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Abstract 

Background and Hypothesis: Identifying schizophrenia spectrum disorders (SSD) from spontaneous 

speech features is a key focus in computational psychiatry today. 

 

Study Design: We present a task-voting procedure using different speech-elicitation tasks to predict SSD 

in Spanish, followed by ablation studies highlighting the roles of specific tasks and feature domains. Speech 

from five tasks was recorded from 92 subjects (49 with SSD and 41 controls). A total of 319 features were 

automatically extracted, from which 24 were pre-selected based on between-feature correlations and 

ANOVA F-values, covering acoustic-prosody, morphosyntax, and semantic similarity metrics. 

 

Study Results: ExtraTrees-based classification using these features yielded an accuracy of 0.840 on hold-

out data. Ablating picture descriptions impaired performance most, followed by story reading, retelling, 

and free speech. Removing morphosyntactic measures impaired performance most, followed by acoustic 

and semantic measures. Mixed-effect models suggested significant group differences on all 24 features. In 

SSD, speech patterns were slower and more variable temporally, while variations in pitch, amplitude, and 

sound intensity decreased. Semantic similarity between speech and prompts decreased, while minimal 

distances from embedding centroids to each word increased, and word-to-word similarity arrays became 

more predictable, all replicating patterns documented in other languages. Morphosyntactically, SSD 

patients used more first-person pronouns together with less third-person pronouns, and more punctuations 

and negations. Semantic metrics correlated with a range of positive symptoms, and multiple acoustic-

prosodic features with negative symptoms. 
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Conclusions: This study highlights the importance of combining different speech tasks and features for 

SSD detection, and validates previously found patterns in psychosis for Spanish. 

 

Keywords:  schizophrenia, machine learning, spontaneous speech, task comparison, feature comparison 
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Introduction 

Human language is organized across a number of integrated levels, each of which carries a wealth of 

computationally extractable information relevant to mental health1, in a situation where diagnosis is still 

essentially based on information obtained from conversational speech. At the acoustic level, modulations 

in volume, pitch, speed of articulation, phonation-vs.-pausing times, and spectral properties of the speech 

sound can signal an underlying disease process, as can more monotonous speech at the level of prosody2. 

As language intrinsically carries meaning, the choice of words and their organization into meaningful 

sentences reflects the contents of thought generated in response to some tasks such as a picture description 

or answering a question3. Responding verbally to such tasks further adheres to formal-syntactic patterns or 

rules as reflected in the construction of phrases containing other phrases as projected from ‘parts of speech’ 

categories such as nouns, verbs, adpositions, determiners, and auxiliaries. Together, the complex edifice 

arising from integration across these levels of organization promises sensitivity to processes of mental 

change and decline.  

 

Numerous studies employing machine learning with selected features across these speech and language 

domains have obtained classification accuracies for psychosis relative to healthy controls across several 

languages, ranging for the acoustic-prosodic domains from 76%4 to 94%5, despite the limitations of small 

sample sizes and lack of external validations. Features from spontaneous speech mostly performed well in 

classifying converters to psychosis from a high-risk state versus non-converters6–8 (but see Bianciardi et 

al.9), distinguishing different stages in the schizophrenia spectrum10, and predicting aspects of disease 

progression in longitudinal samples11. These studies have generally validated the usability of spontaneous 

speech as a digital biomarker for schizophrenia spectrum disorders (SSD).  
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These classification results are all obtained from data that are effortlessly produced and automatically 

analyzable given appropriate pipelines. Nonetheless, from a translational perspective, a number of 

desiderata currently stand out. First, studies have used a variety of speech elicitation tasks, from free 

conversational speech, picture or cartoon descriptions, dream reports, story recall, to reading and clinical 

interviews. As different tasks pose different cognitive demands, the effects of the task chosen are currently 

unclear and of potential clinical importance. Morgan et al. showed that free speech was less effective than 

picture description and story retelling in distinguishing groups of first episode of psychosis, clinical high 

risk, and controls12. Second, the relative importance of different feature domains for classification has only 

recently begun to be addressed in a small number of studies. Moshe et al. show through an ablation study 

that acoustic features capture more information than semantic ones extracted form text.13 Huang et al. found 

that acoustic features played a powerful role in classifying PANSS items featuring some relation to 

emotions, e.g., excitement, anxiety, emotional withdrawal14. Voppel et al. showed that combining a 

quantification of the semantic similarities of produced words with the word2vec language model and 

acoustic features extracted with openSmile boosted performance of a random forests classifier from 80 and 

81%, respectively, to 85%15.  

