trajectories were simulated for longer before they either dropped to the point where we considered the 385

individual no longer infected or the infected individual died. 386
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Fig. 5. Posterior predictive distributions for URT viral titre metrics. (a) Posterior
predictive distribution for VU compared to the empirical data. We produced the posterior predictive
distribution using the 1000 parameter samples from our inferred parameter posterior distribution in
Fig. 4. We display the median (blue solid line), 95% pointwise prediction interval (shaded region)
and the least-squares fit (dotted red line). Both the optimisation fit and ABC posterior show
reasonable concordance to the main data trends. (b) As for (a), but showing all posterior predictive
trajectories as opposed to the distribution summary. (c) Posterior viral titre peak-time distribution
showing that the majority of infections peak just before day five. This is consistent with the data,
which shows a peak around day five to day six (post infection).
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Fig. 6. Posterior predictions for v, r(t). Both plots show the 1000 posterior trajectories, with
the blue lines representing H5N1 influenza patients who survive the infection (cleared the virus) and
the red lines representing patients who died due to the infection (where the distinction is made using
the method in Section 2.1.6). (a) Virion count distribution found using the parameter posterior in
Fig. 4. After day 6, the viral count trajectories for deceased patients are higher and more sustained
than surviving patients. These were calculated from the one million BPM realisations each with an
initial viral load of 106 and a mutation chance of 10−5 per replication. (b) Distribution of r(t)
calculated from the posterior predictive distribution shown in Fig. 5(a). Surviving patients tended to
have higher r(t) during the second peak around day 7, which then declined below one (indicating a
decreasing virion count) more rapidly than for dying patients. (c) Maximum r value vs viral
lifespan. Maximum r values taken from Fig. 6(b) and corresponding viral lifespans are shown in
Fig. 3. Blue circles represent H5N1 influenza patients who survive the infection (cleared the virus).
Red circles represent patients who died due to the infection (where the distinction is made using the
method in Section 2.1.6). Surviving individuals tended to have shorter viral lifespans. Otherwise,
there was no evident dependencies between maximum r value and the viral lifespan.
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3.3 Human-to-human transmission probabilities 387

With estimates for the viral lifespan distribution and effective replication number from the parameter 388

posterior distribution, we used our BPM to investigate viral mutation dynamics. Recall that we 389

performed two sets of BPM realisations: one set with one million BPM realisations (1000 copies of 390

the 1000 sample sets in the posterior parameter distribution) that each had an initial viral load of 391

106 virions; a second set with 1000 BPM realisations (one for each sample comprising our parameter 392

posterior distribution) that each had an initial viral load of 106 × 106. 393

From the first set of one million BPM realisations (see Section 2.3) we calculated the proportion of 394

mutant strains over time (Fig. 7(a)) and probability of having at least one virion with x mutations over 395

time (Fig. 7(b)). We found that virions with the required number of mutations for human-to-human 396

transmission (three or more) made up a very small proportion of the viral load - around five orders of 397

magnitude less than the strain with the next smallest proportion. 398

The derived probability approximation (Section 2.3) gave a generally sound upper bound, following 399

a similar shape as the exact probability. A couple of exceptions were when a mutation first occurred 400

and when the virus population died off near the end of the infection (Fig. 7(b)). This reflected the 401

dependence on the population of other mutants being more pronounced at lower numbers of virions 402

(where the presence of a four mutation strain, for example, is almost purely from mutations from zero, 403

one, two, three strain virions). When a strain reaches ‘persistence levels’ within the total population, 404

the estimate as an upper bound is more robust as the majority of each strain comes from the replication 405

of said strain (and not via mutation). We note that the probability of at least one virion having the 406

required four out of four mutations is zero for almost all of the infections simulated, apart from the 407

time period between five and seven days where two out of the one million BPM realisations had at 408

least one virion with these mutations before both strains died out. 409

The set of BPM realisations with a higher starting load (of 106×106 initial virions) allowed for a more 410

precise computation of the proportion of mutant virions (Fig. 7(c)). Although some virions mutated 411

further along the pathway to droplet transmission (compared to the realisations with a lower initial 412

viral load), they only made up a very small proportion of the total virion count. Similarly, for the 413

estimates of the probability of observing at least one mutant with the required number of mutations 414

(Fig. 7(d)), probabilities of obtaining either four or five required mutations for droplet transmission 415

were very low across the entire infection duration. 416

In the case where we considered a lower case fatality rate of 20% (rather than a case fatality rate of 417

