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Abstract 20 

Introduction 21 

Out-of-hospital mortality in coronary artery disease (CAD) is particularly high and 22 

established adverse event prediction tools are yet to be available. Our study aimed to 23 

investigate whether precision phenotyping can be performed using routine laboratory 24 

parameters for the prediction of out-of-hospital survival in a CAD population treated by 25 

percutaneous coronary intervention (PCI).  26 

Materials and methods 27 

All patients treated by PCI and discharged alive in a tertiary center between January 2016 – 28 

December 2022 that have been included prospectively in the local registry were analyzed. 29 

115 parameters from the PCI registry and 266 parameters derived from routine laboratory 30 

testing were used. An extreme gradient-boosted decision tree machine learning (ML) 31 

algorithm was trained and used to predict all-cause and cardiovascular-cause survival.  32 

Results 33 

A total of 7186 PCI hospitalizations for 5797 patients were included with more than 610.000 34 

laboratory values. All-cause and cardiovascular cause mortality was 17.5% and 12.2%, 35 

respectively, during a median follow-up time of 1454 (687 – 2072) days. The integrated area 36 

under the receiver operator characteristic curve for prediction of all-cause and cardiovascular 37 

cause mortality by the ML on the validation dataset was 0.844 and 0.837, respectively (all 38 

p<0.001). The integrated area under the precision-recall curve for prediction of all-cause and 39 

cardiovascular cause mortality by the ML on the validation dataset was 0.647 and 0.589, 40 

respectively (all p<0.001).  41 

Conclusion 42 

Precise survival prediction in CAD can be achieved using routine laboratory parameters. ML 43 

outperformed clinical risk scores in predicting out-of-hospital mortality in a prospective all-44 

comers PCI population. 45 

Keywords 46 

Machine learning, coronary artery disease, percutaneous coronary intervention, survival 47 

analysis  48 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.08.31.24312888doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.31.24312888


Introduction 49 

Extensive research has been dedicated to the prediction of adverse events in the coronary 50 

artery disease (CAD) population. Numerous clinical, angiographic, and combined risk scores 51 

were developed to estimate survival, such as Global Registry of Acute Coronary Events 52 

(GRACE) score, Age, Creatinine, and Ejection fraction (ACEF) score, thrombolysis in 53 

myocardial infarction (TIMI) score and Synergy Between PCI with TAXUS and Cardiac 54 

Surgery (SYNTAX) score.1–4 However, in many available risk scores the prediction 55 

performance is mainly driven by high accuracy in predicting in-hospital death, since the 56 

presence of very high-risk clinical features almost invariably leads to in-hospital death (e.g., 57 

cardiogenic shock, acute pulmonary edema, resuscitated cardiac arrest, mechanical 58 

complications of acute myocardial infarction, severe anemia or acute kidney injury), while 59 

out-of-hospital death is more difficult to predict. Moreover, long-term survival in CAD is less 60 

determined by the complexity of coronary anatomy.5 Thus, more research is needed to find 61 

robust predictors of impaired survival in the CAD population, especially after hospital 62 

discharge. 63 

 Phenotype, initially defined as “the observable traits of an organism”, nowadays 64 

includes clinical and paraclinical characteristics of a patient (e.g., diagnostic imaging, 65 

laboratory parameters, electrocardiographic changes).6 According to the patient’s phenotypic 66 

abnormalities, both diagnostic and prognostic assessments can be made.6 Precision 67 

phenotyping is a concept that implies a comprehensive analysis of a wide panel of clinical 68 

parameters usually using artificial intelligence (AI) techniques which can quantify even slight 69 

changes in a patient’s phenotype and offer a precise prognostic estimate. Precision 70 

phenotyping has been previously proposed using clinical, ultrasound, computed tomography, 71 

or big “-omic” data.7–9 Whether a precise survival estimate can be given using a spectrum of 72 

laboratory parameters routinely measured in clinical practice is yet to be proven. 73 
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The aim of the present study was (1) to train an ML model to predict out-of-hospital 74 

all-cause and cardiovascular cause mortality using a wide panel of laboratory parameters, (2) 75 

to identify predictors of out-of-hospital adverse events, and (3) to compare the predictive 76 

performance of ML model with clinical risk scores relevant for CAD population, in an all-77 

comers patient population treated by PCI in a Romanian tertiary cardiovascular center. 78 

 79 

Materials and methods 80 

Study population 81 

The study design is illustrated in Figure 1. All patients treated by PCI in the Emergency 82 