 

In this study, we developed a task-voting pipeline where identical machine learning classifiers were trained 

for SSD detection on five tasks with a comprehensive set of features from three linguistic domains to 

address the challenges with speech tasks and feature domains. To this we added further ablation studies to 

shed insight on the importance of different tasks and features.  
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Methods 

Dataset 

Ninety-two subjects were recruited in this study, including 41 healthy controls and 49 chronic SSD patients. 

As shown in Table 1, there was no significant difference between groups on age, sex, and years of education. 

Among them, eighty-eight are native Spanish speakers while one patient is native in French and another 

patient native in Portuguese. Both learned Spanish in school and speak Spanish fluently. Symptom severity 

of patients was evaluated with 10-item Positive and Negative Syndrome Scale (PANSS), including three 

positive items, three negative items, and four general items. Positive items include delusions (P1), 

conceptual disorganization (P2), and hallucinatory behavior (P3). Negative items included blunted affect 

(N1), passive/apathetic social withdrawal (N4), and lack of spontaneity and flow of conversation (N6). 

General items included anxiety (G2), mannerisms & posturing (G5), depression (G6), and unusual thought 

content (G9).  

 

Speech elicitation and transcription 

Every participant went through the DISCOURSE in Psychosis Speech Collection Protocol as available at 

https://discourseinpsychosis.org/resources/. Audio was recorded using Audacity with manual tagging to 

isolate participant speech at Valdecilla Biomedical Research Institute (IDIVAL). The protocol and 

methodology for this study was approved by the local research ethics committee (CEIm internal code 

2021.119). We extracted five audios from the three tasks in total: (1) Self-related interview (SelfInt): free 

speech elicitation on topics related to the interviewees, e.g. Tell me a bit about yourself (¿Puedes hablarme 

un poco de ti?); (2) Past-related interview (PastInt): free speech on topics related to events that happened 

in the past or in recent years, e.g. Thinking back, can you tell me a story about something important that 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.08.31.24312886doi: medRxiv preprint 

https://discourseinpsychosis.org/resources/
https://doi.org/10.1101/2024.08.31.24312886


happened to you in your life? (Haciendo memoria, ¿puede contarme una historia sobre algo importante 

que le haya ocurrido en su vida?); (3) Picture description (PicDesp): describe three pictures from Thematic 

Apperception Test (TAT); and (4) story recall: read a story and retell it immediately without looking at it. 

Recordings of reading and retelling were separately analyzed. All speech was transcribed with Whisper16 

and manually checked and corrected by a researcher. For both SelfInt and PastInt, we concatenated the 

answers into one paragraph. For PicDesp and retelling, we treated each description of a picture and the 

retelling as single paragraphs. We did not include the transcripts of the reading part.  

 

Acoustic-prosodic analysis  

For each task, we concatenated the interviewer’s voice into one recording and thus obtained five recordings 

for each participant. We first used OpenSmile to extract 88 features from the eGeMAPSv02 feature set, 

which was developed as a minimalistic parameter set for acoustic computing including voice quality, pitch 

profile, and spectral and cepstral coefficients17. In addition, to have a more detailed and comprehensive 

understanding of the prosodic profile, we used Prosogram to extract 31 additional prosodic features 

describing the quantity of speech and pitch variations18.  Details on the prosodic variables can be found in 

Supplementary Table S1.  

 

Morphosyntactic complexity  

Speech transcripts were split into sentences and words with the Spanish model from SpaCy. We first 

extracted six quantity features, including the number of words, the number of words excluding stopwords, 

the number of sentences, the number of noun chunks, the type token ratio of words, and the ratio of 

stopwords. The spaCy model also tagged word classes and analyzed relevant morphological changes. With 
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these results, we computed the ratio of the 16 universal part-of-speech tags and 18 morphological features, 

including the ratio of four tenses, the ratio of three different personal pronouns, the ratio of negation, the 

ratio of four moods, the ratio of masculine and feminine nouns, the ratio of singular and plural nouns, and 

the ratio of definite and indefinite nouns. In addition, we parsed the sentences into dependency and 

constituency structures to extract formal syntactic features, which has been shown to change in SSD.3,19 

Dependency parsing was performed using spaCy’s dependency parser to identify pairs of words with direct 

dependency relationships. For example, in the sentence She ate an apple, an is the determiner (det) of apple, 

and She is the nominal subject (nsubj) of is. The ratios of 26 dependency relationships were extracted. 

Distance between two dependent words, as measured by the number of intervening words, is a well-

established indicator of syntactic complexity and cognitive effort.20,21 Both the average and maximum 

dependency distances were thus calculated to index dependency complexity. Another way to parse She ate 

an apple is by examining its hierarchical phrasal structure: an apple is a noun phrase embedded in the verb 

phrase ate an apple, which, along with the noun phrase She, forms the complete sentence, as in [[She]NP 

[ate [an apple]NP]VP]S. The phrasal structures were identified with a Spanish constituency parser from 

Stanza, and represented as directed acyclic graphs. From the graphs, we computed the distance between 

each node and the sentence node as the count of intervening nodes to identify the syntactic depth of each 

word node, and extracted eight relevant features to index the constituency complexity. In total we extracted 

76 morphosyntactic features and the details can be found in Supplementary Table S2.  