53%), we observed similar mutation probabilities (Fig. S3). As expected, by lowering the case fatality 418

rate the overall viral dynamics remained near identical for the majority of the infectious period. As 419

such, the mutation probabilities were not affected until the end of the infection, by which point the 420

peak of the mutation probabilities had already occurred. 421
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Fig. 7. Mutated virion statistics with respect to time elapsed post infection, computed
from BPM realisations. Line shading corresponds to the number of mutations (one mutation the
lightest shading through to five mutations being the darkest shading). In all BPM simulations we
fixed the probability of mutation at 10−5 per replication. In panels (a&b), each realisation had an
initial viral load of 106. We ran 1000 realisations of each of the 1000 posterior parameter sets
(Fig. 4). In panels (c&d), each realisation had an initial viral load of 106 × 106. We ran one
realisation of each of the 1000 posterior parameter sets (Fig. 4). (a,c) Proportion of total virions
with the specified amount of mutations. There were a very small proportion of virions that have the
required number of mutations to achieve droplet transmission (three or more mutations). (b,d)
Probability of having a mutation strain. We present the estimated probabilities as the dashed lines
with circle markers. We present the actual probabilities as solid lines. Probability estimate
derivation follows that given in Section 2.2. The estimated probabilities are a clear upper bound on
the true probabilities. Depending on the number of mutations in the initial infecting virions, there
was a low probability of achieving the required number of mutations near the beginning on the
infection lifespan (which would allow more replication of the mutant strains).
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4 Discussion 422

This paper presents a novel two-patch within-host model for an H5N1 influenza infection in a human 423

host. Compared to existing literature, we explicitly model the lower and upper human respiratory 424

tracts; this formulation enables us to mechanistically model the different biological responses to the 425

infection in each tract. We also extend the earlier work of Russell et al. [6] to allow for more realistic 426

modelling of virus mutations within a host. With these modelling developments we explored the risk of 427

developing a human-to-human transmissible form of H5N1 influenza. Together these methods provide 428

a general framework for combining within-host infection and within-host mutation models, which may 429

be readily adapted to other (primarily respiratory) contagions. 430

The fitted within-host model displayed a preference for H5N1 influenza to spread in the LRT compared 431

to the URT. This finding conforms with biological observations of a greater ease of spread for H5N1 432

influenza in the LRT (compared to the URT) [7, 8]. Also evident was the multi-modal nature of 433

URT parameter posteriors. This is likely due to the URT behaving like a target-cell-limited model, 434

in that the spread is only limited by the population of target-cells (as all of them become infected). 435

Contagion dynamics are therefore less sensitive to the parameter values in the URT, resulting in the 436

multi-modality of the parameter posterior distributions. Due to the higher target-cell numbers in 437

the LRT, once the virus reaches the LRT the dynamics are much more sensitive to these parameters 438

(βL, pL). As a consequence, the posterior has a much tighter peak around the mode. As previously 439

stated, the qualitative shape of the median posterior predictive trajectory for viral titres in the URT 440

is very similar to other models found in the literature [7, 14, 18, 36]. 441

The analysis of the relationship between maximum effective replication number/growth rate, and peak 442

viral load and infection lifespan revealed no correlation between these two variables. For the majority 443

of infections, there was a second peak at around day eight corresponding to a delayed peak in the lower 444

respiratory tract, which previous studies have indicated are to be biologically expected [19]. Under our 445

default modelling assumptions all posterior predictive viral lifespans were less than 13.5 days. This is 446

in agreement with the scenarios presented in Russell et al. [6], where they take the length of infection 447

to be 10 days. 448

The modifications we made to an existing BPM for viral mutation, namely incorporating time- 449

dependent replication rates and a realistic infectious duration distribution, gave comparable results 450

to Russell et al. [6]. As the upper bound on the probabilities (of having at least one virion with x 451

mutations) were of extremely low orders of magnitude, it seems highly unlikely that a typical human 452

infection would lead to the arrival of a strain with four or five mutations. There is a much higher 453

probability of having at least one virion with the (minimal) required three mutations, which may 454

indicate that, with a large enough outbreak, we would expect a human-transmissible strain to evolve 455

within at least one individual. Nonetheless, the proportion of virions with this strain is still expected 456

to be very low and so transmission of such strains (even if present) is unlikely [6]. In contrast, strains 457

with one or two mutations were generally highly prevalent amongst the virion population. Outbreaks 458

in mammals (in particular the large number of infections in the US dairy industry [37]), whose respira- 459

tory tracts are more similar to humans than avian species, may mean that human secondary infections 460

from these animal cases are caused by a strain that is further along the mutation pathway to droplet 461

transmissibility. Thus, there may be a higher than modelled risk of reaching the required number 462

of mutations if a human is infected by a strain transmitted from other mammals, rather than birds. 463