Institute for Cardiovascular Diseases and Transplantation of Târgu Mureş have been 83 

prospectively included at discharge in the local PCI Registry of the Institute since January 84 

2016. For the current analysis, all patients treated between January 2016 – December 2022 85 

were included, in order to have a minimum of 6 months of follow-up. Subjects were analyzed 86 

by PCI hospitalization (hospitalization in which PCI was performed). Exclusion criteria 87 

consisted of (1) age less than 18 years old, (2) presence of in-hospital death, or (2) lack of 88 

available survival data (e.g., foreign patients). The Registry is accessible online at the website 89 

http://pci.cardio.ro/ and is based on the criteria of Cardiology Audit and Registration Data 90 

Standards (CARDS) developed by the Department of Health and Children, European Society 91 

of Cardiology, Irish Cardiac Society, and the European Commission.10 Briefly, the CARDS 92 

recommendations address data regarding demographics, relevant medical history, and 93 

comorbid conditions, clinical status at hospital admission, PCI indication, affected and treated 94 

coronary artery segments, usage of invasive diagnostic or therapeutic devices, procedural 95 

complications, medical treatment during hospitalization and at discharge and in-hospital 96 

evolution. All the information available regarding all the variables proposed in that document 97 

was collected for each included patient, at every PCI. A number of 115 parameters were 98 
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available from the PCI registry. Moreover, to complete and update the original CARDS 99 

recommendations regarding PCI procedures, an additional 266 laboratory parameters were 100 

also collected (Supplemental Table 1). Noteworthy, all laboratory data during the PCI 101 

hospitalization was acquired from the electronic health record (EHR). Since the timing and 102 

number of determinations of laboratory parameters differ between patients and 103 

hospitalizations, each laboratory parameter was considered separately first value in hospital, 104 

last value before discharge, average value during hospitalization, absolute maximum and 105 

minimum value, and number of each separate determination of that certain laboratory 106 

parameter (e.g., first creatinine, last creatinine, average creatinine, maximum and minimum 107 

creatinine, number of creatinine determinations, Supplemental Table 1). A total of 381 108 

parameters were used for the final analysis. Furthermore, clinical, and angiographic risk 109 

scores such as ACEF, GRACE, and SYNTAX score were also calculated for comparison with 110 

the ML model’s survival prediction performance. 111 

All patients or their legal representatives (e.g., for critical patients) provided written 112 

signed informed consent regarding the PCI procedure and their participation in the study. The 113 

study was approved by the ethical committee of our institution (decision number 8646 from 114 

22 December 2015 approved by the Ethical Committee of the Emergency Institute for 115 

Cardiovascular Diseases and Transplantation of Târgu Mureş). The protocol was carried out 116 

in accordance with the ethical principles for medical research involving human subjects 117 

established by the Declaration of Helsinki, protecting the confidentiality of personal 118 

information of the patients.  119 

Follow-up and clinical outcomes 120 

The clinical endpoint of this study was the incidence of out-of-hospital cardiovascular and 121 

all-cause mortality. Out-of-hospital mortality was defined as death that occurred after 122 

discharge, but not occurring during the initial hospital admission when the PCI procedure was 123 
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performed. The Romanian National Health Insurance System database supplied mortality 124 

rates as of July 2023 for all the patients. For patients who had died during follow-up, the 125 

Regional Statistics Office of the Romanian National Institute of Statistics supplied the exact 126 

date and cause of death according to the tenth revision of the International Classification of 127 

Diseases (ICD-10). If the cause of death belonged to diseases of the circulatory system, then 128 

death was considered to be of cardiovascular cause. 129 

Machine learning  130 

All patients had a minimum of 6 months survival status available and up to 6 years of follow-131 

up. Patients were dichotomized every 6 months into alive/deceased groups and censored 132 

events were removed. Afterward, for each timeframe, the dataset was randomly divided into 133 

70% training and 30% validation datasets. To prevent data leaks since a patient could have 134 

multiple hospitalizations, each patient was assigned to either a training or validation set. On 135 

the 70% training dataset, a 5-fold cross-validation was performed and to prevent data leak 136 

between folds, each patient was only assigned to one-fold. An extreme gradient boosted 137 

decision tree (XGBoost) algorithm11 was evaluated as a binary classifier for predicting both 138 

all-cause- and cardiovascular-cause mortality occurred out of hospital, for each timeframe. 139 

