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Abstract.

Purpose: Mammographic density is associated with the risk of developing breast

cancer and can be predicted using deep learning methods. Model uncertainty estimates

are not produced by standard regression approaches but would be valuable for clinical

and research purposes. Our objective is to produce deep learning models with in-built

uncertainty estimates without degrading predictive performance.

Approach: We analyse data from over 150,000 mammogram images with

associated continuous density scores from expert readers in the Predicting Risk Of

Cancer At Screening (PROCAS) study. We re-designate the continuous density scores

to 100 density classes then train classification and ordinal deep learning models.

Distributions and distribution-free methods are applied to extract predictions and

uncertainties. A deep learning regression model is trained on the continuous density

scores to act as a direct comparison.

Results: The root mean squared error (RMSE) between expert assigned density

labels and predictions of the standard regression model are 8.42 (8.34-8.51) while the

RMSE for the classification and ordinal classification are 8.37 (8.28-8.46) and 8.44

(8.35-8.53) respectively. The average uncertainties produced by the models are higher

when the density scores from pairs of expert readers density scores differ more, are

higher when different mammogram views of the same views are more variable and

when two separately trained models show higher variation.

Conclusions: Using either a classification or ordinal approach we can produce

model uncertainty estimates without loss of predictive performance.
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1. Introduction

Mammographic density is a strong independent risk factor for breast cancer [1] and

improves predictive performance of risk prediction models [2]. There are many

approaches to density measurement, some of which are categoric, for example the

subjective Breast Imaging Reporting and Data System (BI-RADS) [3]. A continuous

measurement based on the average of a pair of expert medical practitioners’ subjective

estimates of percentage density as recorded on a Visual Analogue Scale (VAS) has been

shown to have a stronger relationship with the risk of developing cancer than other

methods evaluated [4]. Superior performance at cancer risk estimation is desirable but

VAS scoring is not scalable for screening applications due to workload and level of

expertise required.

Automated methods would enable VAS-like measures to be more widely used and

may also provide more consistent scores [5]. Deep learning models have been trained

that show good correlation with expert reader VAS scores along with comparable breast

cancer risk prediction performance [6, 7]. These studies demonstrate the potential for

deep learning models to be used in clinical practice. However, these methods lack an

estimate of model uncertainty in prediction. This is a feature of standard regression

tasks where a point output is defined as the target.

For clinical practice model uncertainty estimates have a number of potential

applications. One example is for the model to flag any image with a relatively high

uncertainty estimate to enable an expert reader to visually assess the density estimate.

Another application might be to utilise both the prediction and uncertainty to enable

clinicians to review the assignment of women to risk categories. For example, a woman

in a low-risk category but with a high model uncertainty estimate might be reassessed

due to the possibility of the model having underestimated her risk. The uncertainty of a

risk estimate could also be communicated with both medical personnel and the patient

which could aid with decision making [8].

Model uncertainty estimates also have value for further research. One potential

training approach would be to place more emphasis on images that had shown high

uncertainty in previous trained models, either through weighting the images in the

objective function or by over- (or under-) sampling images. The uncertainty estimates

could also be directly included as an additional term in the objective function to force

the model to increase its confidence in its predictions.

Each label in the dataset is produced by averaging a pair of experts’ scores and

there is known to be substantial reader variation [9]. The effect of the variability on

deep models can be substantial [5] and uncertainty estimates may provide guidance

on how to deal with these effects. It may be possible to use known reader variability

alongside model uncertainty to separate out uncertainty caused by the reader variability

from other types of uncertainty. Potential methods for correcting variability [10] could

also be tested for their effect on reducing model uncertainty. Low dose mammograms

can also be used for density prediction [11, 12] and uncertainty estimates might be
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particularly useful due to increased levels of noise in the images which may increase

prediction variability.

Previous work has investigated uncertainty and reliability [13] in mammographic

density prediction using deep learning. This work investigated how model predictions

differed from expert reader estimates considering certain factors, such as the amount

of breast in the image. This type of approach provides guidance on average prediction

reliability for different factors. For example, they showed that model predictions on

denser and smaller breasts were less reliable (showed greater variation compared to

expert reader scores). However, these reliability estimates are averages and not specific

to individual images and women. The model uncertainties we provide are for individual

images.

Or aim is to produce estimates of model prediction confidence on individual images

without reducing model predictive quality compared to a standard regression method.

Our approach is to consider the problem as categoric rather than continuous. We

develop three deep learning models with different labels and objective functions: one as

a standard regression and two via a binned classification approach where one of the two

is trained as a standard classifier and the other as an ordinal classifier. We both apply

a distribution to the data and use a distribution-free approach on the two classification

approaches which enable both predictions and model uncertainty to be estimated.