 

Semantic similarity analysis 

Given a text split into 𝑁 units {𝑈1, 𝑈2, … , 𝑈𝑁}, we vectorized each unit with certain language model into a 

matrix of embeddings {𝑒1, 𝑒2, … , 𝑒𝑁}. The similarity between vectors 𝑒𝑖 and 𝑒𝑗 was defined by the cosine 
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value of the angle between them: 

 

𝑆𝑖𝑚𝑖,𝑗 =
𝑒𝑖 ⋅ 𝑒𝑗

|𝑒𝑖||𝑒𝑗|
(1) 

where |𝑒𝑖| and |𝑒𝑗| are the norms of the vectors ei and ej, respectively. 

 

We first computed the averaged cosine similarity between adjacent words as first-order mean similarity 

(MeanK1): 

𝑀𝑒𝑎𝑛𝐾1 =
1

𝑁 − 1
∑ 𝑆𝑖𝑚𝑖,𝑖+1

𝑁−1

𝑖=1

(2) 

 

Then, the second-order mean similarity was defined as the averaged cosine similarity between two units 

with one unit in between (MeanK2): 

𝑀𝑒𝑎𝑛𝐾2 =
1

𝑁 − 2
∑ 𝑆𝑖𝑚𝑖,𝑖+2

𝑁−2

𝑖=1

(3) 

 

Global semantic similarity was defined as the averaged cosine similarity between all unit pairs: 

𝑀𝑒𝑎𝑛𝐺 =
2

𝑁(𝑁 − 1)
∑ ∑ 𝑆𝑖𝑚𝑖,𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

(4) 

 

In addition to these averaged scores, which previous studies have often found indicative of semantic 

changes in speech in SSD,3,22,23 we introduced two sets of variables to approximate the dynamics of a 

navigation in semantic space. Given a time series of semantic similarity between adjacent units 

{𝑆𝑖𝑚1,2, 𝑆𝑖𝑚2,3, … , 𝑆𝑖𝑚𝑁−1,𝑁}, one set comprised six statistical measures describing the distribution of the 

similarities, including variance, maximum (peak), minimum (valley), amplitude (i.e. difference between 
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maximum and minimum), skewness, and excess kurtosis (i.e. kurtosis – 3, where 3 is the kurtosis of normal 

distribution). Another set of variables took the temporal order of the sequence into account and aimed to 

depict the temporal dynamics with six variables. Let xi represent the ith semantic similarity in the array  

{𝑆𝑖𝑚1,2, 𝑆𝑖𝑚2,3, … , 𝑆𝑖𝑚𝑁−1,𝑁} and �̅� represent the mean value of this array (i.e. MeanK1). Then the mean 

crossing rate (MCR) measures how frequently a semantic similarity score crosses its mean value x̅: 

𝑀𝐶𝑅 =
1

𝑁 − 1
(∑[sign(𝑥𝑖 − �̅�) ≠ sign(𝑥𝑖+1 − �̅�)]

𝑁−1

𝑖=1

− [𝑥𝑖 = �̅�]) (5) 

 

Slope sign changes (SSC) measures the normalized number of times the slope of the signal changes its sign: 

𝑆𝑆𝐶 =
1

𝑁 − 2
∑ 𝟙

𝑁−2

𝑖=1

((𝑥𝑖 − 𝑥𝑖−1) ⋅ (𝑥𝑖 − 𝑥𝑖+1) > 0) (6) 

where 𝟙 is an indicator function that returns 1 if the condition inside is true, and 0 otherwise.  

 

The wave length (WL) calculates the average absolute difference between two consecutive semantic 

similarity scores: 

𝑊𝐿 =
1

𝑁 − 1
∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

(7) 

 

Approximate entropy (ApEn) measures the unpredictability of fluctuations over time. Higher ApEn 

indicates a more predicable time series with increasing amount of regularity in its fluctuations. ApEn was 

estimated using the Python package called Antropy with default parameters.  

 

Autocorrelation function (ACF) computes the correlation coefficients between the time series and copies 

of itself that are temporally shifted with a series of lags: 
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ACF𝑘 =
∑ (𝑥𝑖 − �̅�)(𝑥𝑖+𝑘 − �̅�)𝑁−𝑘

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

(8) 

 

where k is the number of lags. We extracted ACF with one lag (ACF1) and zero crossing rate of the ACF 

waveform (AcfZcr).  