XGBoost algorithm was implemented in Python version 3.9.13. Hyperparameter optimization 140 

was performed by using Bayesian search on 6 years survival status, being the least 141 

imbalanced dataset, and those best training parameters were used for all timeframes. The 142 

accessibility of underlying supporting scripts is detailed in the data availability section. In 143 

order to explain the ML decision process, the open-source Shapley additive explanations 144 

(SHAP) framework was used.12 Most important features were obtained as follows: (1) SHAP 145 

values were obtained for each of the database values at each timeframe, for both all-cause and 146 

cardiovascular cause events; (2) at each timeframe, absolute SHAP values were added, and 147 

parameters’ importance was considered by the highest sum of absolute SHAP value (e.g., the 148 
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parameter with the highest absolute SHAP values sum at 5-years cardiovascular survival was 149 

the most important); (3) overall most important predictors were obtained by ascending 150 

classification of averaged positions at all timeframes for all-cause and cardiovascular cause 151 

survival, separately (see supporting code). Illustration of time-dependent SHAP values for a 152 

certain parameter on a specified survival (e.g., time-dependent SHAP values for age impact 153 

on all-cause survival) was performed as follows: (1) SHAP values were obtained for every 154 

value of that parameter at each timeframe on the specified survival; (2) for the specified 155 

parameter, ten percentile intervals were obtained according to the minimum and maximum 156 

value; (3) SHAP values were averaged for each percentile at each timeframe; (4) 3D mesh 157 

plot was illustrated using the ten percentiles of that parameter, all investigated timeframes 158 

and averaged SHAP values for that percentile; (5) in order to correlate averaged SHAP values 159 

with actual observed survival, the now 4D mesh plot was colored by averaged survival for 160 

each parameter percentile at each timeframe (see supporting code).  161 

Statistical analysis 162 

A significance level α of 0.05 and a 95% confidence interval (CI) were considered. 163 

Continuous variables were evaluated for normal distribution using the Shapiro-Wilk test. 164 

Continuous variables with parametric distributions were reported as mean ± standard 165 

deviation and compared using non-paired Student’s t-test, while continuous variables with 166 

non-parametric distributions and discrete variables were reported as median (interquartile 167 

range) and compared using Mann Whitney test. Categorical variables were reported as 168 

absolute and relative frequencies and compared using Fisher’s exact test for clinical 169 

parameters with frequencies less than 5 and the Chi2 test otherwise. For baseline clinical 170 

characteristics, univariate Cox proportional hazard was used to predict the association in the 171 

form of hazard ratio (HR) between observed survival and an independent categorical 172 

variable. All continuous variables were dichotomized related to the median to facilitate 173 
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comparability of HR and CI between variables. Statistical analysis was performed using R 174 

version 4.1.1 and R Studio version 1.4.17. Performance on survival prediction was measured 175 

by integrating the time-dependent area under the curve of receiver-operator characteristic 176 

(AUC-ROC), the area under the curve of precision-recall (AUC-PR), Matthews correlation 177 

coefficient (MCC), F1 score, and Brier score for a specified survival. While for AUC-ROC 178 

the baseline is constant at 0.5, in the case of AUC-PR, the baseline is determined by positive 179 

cases per total cases ratio.13 Thus, a baseline-corrected AUC-PR was calculated by 180 

subtracting the baseline value from the AUC-PR value. MCC and F1 score calculation require 181 

dichotomization from probability for ML model and score value for clinical risk scores into 182 

predicted deceased or alive, which was performed using Youden’s method for cut-off 183 

calculation.  184 

 185 

Results 186 

Study population 187 

A total of 7186 PCI hospitalizations for 5797 patients were included in the present study, with 188 

a total of 611309 laboratory values. Of those patients, 4062 (70.07%) were male sex, the 189 

median age was 65.0 (57.2-71.8) years and the median BMI was 28.3 (25.9-31.8) kg/m2. 190 

Complete clinical characteristics of the studied patients are reported in Table 1 and 191 

Supplemental Table 1. Complete clinical characteristics of the studied PCI hospitalizations 192 

are reported in Table 2 and Supplemental Table 2. A total of 1017 (17.5%) patients died of all 193 

causes during a median follow-up time of 1454 (687 – 2072) days. When censoring events of 194 

non-cardiovascular cause, a total of 710 (12.2%) patients died of cardiovascular causes 195 

during a median follow-up time of 1544 (748– 2155) days. Cumulative per-patient mortality 196 

incidence is illustrated in Figure 2A and cumulative per-PCI mortality incidence is illustrated 197 

in Figure 2B. A total of 115 clinical parameters were available from the PCI registry. A 198 
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median of 114 (110-115) parameters were available for each patient as some parameters were 199 