Russell et al. [6] considers differing initial mutations and also differing fitnesses of mutant strains. 464

They conclude that although this does increase the proportions and probabilities stated, they are 465

still sufficiently small such that these changes are unlikely to lead to a meaningful increase in the 466

probability of human-to-human transmission, with which we concur. 467
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Our work has not considered the probability of virions in the respiratory tracts being present in 468

exhaled droplets and instead focused on the probability of mutating a droplet-transmissible variant. 469

Consequently, the probabilities present in this paper are not equivalent to the probability of any H5N1 470

influenza infection in a human leading to a droplet transmissible virus. Nonetheless, our work does 471

provide a framework for making this calculation. In the future, the development of a proxy or a further 472

calculation from the results presented is required to make a conclusion on this transmission probability. 473

In principle, any time that p(i)t > 0, there is a chance of human-to-human droplet transmission, with 474

higher proportions of mutant strains corresponding to a higher likelihood of droplet transmission, 475

though the exact relationship between these two entities is unclear. Our results show that it is unlikely, 476

albeit not impossible, that a human infection of H5N1 influenza could lead to onwards transmission of 477

a droplet transmissible strain. The probability results indicate that the presence of previous mutations 478

at infection onset are more worrying than the development of the strain through mutations, as this 479

would provide more time for a droplet transmissible strain to reach persistence levels in a host. Droplet 480

transmissible strains mutating earlier in the infection pose a more significant threat as early mutations 481

lead to higher proportions of mutant strains within the individual throughout the length of infection. 482

Furthermore, an early mutation is likely to correspond with a longer period in which an infected 483

individual is symptomatic with said mutant strain, and this leads to a higher probability of this 484

mutant strain being droplet transmitted to another human. 485

The model we have presented is necessarily a simplified representation of reality. It is important that 486

we consider the modelling assumptions made and their potential limitations. Here we elaborate on the 487

implications of: the quality of the dataset used, estimation of the infection fatality ratio, estimation 488

of the infection duration and initial viral load assumptions. 489

We note that there may be multiple issues with the data. Although our two-patch posterior predictions 490

are very similar to other fitted models [7, 14, 18, 36], all within-host models for H5N1 influenza spread 491

in human hosts that use this dataset suffer from a lack of parameter identifiability and biological 492

certainty. In particular, due to the small size of the dataset, and because all individuals died (even 493

when given neuraminidase inhibitors), the average viral load may be much lower and viral lifespan 494

much longer than is shown in our model. That being said, at the time of writing this dataset is the 495

most recent and complete human infection data available for H5N1 influenza, providing an initial basis 496

for the exploration of the effects of our novel two-tract within-host infection model. 497

With regards to the estimation of the infection fatality ratio, at the time of writing, recorded cases 498

are primarily hospitalisations and are therefore more likely to result in fatalities than unrecorded 499

infections. Indeed, individuals could have been infected with H5N1 influenza and exhibited seasonal 500

flu-like symptoms, or been asymptomatic. More recent studies also estimate a larger seroprevalence 501

of H5N1 influenza in humans than previously calculated, implying that the actual fatality rate of an 502

H5N1 influenza infection is lower than previously thought [38–40]. We assumed a default value for 503

the infection fatality ratio of 53%, based on the reported case fatality ratio, which is therefore likely 504

to be an overestimate. Nonetheless, our sensitivity analysis with a lower infection fatality ratio gave 505

similar qualitative conclusions. Further infection data for H5N1 influenza viral titres in humans would 506

be required for more accurate modelling estimates and conclusions. It is important that new cases are 507

thoroughly documented, such that future H5N1 influenza models have improved accuracy, especially 508

at the beginning and end of the infection dynamics. 509

The third form of limitation relates to how pharmaceutical measures could impact the infectious 510

duration of those infected with H5N1 influenza. Treatments, such as antivirals and neuraminidase 511

inhibitors can reduce the viral load in individuals infected with H5N1 influenza exist and have been 512

shown to be effective [18, 41, 42]. If infection with H5N1 influenza was caught early on then hospitalised 513
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individuals could be treated, with the resulting lower mortality rates and longer infection lengths 514

plausibly leading to higher than estimated probabilities of obtaining a droplet transmissible strain 515