2. Methods

The standard regression model is trained using mean squared error (MSE), throughout

the paper we refer to this as the regression model. The first model that produces

uncertainty estimates uses VAS scores separated into 100 bins as labels with the model

trained as a classification task, which we refer to as the classification model. The

last model is an ordinal model where we train on the same classified bins but in a

hierarchical manner, referred to as the ordinal model. We first discuss those aspects

that are common to all three models then describe the characteristics of the individual

models. As far as possible, many aspects of the model and training are kept the same

so that the comparisons are fair.

2.1. Data

We use data from the Predicting Risk of Cancer At Screening (PROCAS) [14]

study considering 151,806 mammographam images. In PROCAS, two expert readers

(radiologists, advanced practitioner radiographers and breast physicians), drawn from

a pool of 19, provided percentage density scores recorded on 10cm Visual Analogue

Scales (VAS) for each image and the VAS score per woman was produced by averaging

scores for all mammographic projections and the pair of readers. For an individual

mammographic image, the pair of reader estimates for that view were averaged.

We partition the data with 101,316 images for training, 25,332 for validation and
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25,158 for testing. The images from one woman are kept together so that the same

women does not have separate images in different partitions.

There are two different image formats in the PROCAS dataset, all from GE

Senographe Essential machines: 2294 × 1914 and 3062 × 2394. These are padded and

cropped into the same size, then reduced to 640×512 by cubic interpolation, with image

intensities clipped to 75% of maximum and the pixel intensity inverted before histogram

equalisation is performed and the pixel intensities are set between 0 and 1. The images

are also normalised before being run through the model (see Section 2.2).

2.2. Base model

For all three models we use the ResNet-18 [15] model as a base. ResNet is a popular

family of models that have shown high performance across multiple tasks . The specific

choice of ResNet-18, as opposed to larger networks like ResNet-50 or ResNet-121 is

motivated by choosing a model that has sufficient capacity but that we have enough

data to effectively train. In addition, it is argued that smaller, bespoke networks can be

preferable (or at least comparable) to these larger pretrained networks [16]. Our choice

trades off the competing arguments of larger models versus smaller. The training time

and computational requirements are also reduced compared to larger models.

The model weights are initialised from those previously trained on ImageNet [17].

Good correlation between model predictions and expert reader VAS scores using

ImageNet trained features alone with linear regression has been shown [7]. The model

representation produced by training on ImageNet without fine tuning are capable of

producing good mammographic density prediction.

The final fully connected layer is removed and replaced with either one neuron (for

the regression model) or 100 neurons (for both the classification and ordinal models).

An individual image (see Section 2.1 for details) is copied across the three channels and

normalised to have means of (0.485, 0.456, 0.406) and standard deviations of (0.229,

0.224, 0.225) to match the ImageNet images the models were pretrained on.

2.3. Training

The training method discussed here is the same for the three models. We use the

Adam optimizer [18] and the model weights are saved every epoch if the validation error

(defined as the objective function for that model) is lower than any previous value.

Model selection is performed by comparing the mean squared error (MSE) between

predictions and VAS labels on the validation data. For the classification and ordinal

models this is after the final prediction estimates are made (see Section 2.5 and 2.6).

We train all our models using a NVIDIA V100-SXM2-16GB GPU.

While data augmentation is an essential tool, different researchers utilise various

methods [19] with little consensus as to the best approach. A popular option, applying

rotations, is non-trivial due to the nature of our images. Other options such as addition
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of noise generally may not be effective [20]. Therefore, when training we perform data-

augmentation via up-down and left-right flips both with 50% probability.

2.4. Regression model

The regression model is designed to act as a direct comparison to the classification

and ordinal models. We remove the final fully connected layer which, in the standard

ResNet, maps from the 512 dimensional feature vector to 1,000 dimensional classes and

replace it with one output neuron with no additional function applied. We then train

with MSE as our objective function.

When performing inference the model outputs a value, ρ̂i, for the ith image, which

we take to be the density estimate. There is no limit placed on the output to force it

between 1 and 100 so the results could fall outside of this range but in our experiments

this is a rare occurrence.

2.5. Classification model

For the classification model we convert the VAS scores per image into 100 classes

each representing one of the density scores. Therefore the input data is a set of 100-

dimensional vectors with one index taking the value 1 and everything else 0. The model

produces the same sized (100-dimensional) output prediction and we apply a softmax

to the output and train our model using cross-entropy loss.