missing or not applicable (e.g., time from symptom onset to PCI, which is measured in acute 200 

but not in chronic coronary syndrome). A total of 611309 laboratory values were analyzed for 201 

all 7186 hospitalizations. Per hospitalization, a median of 78 (65-116) laboratory values were 202 

available. For each laboratory parameter, the first and last in-hospital value, maximum and 203 

minimum value during hospitalization, averaged value during hospitalization, and number of 204 

determinations for that parameter during hospitalization were calculated, therefore 266 205 

additional parameters were analyzed. 206 

Machine learning analysis 207 

Machine learning models accurately predicted out-of-hospital survival at all timeframes on 208 

all time-dependent performance metrics (Figure 3). While AUC-ROC was consistently high 209 

(Figure 3A, 3C), AUC-PR gradually increased as the deceased-to-alive ratio became less 210 

imbalanced (Figure 3B, 3D). Minor differences were between testing dataset predictions and 211 

validations dataset predictions, revealing that overfitting did not occur (Figure 3). Tuned 212 

hyperparameters found by Bayesian search included a total of 5000 aggregated decision trees, 213 

with a maximum tree depth of 12 levels and a learning rate of 0.01 (see supporting code). 214 

Most important survival predictors were obtained by classifying the averaged importance 215 

position at all timeframes. For all-cause mortality, left ventricular ejection fraction (LVEF), 216 

age, hospitalization cost, heart rate at presentation, renal function reflected by maximum 217 

creatinine during hospitalization, standard deviation of red cell distribution width and last 218 

determined before discharge lymphocyte per monocyte ratio were among the most important 219 

parameters. For cardiovascular cause mortality, left ventricular ejection fraction (LVEF), age, 220 

systolic and diastolic blood pressure at presentation, heart rate at presentation, hospitalization 221 

cost, renal function reflected by maximum creatinine during hospitalization, the standard 222 

deviation of red cell distribution width and last determined before discharge lymphocyte per 223 
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monocyte ratio was among the most important parameters. Furthermore, the most important 224 

factors for the occurrence of adverse events and most important factors against the 225 

occurrence of adverse events of any cause and cardiovascular cause are reported in 226 

Supplemental Figure 1. Time-dependent SHAP values are reported in Figure 5 and reveal 227 

how the predictor’s values (e.g., advanced age or reduced LVEF) predispose to adverse 228 

events. Patient individualized survival prediction can be illustrated using ML probability 229 

output at each timeframe with event occurrence estimated at the point where probability is 230 

less than the cut-off for that specific timeframe (Figure 6). 231 

Comparison between machine learning and clinical scores 232 

To illustrate the predictive performance of ML models, some important clinical risk scores, 233 

such as ACEF, GRACE, or SYNTAX scores, were also calculated and compared with ML 234 

models. ML consistently and significantly outperformed clinical risk scores on all timeframes 235 

(Figure 3) and all performance metrics (Table 3). Among clinical scores, the ACEF score had 236 

the highest performance metrics, while the SYNTAX score had the lowest performance 237 

metrics. The integrated AUC-ROC for prediction of all-cause mortality by the ML model 238 

versus ACEF score was 0.844 and 0.735, respectively (Table 3). The integrated AUC-ROC 239 

for prediction of cardiovascular cause mortality by the ML model versus ACEF score was 240 

0.837 and 0.761, respectively (Table 3). A more striking increase in prediction performance is 241 

reflected by the integrated AUC-PR and integrated baseline-corrected AUC-PR. The 242 

integrated AUC-PR for prediction of cardiovascular and all-cause mortality by the ML model 243 

was 0.647 and 0.589, respectively, while for ACEF score was 0.380 and 0.410, respectively 244 

(Table 3). The integrated baseline corrected AUC-PR for prediction of cardiovascular and all-245 

cause mortality by the ML model was 0.407 and 0.428, respectively, while for ACEF score 246 

was 0.199 and 0.190, respectively (Table 3). Additional details regarding performance 247 
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metrics are reported in Supplemental Table 3. Other metrics, such as integrated MCC, F1, and 248 

Brier score were also in favor of ML models. 249 

 250 

Discussions 251 

The main findings of our study are: (1) In a prospective all-comers PCI registry, both all-252 

cause and cardiovascular cause out-of-hospital mortality is high, with 6-years mortality of up 253 

to 42%; (2) ML models can accurately predict long-term out-of-hospital survival in a CAD 254 

population treated by PCI using routine laboratory parameters; (3) Predictive performance of 255 