 

Only text with over four units entered the semantic analysis. Text less than four units was treated as missing 

values. 

 

Semantic embedding retrieval  

We utilized three different language models to proxy semantic structure at different levels. After removing 

all punctuations and spaces (as defined by the part-of-speech tags from SpaCy) and stopwords (as defined 

in the nltk package), all tokens were encoded with the fastText model pretrained on Spanish data.24 FastText 

is a context-free model assigning the same embedding to the same token regardless of the actual context, 

while contextual models like transformer-based models can encode the tokens with the context taken into 

account. We applied roberta-large-bne, a transformer-based language model pretrained on Spanish 

corpora,25 to tokenize the sentences and encode every token into embeddings. Finally, at the sentence level, 

we applied a Spanish sentence-transformers model to compare the similarity between two sentences 

(hiiamsid/sentence_similarity_spanish_es).  

 

Semantic centroid analysis  

Following Xu et al., we computed the similarity not only among adjacent units, but also between the units 

and their centroid.26 Given a listing a matrix of embeddings {𝑒1, 𝑒2, … , 𝑒𝑁}, the static centroid was defined 
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as the averaged embedding across all units: 

𝐶𝑠𝑡𝑎𝑡 =
1

𝑁
∑ 𝑒𝑖

𝑁

𝑖=1

(9) 

 

The cumulative centroid was defined as the averaged embedding over all preceding units. The cumulative 

centroid at the jth unit is thus: 

𝐶𝑐𝑢𝑚𝑙,𝑗 =
1

𝑗 − 1
∑ 𝑒𝑖

𝑗−1

𝑖=1

(10) 

 

The centroid serves as a proxy of the central ‘topic’ of the text as a whole. While the static centroid 

summarizes the whole text, the cumulative centroid may reveal how the topic evolves as the narrative 

unfolds. We computed the similarity between every unit and the centroid, whether static or cumulative, as 

a time series from the first unit to the last unit. Then, we extracted the MeanK1, six distribution variables 

and six dynamic variables as described above.  

 

Prompt to response similarity  

As all speech data were elicited by prompts, either verbal or visual, analyzing the similarity between 

prompts and responses can indicate how much speakers deviate from the trigger or external ‘anchor’ of 

their speech. For this purpose, for the interview tasks, the texts were no longer concatenated, but divided 

into several ‘chunks’, where each chunk contains several words from the interviewer (the prompt) and 

another piece of text from the interviewee (the response). We used the Spanish sentence-transformers model 

to compare sentence similarity between each prompt and response per chunk and then averaged across 

chunks for each participant. For story reading and retell, we used the Spanish sentence-transformers for the 
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similarity between the original and recalled story. For picture descriptions, we used the multimodal CLIP 

model, which can encode the visual prompt and elicited speech at the same time to enable similarity 

comparisons between them two27. 

 

Identify SSD with different tasks as ‘voters’  

In total, 319 linguistic features were extracted for each participant from each of the five recordings and 

their corresponding transcripts: SelfInt, PastInt, PicDesp, Read, and Retell. For PicDesp, semantic and 

morphosyntactic features were averaged across three pictures. All features were first z-scored within each 

task, and missing values were filled with the minimum values per feature. For story reading, semantic and 

morphosyntactic features were all filled with zeros. We trained five Extra Trees classifiers on the five tasks 

for SSD identification (parameters: n_estimators: 5, max_depth: 5, min_samples_split: 5, 

min_samples_leaf: 2, max_features: sqrt, criterion: entropy, random_state: 42). Each classifier was trained 

to detect SSD from controls based on the linguistic features extracted from the five tasks, and they voted 

together for the final prediction. The final prediction was determined by majority voting: for example, if a 

participant received four predictions as SSD and one as control, they would be classified as SSD. We 

performed a nine-fold cross-validation on 90% of the data, with a hold-out dataset of 10% to evaluate model 

performance and generalizability. The cross-validation set itself was split into nine folds. Iteratively, in 

each cross-validation, the model was trained on eight folds, tested on the remaining fold, and also evaluated 

on the hold-out dataset. This process yields nine performance matrices per fold, which were then averaged 

into the cross-validation and hold-out performance matrices. Thus, the model never saw the hold-out dataset 

during training and validation. Performance was evaluated using precision, recall, accuracy, and F1-score.  
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Feature selection  

A large and comprehensive feature set as used here, though allowing for comprehensive characterization 

of the speech profiles, may contribute noise to the classifier and increase difficulty in interpretation. 