This approach factors in no additional information about the relationship between

the positive bin and its surroundings. The loss will give the same quantity of error to

probability density being placed into a bin next to the labelled bin as a bin further

away. Alternative approaches would require the imposition of a prior on the probability

distribution we will be learning, as we would need to define how much we would

additionally penalise the model for predictions further away from the correct bin. The

ordinal model we consider will factor in additional penalisation for distance from the

label.

The ResNet-18 model is adapted similarly to the regression model. The final fully

connected layer is removed and replaced with a set of 100-neurons each representing one

of the VAS classes.

When performing inference we need to make estimates of both the prediction and

the uncertainty level of the prediction. We do this both by applying a distribution and

in a distribution-free manner.

For the distribution-free estimate we can make predictions using the expectation:

ρ̂i =
100∑
j=1

(pijbj) (1)

where ρ̂i is the model prediction for the ith image, pij is the probability estimate of the

model for the jth bin and ith image. bj is the VAS value associated with each of the 100

bins (values 1 to 100). Another option is to take the bin with the highest probability
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density but this tends to produce more variable predictions as it overemphasises the

random nature of small changes in the probability weightings. All results reported in

this paper are from the expectation.

To make our estimate of the uncertainty we consider the standard deviation:

σ̂i =

√√√√ 100∑
j=1

(pij(bj − ρ̂i)2) (2)

where σ̂i is the uncertainty estimate for image i. We consider one standard deviation as

the uncertainty but fractions or multiples of that could be chosen and the choice may

depend on the required confidence required in the results. We are exploring the general

ability of these models to produce uncertainty estimates rather than a more specific

requirement of some set uncertainty level.

We also apply a probability distribution to the prediction outputs. We fit the

distribution to the data using a maximum likelihood estimate. There are multiple

distributions that could be fitted but for simplicity we utilise the gamma distribution

which has a probability density function, f , of:

f(x) =
xk−1e−x/θ

Γ(k)θk
(3)

where k and θ are parameters to be fit and Γ is the gamma function.

The predictions are bounded at both ends, while the gamma distribution is

unbounded at one end, so it is not strictly correct to use this distribution but it can

fall off fast in its tail so it should be able to do a reasonable job of modelling the

data. As the gamma distribution is not symmetric we apply it once to the prediction

output without alteration. Then we flip the prediction by applying: ρ′i = −(ρi − 101)

and then fit the gamma distribution again to ρ′i. To choose the best distribution we

perform the Kolmogorov-Smirnov (K-S) test and choose the one that produces the

highest K-S statistic. We do not consider the actual quality of the fit, merely which of

the two versions fits better. We will see that the differences between the distribution

and distribution-free results are small.

Once the parametric model is selected we then can extract a mean, given by kθ,

and a standard deviation, given by
√
kθ2, from the distribution to use as our output

prediction and uncertainty, respectively. If the flipped distribution is used then the

prediction is flipped back to provide the final prediction.

2.6. Ordinal model

The ordinal model approach is based on previous work applying neural networks to

ordinal regression [21]. The label for each image is a 100-dimensional vector but instead

of having 1 non-zero element all elements up to and including the labelled index are

marked as 1. As an example for a 3-dimensional vector consisting of values 1, 2, 3 and
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a specific sample with value 2, the change from the classification label to the ordinal

label would be 0

1

0

→
 1

1

0

 . (4)

The model produces a 100-dimensional output, in a similar way to the classification

model, but a sigmoid is applied to each output neuron independently. For this model

the order of the neurons is important. We train the model using the MSE between the

label and model output vectors.

When performing inference the distribution-free prediction is made by scanning

across the output vector and stopping at the point that the probability falls below

0.5. An alternative is to take the furthest point along the vector that is above 0.5,

which could, in principle, produce significantly different results. This could occur if

the earliest (along the vector) element that was above 0.5 was some form of outlier or

some fluctuation. It could also occur if the predictions do not follow a fairly monotonic

reduction as we scan along the output vector. In practice neither of these issues appear

to be a problem. We therefore report the prediction as the label of the bin before the

first element falls below 0.5.

The uncertainty is estimated by finding the locations of the bins where the desired

upper and lower probability bounds are located. We use the 68% (the standard deviation

of a Gaussian) confidence interval. The bins where the upper bound first goes below

68% and the lower bound goes below 32% are selected. The confidence interval is the

range of the values of the two selected bins.

For the parametric fit we utilise a logistic function. The ordinal model produces

predictions that look like a flipped logistic curve with values close to 1 falling to values

close to zero. We therefore flip each value such that v′i = (1 − vi) where vi is the

output of the model for the ith image and 1 is a vector of ones the same size as vi
(100-dimensions). We then apply a logistic function: f(x) = L

1+e−m(x−x0)
where L, m

and x0 are parameters to be found.