ML models was better than relevant clinical scores, such as GRACE, ACEF or SYNTAX 256 

score on all performance metrics, including integrated AUC-ROC, AUC-PR, MCC, F1 and 257 

Brier score; (3) Important factors for survival prediction includes age, LVEF, blood pressure 258 

and heart rate on presentation. However, most important factors were those derived from 259 

laboratory parameter analysis; (4) Time-dependent SHAP values reveal how the values of a 260 

parameter impact predictions for each timeframe. 261 

Ischemic heart disease is the leading cause of death14, although precise long-term 262 

follow-up from the moment of CAD diagnosis, especially out-of-hospital, is scarce. In our 263 

study 5-year and 6-year all-cause, out-of-hospital mortality was 21.7% and 33.2%, 264 

respectively, relatively lower than the 5-year all-cause mortality of 37.3% from the SYNTAX 265 

trial although it included only three-vessel CAD disease.15 In patients with established CAD, 266 

clinical risk prediction tools for secondary prevention are useful, considering the high 267 

mortality associated with CAD. For this purpose, certain clinical scores such as ACEF, 268 

SYNTAX, and GRACE scores were developed.1,2,4 Refinements of clinical scores were 269 

attempted to improve predictive performance, particularly for the original SYNTAX score, 270 

from which several SYNTAX-derived scores were reported.16 In our analysis, ML models 271 

outperformed clinical scores on all timeframes and all statistical metrics (Table 3). 272 
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Accordingly, the use of machine learning instead of continuously refined traditional risk 273 

scores seems to be more efficient in long-term mortality risk prediction in CAD patients, 274 

especially if clinical data can reliantly be obtained from EHR. In the present study, over 275 

600,000 laboratory values were automatically obtained from the EHR, making future 276 

integration in clinical practice possible. 277 

In our analysis, LVEF, age, blood pressure, and heart rate were among the most 278 

important predictors, which are also partially included in clinical scores such as ACEF and 279 

GRACE scores. High hospitalization cost and increased contrast volume were also predictors 280 

of events, reflecting the need for advanced therapies and long or complex PCI procedures, 281 

respectively. Interestingly, numerous important clinical features were obtained from 282 

laboratory values, reflecting renal function (first and maximum serum creatinine and urea 283 

levels), hematologic function (red cell distribution width, mean corpuscular hemoglobin 284 

concentration, platelet distribution width), inflammatory status (lymphocyte per monocyte 285 

ratio, maximum neutrophil count) and glycemic status (Figure 4). Most of the mentioned 286 

parameters were previously reported as predictors of adverse events. The association between 287 

lymphocyte-to-monocyte ratio and impaired prognosis in the CAD population has been 288 

documented in a recent meta-analysis.17 Other studies showed that red cell distribution width 289 

is an inexpensive prognostic marker in both myocardial infarction and heart failure.18,19 This 290 

illustrates that precision phenotyping can be achieved using laboratory parameters. Moreover, 291 

while the clinician works with dichotomized outcomes from continuous variables (e.g., 292 

patient has heart failure with reduced ejection fraction if LVEF ≤40%) leading to an 293 

information loss20, ML models are particularly powerful in analyzing continuous data without 294 

the need for fitting into categories – for this reason, the most important parameters were 295 

laboratory values instead of disease labels. Interestingly, the severity of coronary lesions was 296 
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not particularly important for long-term prognosis. Similarly, SYNTAX score performance 297 

decreased over time, revealing that coronary anatomy is less important in the long term. 298 

The emergence of AI brought numerous tools for prediction making, which can be 299 

simplistically categorized as supervised learning using machine learning techniques (e.g., 300 

support vector machines or gradient-boosted decision trees) or unsupervised learning using 301 

deep learning techniques (e.g., neural networks). Depending on the underlying task, certain 302 

algorithms could be more suitable. Indeed, for tabular data, deep learning seldom 303 

outperforms machine learning.21 Regarding survival analysis, Kaplan–Meier and Cox 304 

proportional hazards models have successfully been used for decades.22 However, both 305 

techniques consider a linear relationship between the risk factor and the log hazard function23. 306 

This constant effect of the risk factor during the follow-up assumed by the Kaplan–Meier and 307 