Selecting the most informative features to be forwarded to the classifier is therefore necessary and 

beneficial. We first removed features highly correlated with each other. Removing these features helps 

mitigate redundancy and multicollinearity, thereby improving interpretability and generalizability. We 

conducted repeated measures correlations (rmcorr) for each feature against others. Features showing strong 

correlations, as indicated by coefficients exceeding 0.9, were subsequently removed with only the first one 

remaining. Features were removed on first found, first removed basis. Forty-five features were excluded at 

this stage. 

 

Following the removal of strongly correlated features, mixed-effect ANOVA was employed to gauge the 

discriminative power of each linguistic feature in identifying SDD. Features were ranked based on their 

ANOVA F-values, sorted from highest to lowest. We selected the N features with highest ANOVA F-values. 

The selection of the optimal number N was guided by an aggregated accuracy score criterion, defined as 

the sum of cross-validation and hold-out accuracy scores when their difference was less than 0.05, or 

divided by the difference when greater.  

𝑆𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 = {

𝑆1 + 𝑆2            , |𝑆1 − 𝑆2| < 0.05
𝑆1 + 𝑆2

|𝑆1 − 𝑆2| × 100
, |𝑆1 − 𝑆2| ≥ 0.05

(11) 

where 𝑆1 is the cross-validation accuracy score and 𝑆2 is the hold-out accuracy score. The model reached 

the highest aggregated accuracy score with 24 features.  

 

Ablation studies 
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To understand the importance of different linguistic domains and different tasks, we investigated the 

performance of the identical system after removing each task, and reported the difference as compared to 

the performance with five tasks on the hold-out set. Similarly, we investigated the performance of the 

identical system when removing each feature, averaged the difference for each of the three feature domains, 

and reported the averaged difference as compared to the performance with all selected features.  

 

Exploratory factor analysis  

An exploratory factor analysis (EFA) was conducted to further understand the underlying structure of the 

selected features. A parallel analysis based on principle component analysis (PCA) suggested to retain five 

factors.28 We fit the data with a factor analysis model using minimal residual and promax oblique rotation. 

Details can be found in the supplementary materials.  

 

Group comparisons and symptom severity correlations  

Finally, for each of the 24 selected features, we constructed a mixed-effect linear regression model to 

investigate the effect of diagnostic group (i.e. SSD or controls) on the feature. The model included fixed 

effects of age, gender, education years, and diagnostic group, and random effects of participant and task. 

All p values were corrected with False Discovery Rate (FDR) and reported as q values. We carried out 

additional mixed-effect models on other variables of interest as supplements. For example, we analyzed 

changes in proportion of pauses as a supplement to findings about changes in the duration of pauses. In 

addition, within the SSD group, we averaged the features across all tasks, for each participant, and 

performed Spearman’s correlations between the averaged features and PANSS items. FDR corrections were 

performed for each feature across the ten PANSS items. 
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Results 

Model performance and ablation studies  

With the 24 selected features, respectively on the cross-validation and hold-out sets, the model achieved 

precision scores 0.824 and 0.891, recall scores of 0.861 and 0.822, F1 scores of 0.832 and 0.846, and 

accuracy scores of 0.815 and 0.840. These 24 features included 16 acoustic features, 4 semantic features, 

and 4 morphosyntactic features, as reported in Table 2 with their ANOVA F-values. As shown in Figure 

1A, removing each of the tasks led to slight increases on recall scores but greater decreases on other scores. 

Removing picture descriptions impaired the performance most, followed by story reading and then retelling, 

and then free speech about self and then about past events. Removing any of the features reduced the model 

performance, with the greatest decline seen when removing mean syntactic depth (accuracy decrease by 

0.198), and the slightest decline seen when removing median nucleus duration (accuracy decrease by 0.049). 

As for feature domains, as shown in Figure 1B, removing morphosyntactic measures impaired the 

performance most, followed by acoustic measures and then semantic measures.  

 

Factor analysis  

Five factors were observed from the selected 24 features, as shown in Table 2. The first factor mainly 

includes speech quantity measures, together with one voice quality measure regarding shimmer and one 

pitch variation measure. The second factor concerns pauses in speech, while the third factor concerns 

MFCC values, and the fourth factor includes three measures derived from semantic similarity waves and 

one measure on loudness. Finally, the fifth factor includes all morphosyntactic measures, similarity between 

the speech and speech prompts, and one pitch variation measure. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.08.31.24312886doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.31.24312886


 

Group differences in selected features  

The mixed-effect models suggested significant group differences on all selected features (q < 0.05). Results 

are visualized in Figure 2 and details such as Z and q values can be found in the Supplementary Table 4. In 

addition to these 24 measures, we also reported some additional measures to contextualize the speech 

changes with Z and p values reported here.  

 

The SSD group spoke more slowly, thus producing longer voiced speech, longer nucleus durations and 

longer pauses. However, the increase in the proportion of pauses was not significant (Z = 1.863, p = 0.063). 