(similar treatments for COVID-19 patients led to higher mutation chances [43]). We note however, 516

that in the dataset used, all individuals who presented with H5N1 influenza were subsequently given 517

neuraminidase inhibitors, and yet all died due to their infection. Thus, it may be that in the majority 518

of individuals, such treatments do not produce any meaningful increase in duration of infection of 519

H5N1 influenza in humans. 520

Lastly, we had to make an assumption about initial viral load (which we fixed as 1.3×103 TCID50/ml). 521

Given the infection data used is primarily centred around the peak of infection, our inference is most 522

strongly determined by this peak behaviour. As a consequence, the early growth rate corresponds to 523

parameter estimates that give the ‘correct’ peak height and time for the data, given the assumed initial 524

viral load. A change in this viral load would change the growth rate with a negative correlation to the 525

initial viral load. Nonetheless, the viral lifespan distribution should be similar (as it is a function of the 526

peak time and area under the curve, which should not be affected much by the early rates of growth). 527

For the mutations model, a change in the initial viral load would result in the same proportions (as 528

they are primarily dependent on the mutation probability) as shown in our results. However, the 529

curves for mutant strain probabilities would be shifted up and towards the left such that there are 530

increased probabilities of observing strains with higher numbers of mutations earlier in the infection. 531

In addition to the aforementioned ideas for additional work, another direction for further investigations 532

is the application of the model framework to infectious episodes in immunocompromised individuals. 533

During the COVID-19 epidemic, immunocompromised individuals were a large cause for concern for 534

the creation of new variants due to their longer duration of infection [43–45]. To our knowledge, there 535

have been no reported cases of an immunocompromised individual being infected by H5N1 influenza, 536

and thus it is unclear how they would respond to the infection. As previously stated, the main cause 537

of death in those who contracted H5N1 influenza is currently believed to be cytokine storm. This 538

was also the leading cause of death from the Spanish flu epidemic in 1918-1920, but the fatality rate 539

was lower for the immunocompromised as they did not exhibit a sufficient immune response to cause 540

a cytokine storm [46, 47]. As a result, it may be that immunocompromised individuals are able to 541

sustain longer periods of infection, thus giving a larger probability of a human-to-human transmissible 542

strain mutating during their infection period. It is also possible that the virus simply overwhelms the 543

body of the immunocompromised, leading to rapid death, and thus little chance of producing mutant 544

strains of H5N1 influenza. Our current datasets are unable to distinguish between these possible 545

outcomes. The literature also shows that infections from H5N1 influenza can spread to other organs 546

and parts of the body [17]; it is likely that more detailed mortality modelling would need to take this 547

into account with different mortality modelling methods for immunocompromised people. 548

In this paper we have provided a model framework that gives the basis for the calculation of the 549

probability that the increased prevalence of influenza A(H5N1) in both birds and mammals leads 550

to a human infection that develops the ability for droplet transmission. These advancements in 551

modelling tools can help us determine how pandemic preparedness resources may be best focused 552

between infection directly from avian hosts or from mammalian hosts. Indeed, our process is not just 553

relevant to H5N1 influenza, but also for any pathogen for which within-host mutations are a concern. 554

22

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


Author contributions 555

Daniel Higgins: Data curation, Formal analysis, Methodology, Software, Validation, Visualisation, 556

Writing - Original Draft, Writing - Review & Editing. 557

Josh Looker: Data curation, Formal analysis, Methodology, Software, Validation, Visualisation, 558

Writing - Original Draft, Writing - Review & Editing. 559

Robert Sunnucks: Data curation, Formal analysis, Methodology, Software, Validation, Visualisa- 560

tion, Writing - Original Draft, Writing - Review & Editing. 561

Jonathan Carruthers: Conceptualisation, Methodology, Supervision, Visualisation, Writing - Re- 562

view & Editing. 563

Thomas Finnie: Conceptualisation, Methodology, Supervision, Visualisation, Writing - Review & 564

Editing. 565

Matt J. Keeling: Conceptualisation, Methodology, Supervision, Visualisation, Writing - Review & 566

Editing. 567

Edward M. Hill: Conceptualisation, Methodology, Supervision, Visualisation, Writing - Review & 568

Editing. 569

Financial disclosure 570

DH, LJ, RS and MJK were supported by the Engineering and Physical Sciences Research Council 571

through the MathSys CDT [grant number EP/S022244/1]. MJK was also supported by the Medical 572

Research Council through the JUNIPER partnership award [grant number MR/X018598/1]. EMH 573

is also a member of the JUNIPER partnership (MRC grant no MR/X018598/1) and would like to 574

acknowledge their help and support. EMH is affiliated to the National Institute for Health and Care 575

Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at University 576

of Liverpool (PB-PG-NIHR-200910), in partnership with the UK Health Security Agency (UKHSA), 577

in collaboration with the University of Warwick (EMH is based at The University of Liverpool). The 578

views expressed are those of the author(s) and not necessarily those of the NIHR, the Department of 579

Health and Social Care or the UK Health Security Agency. The research was funded by The Pandemic 580

Institute, formed of seven founding partners: The University of Liverpool, Liverpool School of Tropical 581

Medicine, Liverpool John Moores University, Liverpool City Council, Liverpool City Region Combined 582

Authority, Liverpool University Hospital Foundation Trust, and Knowledge Quarter Liverpool (EMH 583

is based at The University of Liverpool). The views expressed are those of the author(s) and not 584

necessarily those of The Pandemic Institute. The funders had no role in study design, data collection 585

and analysis, decision to publish, or preparation of the manuscript. For the purpose of open access, 586

the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted 587

Manuscript version arising from this submission. 588

Data availability 589

All data utilised in this study are publicly available, with relevant references and data repositories 590

provided. 591

23

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


Code availability 592

The code repository for the study is available at: 593

https://github.com/joshlooks/avianflu. 594

Archived code available at: 595

https://doi.org/10.5281/zenodo.13385415. 596

Competing interests 597

All authors declare that they have no competing interests. 598

References
[1] World Health Organisation. The panzootic spread of highly pathogenic avian in-

fluenza H5N1 sublineage 2.3.4.4b: a critical appraisal of One Health prepared-
ness and prevention (2023). URL https://www.who.int/publications/m/item/
the-panzootic-spread-of-highly-pathogenic-avian-influenza-h5n1-sublineage-2.
3.4.4b--a-critical-appraisal-of-one-health-preparedness-and-prevention. [Online]
(Accessed: 19 December 2024).

[2] Centres for Disease Control and Prevention (CDC). Past Reported Global Hu-
man Cases with Highly Pathogenic Avian Influenza A(H5N1) (HPAI H5N1) by Coun-
try, 1997-2024 (2024). URL https://www.cdc.gov/bird-flu/php/avian-flu-summary/
chart-epi-curve-ah5n1.html. [Online] (Accessed: 19 December 2024).

[3] Sah R, Mohanty A, Rohilla R, Mehta R, Leon-Figueroa DA, et al. Human death due to H5N1
amid the COVID-19 pandemic and mpox outbreak: A call for action. Int J Surg 109(3):576–578
(2023).

[4] World Health Organisation. Disease Outbreak News, Avian Influenza A(H5N1) - Vietnam (2024).
URL https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON511. [On-
line] (Accessed: 19 December 2024).

[5] Centres for Disease Control and Prevention (CDC). Clinical Signs and Symptoms of Influenza
(2024). URL https://www.cdc.gov/flu/professionals/acip/clinical.htm. [Online] (Ac-
cessed: 19 December 2024).

[6] Russell CA, Fonville JM, Brown AEX, Burke DF, Smith DL, et al. The Potential for Respira-
tory Droplet–Transmissible A/H5N1 Influenza Virus to Evolve in a Mammalian Host. Science
336(6088):1541–1547 (2012). doi:10.1126/science.1222526.

[7] Dobrovolny HM, Baron MJ, Gieschke R, Davies BE, Jumbe NL, et al. Exploring Cell Tropism
as a Possible Contributor to Influenza Infection Severity. PLOS ONE 5(11):1–15 (2010). doi:
10.1371/journal.pone.0013811.

[8] Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, De Wit E, et al. Airborne transmission of
influenza A/H5N1 virus between ferrets. science 336(6088):1534–1541 (2012).

[9] Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, et al. Experimental adaptation of an influenza
H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.
Nature 486(7403):420–428 (2012).