Cox models could be an oversimplification.23 Recently, ML methods were proposed to 308 

analyze survival data.24 More specifically, standard ML techniques use binary classification 309 

to predict the outcome at a certain timeframe. This requires dichotomization with removal of 310 

censored data, does not consider hazards a function of time, but has a high interpretability of 311 

the model. On the other hand, modified ML techniques for survival data are adjusted to 312 

consider hazards as a function of time, to handle censored and time-to-event data, but have 313 

lower interpretability.24 Moreover, numerous performance metrics to evaluate survival 314 

prediction models are time-dependent and require the removal of censored events (e.g., Brier 315 

score or time-dependent area under receiver operator characteristic).25 Indeed, there are a 316 

variety of ML and deep learning techniques to analyze survival data, and the best technique 317 

to perform survival analysis is yet to be determined.  318 

A reproducibility crisis is increasingly recognized in the area of AI, driven mainly by 319 

data leakage and lack of transparency by unpublished code.26,27 Indeed, data leakage – the 320 

ability of the AI model to see the outcome of the training dataset – is an important problem 321 
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that may remain undetected.28 In our previous study, an unexpected data leak was observed – 322 

the ML model was making an unrealistic nearly perfect in-hospital mortality prediction by 323 

looking at treatment at discharge, recognizing that if a patient did not have medical treatment 324 

at hospital discharge it was because the patient was deceased.29 In the current study, we 325 

consider data leak to be highly improbable, since (1) only in-hospital data was analyzed, (2) 326 

only out-of-hospital death was considered, and (3) survival data was acquired from a different 327 

institution. Moreover, survival data was not merged with clinical data during the analysis. 328 

Regarding underlying code, a report revealed that 6% of AI papers are accompanied by 329 

complete code, while half of the AI papers contained “pseudocode”, a brief description of the 330 

algorithm.30 In line with current recommendations, the underlying algorithm code for the 331 

current study is publicly disclosed. 332 

 333 

Study limitations and future research directions 334 

The main limitation of our study is the lack of external validation. In addition, the study 335 

population is typical for Eastern Europe, thus extrapolating to other populations could be 336 

limited. Although not a limitation per se, we are the first to illustrate a time-dependent SHAP 337 

plot and certain time-integrated statistical indicators (e.g., integrated AUC-PR and baseline 338 

corrected AUC-PR) which warrants further investigation. 339 

 340 

Conclusions 341 

Machine learning can accurately predict out-of-hospital all-cause and cardiovascular cause 342 

death using routinely performed laboratory parameters and outperforms classic clinical 343 

parameter-based risk scores in a prospectively followed CAD population treated by PCI. 344 

 345 
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Tables and figures 450 

Figure 1 – Illustration of the study design. 
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Figure 2 – Observed survival in the studied population. 

  

CV – cardiovascular; PCI – percutaneous coronary intervention. 
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Figure 3 – Time-dependent AUC-ROC and AUC-PR for cardiovascular cause and all-cause death prediction. 
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Figure 4 – Most important parameters in the prediction of cardiovascular cause and all-cause mortality (lower is better). 
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Figure 5 – 4D time-dependent SHAP mesh plot for various predictors of all-cause mortality. 
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Figure 6 – An example of a patient specific estimated survival curve. 
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Table 1 – Baseline characteristics of the studied parameters on a per patient analysis. 

Parameter 
All patients 

(n=5797) 
All-cause survival CV-cause survival 

HR 95%CI p HR 95%CI P 
Male sex 4062 (70.07%) 1.04 0.91-1.19 0.6 0.99 0.85-1.17 0.93 

Age (years) 65 (57-71) 2.56 2.24-2.92 <10-42 2.64 2.25-3.1 <10-31 
BMI (kg/m2) 28 (25-31) 0.89 0.77-1.02 0.1 0.87 0.74-1.04 0.13 
History of MI 1140 (19.67%) 1.16 1.01-1.33 0.04 1.24 1.05-1.47 <10-2 

CABG 154 (2.66%) 1.06 0.75-1.5 0.73 1.13 0.76-1.68 0.56 
Previous PCI 1284 (22.15%) 0.89 0.77-1.03 0.13 0.89 0.75-1.06 0.18 
Stroke/TIA 386 (6.66%) 2.13 1.76-2.57 <10-14 2.15 1.71-2.69 <10-10 

Atrial fibrillation 695 (11.99%) 2.14 1.84-2.5 <10-22 2.33 1.95-2.78 <10-19 
PAD 607 (10.47%) 2.02 1.73-2.35 <10-18 1.83 1.52-2.22 <10-9 
CKD 415 (7.16%) 3.46 2.93-4.09 <10-47 3.68 3.02-4.47 <10-38 
VHD 332 (5.73%) 2.16 1.78-2.62 <10-14 2.35 1.88-2.94 <10-13 
DCM 481 (8.30%) 1.88 1.58-2.25 <10-11 2.23 1.82-2.73 <10-14 
COPD 531 (9.16%) 2.4 2.05-2.82 <10-26 2.58 2.14-3.11 <10-22 