In addition to an increase in general length, the variabilities in the durations of both voiced and unvoiced 

(i.e. paused) segments also increased. On the other hand, the variations in pitch, amplitude, and sound 

intensity decreased in SSD, as evidenced by decreases in pitch trajectories, higher proportion of nuclei 

without glissando, less shimmer (changes in amplitude), and lower standard deviation of the slope of rising 

signal parts of loudness. Lower MFCC coefficients indicate less energy or intensity in certain frequency 

ranges of the speech signal.  

 

The most prominent change in the semantic domain was a decrease in the similarity between the speech 

and its prompt in SSD compared to controls. In addition, the minimal distance between the embedding 

centroid to each word increased in SSD, as derived from both fastText and BERT, but insignificantly 

decreased with sentences (Z = -0.744, p = 0.457). As for word-to-word similarity arrays, these became more 

predictable with BERT, also significantly with fastText (Z = -2.128, p = 0.033) and insignificantly with 

sentences (Z = -0.337, p = 0.736).  
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In the morphosyntactic domain, more first-person pronouns were used in SSD, together with insignificantly 

less second-person pronouns (Z = -0.427, p = 0.669) and significantly less third-person pronouns (Z = -

2.839, p = 0.005). We also observed more punctuations and more negations in SSD. The mean syntactic 

depth averaged across words decreased in SSD, but as a probable consequence of less words produced (Z 

= -2.006, p = 0.045). When normalized by sentence length, syntactic depth insignificantly increased in SSD 

(Z = 0.284, p = 0.777).  

 

Correlations with clinical symptoms  

Spearman’s correlations between selected linguistic features and ten PANSS items were visualized in 

Figure 3 and details can be found in the Supplementary Table 4. No significant correlations were found 

with general items. Two semantic measures correlated with positive symptoms: Higher score in delusions 

correlated with lower similarity between prompt and response and higher minimal similarity between word 

embeddings and the static centroid from BERT. The former (lower similarity between prompt and response) 

also correlated with higher score in conceptual disorganization. The latter (higher minimal similarity 

between word embeddings and the static centroid from BERT) also correlated with hallucinatory behavior, 

as well as two negative symptoms, blunted affect and lack of spontaneity and flow of conversation. These 

two negative symptoms further correlated with multiple acoustic-prosodic features, including slower 

speech with longer nucleus durations and longer pauses, and less variations in pitch trajectory and sound 

intensity.  

 

Discussion 
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This study proposed a new model of combing information from different language tasks to let them vote 

for SSD classification. We showed that combining various speech elicitation tasks with features from 

multiple linguistic domains enhances the classification performance of SSD versus healthy controls. While 

omitting any task might slightly improve precision, it results in greater reductions in recall, as well as in 

accuracy and F1 scores. Removing any feature adversely affects the model’s performance across all four 

metrics. The satisfactory performance scores (precision: 0.891, recall: 0.822, F1 score: 0.846, accuracy: 

0.840 on the hold-out set) confirm the diagnostic and prognostic potential of spontaneous speech, proposed 

as a digital marker29, or even a mechanistic factor30, for psychosis. This level of performance was achieved 

not only on the cross-validation set but also on unseen hold-out data, indicating the model’s generalizability.  

 

Mixed-effect regression models on the selected variables indicated that the model learned the following 

speech patterns to detect SSD: SSD patients spoke slower with higher variations in temporal features, while 

variations in pitch, amplitude, and sound intensity decreased. Minimal semantic distances between 

embedding centroids and each word increased, while word-to-word similarity arrays became more 

predictable in SSD3. Again consistently with previous studies3,39 this pattern of a contracted semantic space 

does not exclude and is indeed consistent with a decrease in the semantic similarity between speech and 

prompts when using bimodal models, showing greater deviance (higher semantic distance) of speech from 

its external ‘anchor’ in SSD. 

 

In SSD, a wide range of speech tasks has been employed to observe abnormal patterns in speech. While 

describing TAT pictures has been widely adopted3,31,32, other spontaneous speech tasks, such as free 

speech33 and story recall34, have also been used for speech elicitation. Comparisons of different tasks in the 
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capacity of distinguishing patients from neurotypical populations have been investigated in other diseases 

such as the Alzheimer’s disease (AD) spectrum. Recall tasks have been reported to be most efficient in 

detecting AD as compared to picture description and conversation, potentially due to the memory 

component involved in this task35–37. Task difference, however, is underexploited in SSD, though Morgan 

et al. found that recall and picture description outperformed free speech12. While all five tasks contributed 

to the model performance, the TAT-based picture description task made the greatest contribution, 

underscoring the usability of this commonly employed task. Story reading and recall, which has scored 

high in AD detection, also made substantial contributions, though less than the picture description tasks. 