24

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://github.com/joshlooks/avianflu
https://doi.org/10.5281/zenodo.13385415
https://www.who.int/publications/m/item/the-panzootic-spread-of-highly-pathogenic-avian-influenza-h5n1-sublineage-2.3.4.4b--a-critical-appraisal-of-one-health-preparedness-and-prevention
https://www.who.int/publications/m/item/the-panzootic-spread-of-highly-pathogenic-avian-influenza-h5n1-sublineage-2.3.4.4b--a-critical-appraisal-of-one-health-preparedness-and-prevention
https://www.who.int/publications/m/item/the-panzootic-spread-of-highly-pathogenic-avian-influenza-h5n1-sublineage-2.3.4.4b--a-critical-appraisal-of-one-health-preparedness-and-prevention
https://www.cdc.gov/bird-flu/php/avian-flu-summary/chart-epi-curve-ah5n1.html
https://www.cdc.gov/bird-flu/php/avian-flu-summary/chart-epi-curve-ah5n1.html
https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON511
https://www.cdc.gov/flu/professionals/acip/clinical.htm
https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


[10] Kuchipudi SV, Nelli RK, Gontu A, Satyakumar R, Surendran Nair M, et al. Sialic Acid Receptors:
The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 13(2) (2021). doi:10.3390/
v13020262.

[11] World Health Organisation. Respiratory Infections (2024). URL https://platform.who.int/
mortality/themes/theme-details/topics/topic-details/MDB/respiratory-infections.
[Online] (Accessed: 19 December 2024).

[12] Ait Mahiout L, Bessonov N, Kazmierczak B, Volpert V. Mathematical modeling of respiratory
viral infection and applications to SARS-CoV-2 progression. Math Methods Appl Sci (2022).

[13] Ciupe SM, Tuncer N. Identifiability of parameters in mathematical models of SARS-CoV-2
infections in humans. Sci Rep 12(1):14637 (2022).

[14] Quirouette C, Younis NP, Reddy MB, Beauchemin CAA. A mathematical model describing the
localization and spread of influenza A virus infection within the human respiratory tract. PLOS
Computational Biology 16(4):1–29 (2020). doi:10.1371/journal.pcbi.1007705.

[15] Fonville JM, Burke DF, Lewis NS, Katzelnick LC, Russell CA. Quantifying the fitness advantage
of polymerase substitutions in Influenza A/H7N9 viruses during adaptation to humans. PLoS
One 8(9):e76047 (2013).

[16] Fonville JM. Expected Effect of Deleterious Mutations on Within-Host Adaptation of Pathogens.
Journal of Virology 89(18):9242–9251 (2015). doi:10.1128/jvi.00832-15.

[17] de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, et al. Fatal outcome of human
influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine
12(10):1203–1207 (2006). doi:10.1038/nm1477.

[18] Dobrovolny HM, Gieschke R, Davies BE, Jumbe NL, Beauchemin CA. Neuraminidase inhibitors
for treatment of human and avian strain influenza: A comparative modeling study. Journal of
Theoretical Biology 269(1):234–244 (2011). doi:https://doi.org/10.1016/j.jtbi.2010.10.017.

[19] Handel A, Longini IM, Antia R. Towards a quantitative understanding of the within-host dy-
namics of influenza A infections. Journal of The Royal Society Interface 7(42):35–47 (2010).
doi:10.1098/rsif.2009.0067.

[20] Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunol-
ogy. J Immunol 172(5):2731–2738 (2004).

[21] Perlman RL. Mouse models of human disease: An evolutionary perspective. Evolution, Medicine,
and Public Health 2016(1):170–176 (2016). doi:10.1093/emph/eow014.

[22] Wulff NH, Tzatzaris M, Young PJ. Monte Carlo simulation of the Spearman-Kaerber TCID50.
Journal of Clinical Bioinformatics 2(1):5 (2012). doi:10.1186/2043-9113-2-5.

[23] Ciupe SM, Tuncer N. Identifiability of parameters in mathematical models of SARS-CoV-2
infections in humans. Sci. Rep. 12(1):14637 (2022).

[24] Bocharov G, Romanyukha A. Mathematical model of antiviral immune response III. Influenza A
virus infection. Journal of Theoretical Biology 167(4):323–360 (1994).

[25] Beauchemin CA, McSharry JJ, Drusano GL, Nguyen JT, Went GT, et al. Modeling amantadine
treatment of influenza a virus in vitro. Journal of theoretical biology 254(2):439–451 (2008).

[26] Handel A, Longini Jr IM, Antia R. Towards a quantitative understanding of the within-host
dynamics of influenza A infections. Journal of the Royal Society Interface 7(42):35–47 (2010).

25

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://platform.who.int/mortality/themes/theme-details/topics/topic-details/MDB/respiratory-infections
https://platform.who.int/mortality/themes/theme-details/topics/topic-details/MDB/respiratory-infections
https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


[27] Minter A, Retkute R. Approximate Bayesian Computation for infectious disease modelling.
Epidemics 29:100368 (2019). doi:https://doi.org/10.1016/j.epidem.2019.100368.