The parametric prediction is given by the input value where the probability first

falls below 0.5. The uncertainty is defined as the standard deviation of the density of

the logistic distribution σi =
√
π2/3m2. For the model results presented a small number

of the predictions (21 out of 25,158) could not be fitted with a logistic curve. For those

values the predictions and uncertainty are substituted with the distribution-free values.

2.7. Assessment of model performance

To assess the quality of the model predictions we consider the RMSE and Spearman

rank correlation coefficients between the model predictions and the expert reader VAS

scores. However, the overall metrics may conceal differences at different density scores.

To test this we bin the images using a sliding window (of stride 1) of 10 VAS points.

The RMSE between model predictions and VAS scores are calculated for the images in
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the bin. All sample confidence intervals are found via bootstrapping and shown at the

95% level

One approach to assess the quality of the uncertainty estimates is to compare them

with the differences between the predictions and the expert assigned VAS scores. To

do so the data is split up into six bins using the model uncertainties. Within each bin

the absolute differences between the predictions and VAS scores are calculated. If the

model predictions have a higher uncertainty we would expect there to be a larger average

difference between predictions and the VAS scores. We also do the same analysis but

using the model predictions from the regression model rather than the expert reader

VAS scores.

A further comparison for the uncertainties is how the uncertainty estimates

compare to differences in model prediction between the four mammographic views (right

craniocaudal, left craniocaudal, right mediolateral oblique and left mediolateral oblique).

This is performed for each individual image. We find the average density prediction of

the other views and calculate the mean absolute difference to the image prediction. The

argument here is that, generally, the four views should show similar prediction to one

another. If there are differences between the mammographic views it may imply model

variability and therefore a larger uncertainty.

3. Results

In Section 3.1 we analyse the predictive quality of the three approaches on the test set.

In Section 3.2 we show results for the model uncertainty scores and make comparisons

to other factors that may affect uncertainty.

3.1. Quality of the models

In Table 1 we show metrics for the final model predictions against labels (expert reader

VAS scores). The classification and ordinal approaches show no reduction in quality

compared to the regression method. In Figure A1 in the appendix we show plots of

model predictions against labels for these results.

RMSE ρ

Regression 8.42 (8.34-8.51) 0.843 (0.839-0.847)

Classification - distribution-free 8.38 (8.29-8.46) 0.845 (0.840-0.849)

Classification - distribution 8.37 (8.28-8.46) 0.845 (0.840-0.849)

Ordinal - distribution-free 8.38 (8.29-8.47) 0.846 (0.842-0.850)

Ordinal - distribution 8.44 (8.35-8.53) 0.846 (0.842-0.850)

Table 1. Root mean squared error (RMSE) and Spearman rank correlation coefficient

(ρ) of the models compared to the VAS score labels. The sample uncertainties are found

via bootstrapping and shown at the 95% level.

The differences between predictions and labels at different density scores are shown
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in the left plot of Figure 1. The regression, classification and ordinal models are

represented by R, C and O respectively and the distribution-free and distribution

approaches by NP (non-parametric) and P (parametric) respectively. The pattern is the

same for all the models with reducing apparent model performance (increasing RMSE)

as the density value rises but with improved model performance (reducing RMSE) at

the highest density scores. In the right plot of Figure 1 we show the number of images at

each expert-assigned VAS score to demonstrate the small amount of data at the higher

density values.

Figure 1. Left) RMSE between predictions and labels at different expert assigned

VAS values. Regression, classification and ordinal models are represented by R, C and

O respectively. Right) Distribution of the number of images at each expert-assigned

VAS value.

We show the RMSE and Spearman rank correlation between the five sets of

predictions in Table 2. The distribution to distribution-free results for the same model

are similar especially for the classification model. There is also considerable similarity

between all the different sets of predictions. Plots of different model predictions against

one another are shown in the appendix (Figure A2).

3.2. Uncertainty estimates

There are no uncertainty estimates for the regression approach so we only consider

the classification and ordinal models. In Figure 2 we show the uncertainty estimates

for distribution (P) and distribution-free (NP) approaches of the classification model.

The left plot shows a histogram of the uncertainties, there is a similar distribution

of uncertainty with generally slightly higher values for the non-parametric model. The

centre and right plots show direct plots of the uncertainty against the density prediction.