Meanwhile free speech contributed the least to the voting classifier, but removing it still worsened the 

model’s performance. Overall, these results suggest that, in a real-world clinical setting, clinicians should 

employ a comprehensive set of speech tasks to maximize the information available for SSD classification. 

Morphosyntactically, more first-person pronouns were used together with less third-person pronouns, and 

more punctuations and negations. 

 

Compared to task choice, it is more often noted that different feature domains contribute differently to SSD 

detection13,15,38. Our results confirm initial findings of Voppel et al, showing that a holistic linguistic profile, 

with acoustic-prosodic, morphosyntactic, and semantic structure features classifying together, empowers 

the model for best performance. Every feature mattered to the classification, as removing any one of them 

would lower the performance. However, unlike previous findings showing that acoustic-prosodic features 

were more powerful in classification than textual measures13,15,38, the ablation results revealed that 

removing morphosyntactic measures, particularly mean syntactic depth, was most detrimental, followed by 

acoustic-prosodic and semantic measures. Our exploratory factor analysis offers a potential explanation for 
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this inconsistency. It identified five latent factors underlying the 24 selected features. Speech quantity, 

pauses, MFCC, and syntactic features were distinctly separated into different factors. In contrast, semantic 

measures, as well as a few voice quality and pitch measures, were distributed across different factors, 

suggesting a greater degree of interrelations with other measures. Specifically, semantic similarity measures 

were intertwined with loudness changes and mean syntactic depth, while prompt-response similarity was 

connected with syntactic measures and pitch trajectory. This suggests that when removing a highly 

interrelated measure, the model can still capture some aspects of it through related features, such as 

syntactic measures for prompt-response similarity, though not as effectively as it would with the feature 

itself. Conceivably, ablating semantic measures for this reason made the least impact on model performance, 

whereas removing morphosyntactic measures caused the highest impairment. From this point of view, our 

findings do not necessarily contradict previous research but rather provide complementary evidence 

regarding the importance of different feature domains. 

 

The mixed-effect regression models carried out on all selected features, which included fixed effects of age, 

gender, education, and diagnostic group, contribute to model interpretation. While we replicated a 

previously documented acoustic and semantic pattern as discussed above, another morphosyntactic pattern 

rather extends a varied picture seen previously: more first-person pronouns were used together with less 

third-person pronouns, and more punctuations and negations. The first of these results contradicts a 

previous study40 finding fewer first-person singular pronouns in SSD, while another study found more41. 

Use of first person is likely to be highly task-sensitive, with picture descriptions in particular not inviting 

first person use, and with free speech questions doing so to various degrees. Crosslinguistic differences 

may also matter to variability between studies, including whether a language marks grammatical person 
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primarily on pronouns or in verbal morphology, and whether NLP tools used to detect first or third person 

or sensitive to both of these. Apart from these factors, it is also possible that use of first person is simply 

too individually variable in ordinary language use to form a promising part of a crosslinguistically 

replicable pattern in SSD. 

 

As for the relations to symptom severity, acoustic-prosodic features were found to correlate only with 

negative symptoms including blunted affect (N1) and lack of spontaneity and flow of conversation (N6). 

Higher severity in these two negative symptoms were indicated by slower and prolonged speech with more 

pauses and less pitch variations. This apriori predictable pattern lends further confidence to tracking 

negative symptomatology through these acoustic and prosodic features. Contraction in the semantic space 

and deviance from the speech prompt were also indicative for these two negative symptoms. Moreover, 

these two semantic measures were the only measures correlated to positive symptoms. Specifically, 

minimal distances between words and the text centroids (averaged embeddings from BERT of the texts 

they belong to) correlated with delusions and conceptual disorganization, while prompt-to-response 

similarity correlated with delusions and hallucinations. Speech changes, especially poverty of speech, has 

often been thought of as one of the clearest biomarkers for negative symptoms42–45. Our results raise the 

expectation that, the semantic structure of speech may particularly capture changes in positive symptoms, 

which may be highly valuable in the context of tracking a patient’s transition into remission, where positive 

symptoms recede, and a transition back to psychosis (relapse), where they re-emerge.  

 

Together, our study proposes a new classification model for speech-based SSD detection. Combining 

different speech tasks and linguistic domains can effectively elevate model performance. Our results should 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.08.31.24312886doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.31.24312886


be considered as being subject to several limitations. First, our study had a relatively small sample size. 

Machine learning models on small datasets usually face high risk of bad performance and generalizability. 