Diabetes Mellitus 1072 (18.49%) 1.54 1.35-1.77 <10-9 1.51 1.29-1.78 <10-6 
HBP 2873 (49.56%) 1.19 1.05-1.36 <10-2 1.21 1.04-1.42 0.01 

Dyslipidaemia 2236 (38.57%) 0.97 0.86-1.1 0.67 0.93 0.8-1.08 0.32 
LVEF (%) 50 (40-55) 0.46 0.4-0.54 <10-21 0.41 0.34-0.5 <10-18 

NTproBNP(pg/ml) 934(212-2831) 2.94 1.66-5.21 <10-3 1.82 0.98-3.36 0.06 
Creatinine(mg/dL) 0.91 (0.79-1.1) 1.81 1.59-2.05 <10-19 1.97 1.69-2.3 <10-17 

HGB (g/dL) 13.8 (12.7-14) 0.55 0.49-0.63 <10-18 0.55 0.47-0.64 <10-13 
PLT (×103/µL) 227 (188-272) 0.99 0.88-1.12 0.89 0.95 0.82-1.1 0.5 

WBC (×103/µL) 8.3(6.7-10.4) 1.25 1.1-1.42 <10-3 1.31 1.13-1.52 <10-3 
STEMI 1574 (27.15%) 1.26 1.1-1.45 <10-3 1.31 1.12-1.55 <10-2 

NSTE-MI 517 (8.92%) 1.64 1.35-1.98 <10-6 1.73 1.39-2.16 <10-5 
UA 1064 (18.35%) 0.9 0.76-1.05 0.18 0.81 0.67-0.99 0.04 
CCS 2642 (45.58%) 0.75 0.66-0.85 <10-5 0.75 0.64-0.87 <10-3 

BMI – body mass index; CABG – coronary artery bypass graft; CCS – chronic coronary 
syndrome; CI – confidence interval; CKD – chronic kidney disease; COPD – chronic 
obstructive pulmonary disease; CV – cardiovascular; DCM – dilated cardiomyopathy; HBG – 
haemoglobin; HBP – high blood pressure; LVEF – left ventricular ejection fraction; MI – 
myocardial infarction; PAD – peripheral artery disease; PCI – percutaneous coronary 
intervention; PLT – platelet count; NSTE-MI – non-ST segment elevation acute MI; STEMI 
– ST segment elevation acute MI; TIA – transient ischemic attack; UA – unstable angina; 
VHD – valvular heart disease; WBC – white blood cells count. 
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Table 2 – Baseline characteristics of the studied parameters on a per PCI analysis. 

Parameter 
All PCIs 
(n=7186) 

All-cause survival CV-cause survival 
HR 95%CI p HR 95%CI p 

Male sex 5068 (70.53%) 1.01 0.89-1.14 0.93 0.91 0.79-1.05 0.2 
Age (years) 64 (57-71) 2.52 2.23-2.84 <10-50 2.63 2.27-3.04 <10-37 

BMI (kg/m2) 28.3 (25.8-31) 0.91 0.8-1.03 0.15 0.85 0.73-1 0.05 
History of MI 1549 (21.56%) 1.16 1.02-1.31 0.02 1.23 1.06-1.42 <10-2 

CABG 199 (2.77%) 1 0.73-1.37 0.99 1.04 0.72-1.51 0.83 
Previous PCI 1883 (26.20%) 0.91 0.81-1.03 0.15 0.87 0.75-1.01 0.07 
Stroke/TIA 490 (6.82%) 2.01 1.69-2.38 <10-14 2.04 1.66-2.51 <10-10 

Atrial fibrillation 820 (11.41%) 2.07 1.79-2.38 <10-22 2.25 1.91-2.66 <10-20 
PAD 780 (10.85%) 2 1.74-2.3 <10-21 1.91 1.61-2.26 <10-12 
CKD 509 (7.08%) 3.52 3.03-4.1 <10-59 3.87 3.25-4.62 <10-50 
VHD 438 (6.10%) 2.19 1.84-2.6 <10-18 2.33 1.9-2.85 <10-15 
DCM 600 (8.35%) 1.95 1.66-2.29 <10-15 2.22 1.85-2.67 <10-16 
COPD 633 (8.81%) 2.32 2.01-2.69 <10-28 2.43 2.04-2.89 <10-22 