[28] Filippi S, Barnes CP, Cornebise J, Stumpf MP. On optimality of kernels for approximate Bayesian
computation using sequential Monte Carlo. Statistical applications in genetics and molecular
biology 12(1):87–107 (2013).

[29] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. Approximate Bayesian computation scheme
for parameter inference and model selection in dynamical systems. Journal of the Royal Society
Interface 6(31):187–202 (2009).

[30] Kogure T, Suzuki T, Takahashi T, Miyamoto D, Hidari KI, et al. Human trachea primary
epithelial cells express both sialyl (α2-3) Gal receptor for human parainfluenza virus type 1 and
avian influenza viruses, and sialyl (α2-6) Gal receptor for human influenza viruses. Glycoconjugate
journal 23:101–106 (2006).

[31] Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, et al. Influenza virus receptor specificity
and cell tropism in mouse and human airway epithelial cells. Journal of virology 80(15):7469–7480
(2006).

[32] Thompson CI, Barclay WS, Zambon MC, Pickles RJ. Infection of Human Airway Epithelium by
Human and Avian Strains of Influenza A Virus. Journal of Virology 80(16):8060–8068 (2006).
doi:10.1128/jvi.00384-06.

[33] Chan MCW, Cheung CY, Chui WH, Tsao SW, Nicholls JM, et al. Proinflammatory cytokine re-
sponses induced by influenza a (H5N1) viruses in primary human alveolar and bronchial epithelial
cells. Respir Res 6(1):135 (2005).

[34] Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of im-
munomodulatory therapy. Cell Mol Immunol 13(1):3–10 (2015).

[35] Van Wesenbeeck L, D’Haese D, Tolboom J, Meeuws H, Dwyer DE, et al. A downward trend of the
ratio of influenza RNA copy number to infectious viral titer in hospitalized influenza A-Infected
patients. Open Forum Infect Dis 2(4):ofv166 (2015).

[36] Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of influenza A virus
infection in humans. Journal of virology 80(15):7590–7599 (2006).

[37] Centres for Disease Control and Prevention (CDC). Current H5N1 Bird Flu Situation in Dairy
Cows (2024). URL https://www.cdc.gov/bird-flu/situation-summary/mammals.html. [On-
line] (Accessed: 19 December 2024).

[38] Nasreen S, Khan SU, Luby SP, Gurley ES, Abedin J, et al. Highly pathogenic avian influenza
A(H5N1) virus infection among workers at live bird markets, bangladesh, 2009-2010. Emerg Infect
Dis 21(4):629–637 (2015).

[39] Chen X, Wang W, Wang Y, Lai S, Yang J, et al. Serological evidence of human infections with
highly pathogenic avian influenza A(H5N1) virus: a systematic review and meta-analysis. BMC
Medicine 18(1):377 (2020). doi:10.1186/s12916-020-01836-y.

[40] Gomaa M, Moatasim Y, El Taweel A, Mahmoud SH, El Rifay AS, et al. We are underes-
timating, again, the true burden of H5N1 in humans. BMJ Global Health 8(8) (2023). doi:
10.1136/bmjgh-2023-013146.

[41] Smith JR. Oseltamivir in human avian influenza infection. J Antimicrob Chemother 65 Suppl
2(Suppl 2):ii25–ii33 (2010).

26

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://www.cdc.gov/bird-flu/situation-summary/mammals.html
https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


[42] Couch RB, Davis BR. Has Oseltamivir been shown to be Effective for Treatment of H5N1
Influenza? The Journal of Infectious Diseases 202(8):1149–1151 (2010). doi:10.1086/656317.

[43] Bansal N, Raturi M, Bansal Y. SARS-CoV-2 variants in immunocompromised COVID-19 pa-
tients: The underlying causes and the way forward. Transfus Clin Biol 29(2):161–163 (2021).

[44] Ko KKK, Yingtaweesittikul H, Tan TT, Wijaya L, Cao DY, et al. Emergence of SARS-CoV-
2 spike mutations during prolonged infection in immunocompromised hosts. Microbiol Spectr
10(3):e0079122 (2022).

[45] Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, et al. SARS-COV-2 shedding and evolution
in patients who were immunocompromised during the Omicron period: A multicentre, prospective
analysis. The Lancet Microbe 5(3) (2024). doi:10.1016/s2666-5247(23)00336-1.

[46] Liu Q, Zhou Yh, Yang Zq. The cytokine storm of severe influenza and development of im-
munomodulatory therapy. Cellular & Molecular Immunology 13(1):3–10 (2016). doi:10.1038/
cmi.2015.74.