We improved the model performance with task voting and feature engineering and considered the 

generalizability by reserving a hold-out dataset. Secondly, these automatically extractable measures were 

noted to differ across languages and datasets23,46. Future studies should aim to develop a model on cross-

lingual datasets with more subjects.  
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Tables 

Table 1. Demographics and clinical scores of the dataset 

 Control Schizophrenia Test Statistics p value Effect size 

Number 41 49 / / / / 

Age 41.79  7.79 39.93  9.61 T test 1.012 0.314 0.210 

Sex 41.46% 48.98% Χ2 test 0.251 0.617 0.053 

Education 11.56  2.57 10.94  3.50 T test 0.967 0.336 0.201 

PANSSP / 3.0 (2.0) / / / / 

PANSSN / 4.0 (2.2) / / / / 

PANSSG / 5.0 (3.0) / / / / 

PANSSTotal / 13.0 (4.2) / / / / 

Note: Age and education are indicated by mean  standard deviation by years. Sex is indicated by the 

proportion of female participants. PANSS scores are indicated by the median and interquartile range (IQR). 

We used the 10-item PANSS version in this study (P1, P2, P3, N1, N4, N6, G2, G5, G6, and G9). PANSSP 

indicates the median (IQR) of the total sum scores of 3 positive items. PANSSN indicates the median (IQR) 

of the total sum scores of 3 negative items. PANSSG indicates the median (IQR) of the total sum scores of 

4 general items. PANSSTotal indicates the median (IQR) of the total sum scores of all 10 items. 
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Table 2. ANOVA F values and EFA factor loadings.  

Features Domain F Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Communalities 

NuclDurMean acoustic-prosody 26.694 0.939     0.911 

SpeechRate acoustic-prosody 34.106 -0.899     0.813 

NuclDurStdev acoustic-prosody 16.156 0.844     0.742 

PropLevel acoustic-prosody 12.373 -0.807    -0.309 0.779 

nPVI_nucldur acoustic-prosody 11.135 0.772     0.639 

NuclDurMedian acoustic-prosody 26.559 0.626     0.454 

shimmerLocaldB_sma3nz_amean acoustic-prosody 9.602 -0.474  0.264   0.295 

TrajPhonZ acoustic-prosody 8.877 -0.464     0.287 

MeanVoicedSegmentLengthSec acoustic-prosody 10.707  1.018    1.110 

StddevVoicedSegmentLengthSec acoustic-prosody 11.421  0.907  0.293  0.924 

VoicedSegmentsPerSec acoustic-prosody 17.901  -0.896    0.816 

StddevUnvoicedSegmentLength acoustic-prosody 8.908  0.334   0.264 0.239 

mfcc3V_sma3nz_amean acoustic-prosody 11.339   1.017   1.057 

mfcc3_sma3_amean acoustic-prosody 12.369   0.922   0.876 

BERT_ApEn semantic 8.503    0.694  0.491 

BERT_stat_Valley semantic 11.194    -0.631  0.411 
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FT_stat_Valley semantic 11.774    -0.553  0.329 

loudness_sma3_stddevRisingSlope acoustic-prosody 9.050    0.253  0.112 

DepthMean morphosyntax 10.019    0.339 -0.470 0.340 

PUNCT_PosR morphosyntax 12.277     0.675 0.466 

Negation morphosyntax 9.230     0.507 0.267 

Person1R morphosyntax 10.591     0.333 0.119 

TrajInter acoustic-prosody 10.359     0.285 0.190 

pmt2rsp semantic 11.415     -0.259 0.115 

Notes: Only loadings with absolute values larger than 0.25 are included. Bold font indicates a loading to be the highest among five factors for each 

feature.  We reported communalities and uniqueness per feature along with EFA loadings. Communalities refer to the amount of variance in each observed 

variable that is accounted for by the extracted factors and was computed from the sum of all squared factor loadings for each variable.  
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Figures 

 

Figure 1. Ablation results on different speech tasks and feature domains. The changes in performance are 

defined by subtracting the performance of the ablated model from the performance of the whole model and 

showed on the y axis. (A) Changes in model performance by ablating each task. (B) Changes in model 

performance by ablating features from different domains.  
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Figure 2. Results of mixed-effect regression model on the preselected variables. The error bars show the 

95% confidence interval of the Z value (the central dot) for every feature forwarded to the classifier after 

feature selection. Features are listed on the y axis. The dash line indicates the position of 0. The error bars 

on the right side of the dash line indicate increases in SSD while those on the left indicate decreases in SSD.  
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Figure 3. Correlations between selected features (on the y axis) with the PANSS items (on the x axis). Only 

significant correlations were colored. The numbers indicated the correlation coefficients. Positive 

correlations were highlighted with warm color while the negative correlations were highlighted with cold 

color. The density of the color increased with the strength of correlation. * q < 0.05, ** q < 0.01.  
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