Diabetes Mellitus 1441 (20.05%) 1.49 1.32-1.68 <10-10 1.44 1.25-1.67 <10-5 
HBP 3788 (52.71%) 1.17 1.03-1.31 0.01 1.15 1-1.33 0.05 

Dyslipidaemia 2973 (41.37%) 0.98 0.87-1.09 0.7 0.91 0.8-1.04 0.19 
LVEF (%) 50 (40-55) 0.46 0.4-0.52 <10-27 0.39 0.33-0.46 <10-25 

NTproBNP(pg/ml) 932(206-2635) 3.33 1.93-5.76 <10-4 2.2 1.23-3.94 <10-2 
Creatinine(mg/dL) 0.92 (0.8-1.11) 1.86 1.66-2.09 <10-25 2.02 1.76-2.33 <10-22 

HGB (g/dL) 13.8 (12.6-14) 0.55 0.49-0.62 <10-21 0.54 0.47-0.62 <10-16 
PLT (×103/µL) 226 (188-271) 1.01 0.9-1.13 0.84 0.97 0.85-1.11 0.68 

WBC (×103/µL) 8.1 (6.6-10.1) 1.27 1.13-1.42 <10-4 1.32 1.15-1.51 <10-4 
STEMI 1721 (23.95%) 1.29 1.13-1.46 <10-3 1.38 1.19-1.61 <10-4 

NSTE-MI 593 (8.25%) 1.73 1.46-2.07 <10-9 1.91 1.56-2.34 <10-9 
UA 1377 (19.16%) 0.96 0.83-1.1 0.52 0.9 0.76-1.07 0.22 
CCS 3495 (48.64%) 0.72 0.64-0.8 <10-8 0.68 0.59-0.77 <10-7 

BMI – body mass index; CABG – coronary artery bypass graft; CCS – chronic coronary 
syndrome; CI – confidence interval; CKD – chronic kidney disease; COPD – chronic 
obstructive pulmonary disease; CV – cardiovascular; DCM – dilated cardiomyopathy; HBG – 
haemoglobin; HBP – high blood pressure; LVEF – left ventricular ejection fraction; MI – 
myocardial infarction; PAD – peripheral artery disease; PCI – percutaneous coronary 
intervention; PLT – platelet count; NSTE-MI – non-ST segment elevation acute MI; STEMI 
– ST segment elevation acute MI; TIA – transient ischemic attack; UA – unstable angina; 
VHD – valvular heart disease; WBC – white blood cells count. 
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Table 3 – Performance metrics for ML models and clinical risk scores. 

Parameter Integrated AUC-ROC* Integrated AUC-PR* 
Integrated 
cAUC-PR 

Integrated 
MCC 

Integrated 
F1 score 

Integrated 
Brier score 

Cardiovascular cause death prediction 
ML on training dataset 0.900 - 0.727 - 0.546 0.583 0.664 0.094 

ML on validation dataset 0.837 - 0.589 - 0.407 0.438 0.555 0.117 
ACEF score 0.761 p<10-10 0.380 p<10-10 0.199 0.282 0.351 0.124 

GRACE score 0.718 p<10-10 0.275 p<10-10 0.093 0.231 0.301 0.159 
SYNTAX score 0.662 p<10-10 0.238 p<10-10 0.238 0.141 0.216 0.173 

All-cause death prediction 
ML on training dataset 0.873 - 0.736 - 0.517 0.543 0.650 0.107 

ML on validation dataset 0.844 - 0.647 - 0.428 0.485 0.612 0.125 
ACEF score 0.735 p<10-10 0.410 p<10-10 0.190 0.278 0.387 0.150 

GRACE score 0.695 p<10-10 0.295 p<10-10 0.075 0.220 0.328 0.175 
SYNTAX score 0.637 p<10-10 0.255 p<10-10 0.036 0.137 0.241 0.186 

ACEF – Age, Creatinine and Ejection Fraction score; AUC-ROC – area under the curve of receiver-operator characteristic; AUC-PR – area 
under the curve of precision-recall; cAUC-PR – baseline corrected area under the curve of precision-recall; GRACE – Global Registry of Acute 
Coronary Events; MCC – Matthews correlation coefficient; ML – machine learning; SYNTAX – Synergy Between PCI with TAXUS and 
Cardiac Surgery. *p values were obtained by comparing each clinical score with ML on validation dataset at each timeframe.  
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