[47] Woo G. Age-dependence of the 1918 pandemic. British Actuarial Journal 24:e3 (2019). doi:
10.1017/S1357321719000023.

27

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


Supporting Information
Introducing a framework for within-host dynamics and
mutations modelling of H5N1 influenza infection in hu-
mans

Daniel Higgins1,2‡*, Joshua Looker1,2‡*, Robert Sunnucks1,2‡*, Jonathan Carruthers3, Thomas
Finnie3, Matt J. Keeling2,4, Edward M. Hill5,6*

1 EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University
of Warwick, Coventry, United Kingdom.
2 The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University
of Warwick, Coventry, United Kingdom.
3 Data, Analytics and Surveillance, UK Health Security Agency, London, United Kingdom.
4 Mathematics Institute and School of Life Sciences, University of Warwick, Coventry, United
Kingdom.
5 Civic Health Innovation Labs and Institute of Population Health, University of Liverpool,
Liverpool, United Kingdom.
6 NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool,
Liverpool, United Kingdom.

‡These authors contributed equally to this work.

* Corresponding Authors. Emails: daniel.higgins@warwick.ac.uk; joshua.looker@warwick.ac.uk;
rob.sunnucks@warwick.ac.uk; edward.hill@liverpool.ac.uk.

Table of Contents
S1 Additional tables 2

S2 Additional figures 2

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


S1 Additional tables

Table S1. List of least-squares fit parameters: and their descriptions. Parameters fitted to the
data in the log-space using the ‘scipy.optimize’ library in Python.

Parameter Value
βU Rate of infection, URT 3.027× 10−7

βL Rate of infection, LRT 9.59× 10−4

pU Virus production rate, URT 0.588

pL Virus production rate, LRT 7.71× 10−2

γ Conversion between infectious virions and TCID50 / PFU 1.16× 10−2

D Rate of diffusion of free virions 0.215

a Rate of advection 1.95× 10−2
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Fig. S1. Posterior predictions for v, r(t) assuming a lower case mortality rate (20%
instead of 53%). Both plots show the 1000 posterior trajectories, with the blue lines representing
H5N1 influenza patients who survive the infection (cleared the virus) and the red lines representing
patients who died due to the infection (where the distinction is made using the method in
Section 2.1.6). (a) Virion count distribution found using the parameter posterior in Fig. 4. The viral
count trajectories for deceased patients are lower and more sustained than surviving patients. We
calculated these viral count trajectories from the one million BPM realisations each with an initial
viral load of 106 and a mutation chance of 10−5 per replication. (b) Distribution of r(t) calculated
from the posterior predictive distribution shown in Fig. 5(a). Surviving patients tended to have
higher r(t) in the second peak around day 7 on infection, which then declined below one (indicating
a decreasing virion count) more rapidly than for dying patients.
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Fig. S2. Maximum r value vs viral lifespan assuming a lower case mortality rate (20%
instead of 53%). We observe a strong negative correlation between maximum r value and the viral
lifespan. Maximum r values taken from Fig. 6(b) and corresponding viral lifespans are shown in
Fig. 3. Blue circles represent H5N1 influenza patients who survive the infection (cleared the virus).
Red circles represent patients who died due to the infection (where the distinction is made using the
method in Section 2.1.6). Surviving individuals tended to have lower viral lifespans.
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Fig. S3. Mutated virion statistics with respect to time elapsed post infection, computed
from BPM realisations assuming a lower case mortality rate (20% instead of 53%). Line
shading corresponds to the number of mutations (one mutation the lightest shading through to five
mutations being the darkest shading). In all BPM simulations we fixed the probability of mutation
at 10−5 per replication. In panels (a&b), each realisation had an initial viral load of 106. We ran
1000 realisations of each of the 1000 posterior parameter sets (Fig. 4). In panels (c&d), each
realisation had an initial viral load of 106 × 106. We ran one realisation of each of the 1000 posterior
parameter sets (Fig. 4). (a,c) Proportion of total virions with the specified amount of mutations.
There were a very small proportion of virions that have the required number of mutations to achieve
droplet transmission (three or more mutations). (b,d) Probability of having a mutation strain. We
present the estimated probabilities as the dashed lines with circle markers. We present the actual
probabilities as solid lines. Probability estimate derivation follows that given in Section 2.2. The
estimated probabilities are a clear upper bound on the true probabilities. Depending on the number
of mutations in the initial infecting virions, there was a low probability of achieving the required
number of mutations near the beginning on the infection lifespan (which would allow more
replication of the mutant strains).
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