The trend is the same for both with rising and then falling uncertainty estimates with

prediction value.
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RMSE R C-NP C-P O-NP O-P

Regression - 2.31 2.32 2.21 2.33

Classification - distribution-free 2.31 - 0.16 2.35 2.51

Classification - distribution 2.32 0.16 - 2.32 2.53

Ordinal - distribution-free 2.21 2.35 2.32 - 1.32

Ordinal - distribution 2.33 2.51 2.53 1.32 -

ρ R C-NP C-P O-NP O-P

Regression - 0.987 0.987 0.991 0.991

Classification - distribution-free 0.987 - 1.000 0.989 0.989

Classification - distribution 0.987 1.000 - 0.989 0.989

Ordinal - distribution-free 0.991 0.989 0.989 - 0.999

Ordinal - distribution 0.991 0.989 0.989 0.999 -

Table 2. RMSE and Spearman rank correlation coefficients (ρ) between the different

sets of predictions. All models produce similar predictions.

Figure 2. Uncertainty for the classification model. Left) the distribution of the

uncertainty values, NP is non-parametric and P is parametric. Middle and right)

plots of uncertainty against the predictions for non-parametric and parametric versions

respectively.

In Figure 3 we show uncertainty versus density prediction for the ordinal model with

both parametric and non-parametric results shown. These are the equivalent results

for the ordinal model as Figure 2 was for the classification model. The differences

between the non-parametric and parametric models are more pronounced than for the

classification model.

To explore these differences further, in Figure 4 we show uncertainties versus

uncertainties for the different models. The classification pair of models (parametric and

non-parametric) produce almost identical uncertainty estimates with a small number

of points away from the trend-line. The trends for all comparisons are similar - if one

uncertainty estimate is high we would expect the other to also be high.

The differences between the predictions and the labels for binned model uncertainty

estimates are shown in Figure 5. Results for the classification model are shown as
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Figure 3. Uncertainty for the ordinal model. Left) the distribution of the

uncertainty values, NP is non-parametric and P is parametric. Middle and right)

plots of uncertainty against the predictions for non-parametric and parametric versions

respectively.

Figure 4. The model uncertainties plotted against one another. C is classification

method, O is the ordinal method. NP is the non-parametric method and P the

parametric.

the top plots and the ordinal model on the bottom. The left and middle plots show

boxplots of the absolute differences for the distribution-free and distribution approaches

respectively. The right plot shows the average of the absolute differences for each bin.

There is an increase in the average of the differences between labels and predictions

as the model uncertainty increases. The classification (top row) and ordinal models

(bottom row) show similar results. We show the equivalent plots but with regression
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model predictions replacing the labels in Figure A3 of the appendix with a similar

pattern.

Figure 5. The model uncertainties are split into six bins and the absolute differences

between labels and predictions are shown. Left and middle) boxplots showing the

absolute differences for the different uncertainty binned results. Right) averages of

the absolute differences between predictions and labels in each of the uncertainty bins.

The sample uncertainty bounds are produced via bootstrapping at the 95% level. Top

plots are for the classification model (C) and bottom plots for the ordinal model (O).

NP is non-parametric and P is parametric

In Figure 6 we show uncertainty estimates compared to differences in model

prediction between the four (RCC , RMLO, LCC, LMLO) views. These results are

in the same format as Figure 5.

4. Discussion

We demonstrate two model approaches to enable uncertainty estimation: a classification

model and an ordinal model. In addition, we used both non-parametric (distribution-

free) and parametric (with a distribution applied) methods to extract the predictions and

the uncertainties. We also compared these methods to a standard regression approach

with a mean squared error objective function. The inclusion of this regression model

enables us to assess whether the classification or ordinal models are losing predictive

performance compared to a standard regression approach.
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Figure 6. The model uncertainties are split into six bins and the absolute differences

between the predictions made on one view and the average of the other views are

calculated. Left and middle) boxplots showing the absolute differences for the different

uncertainty binned results. Right) averages of the absolute differences between one

image and the average of the other views of the same woman in each of the uncertainty

bins. Top plots are for the classification model (C) and bottom plots for the ordinal

model (O).

The prediction quality produced by the classification and ordinal model are similar

to those of the regression model for both non-parametric and parametric versions. No

prediction quality is lost by moving from a regression model to a classification or ordinal

approach. There are differences in performance between the models at different densities

with slightly improved performance at the higher density range for the ordinal model.

These results would have little effect on the overall metrics due to the small number of

images at high densities.

The classification model makes predictions of similar quality as the regression or

ordinal approaches. This is despite the probability density of the neurons in proximity

to the positively labelled neuron providing feedback that the predictions are equally as

wrong as those neurons far away. While a clear explanation of why the classification

model is able to make such accurate predictions is beyond the scope of this work we

do suggest the density signal might be large compared to anything else in the image.

Previous work has demonstrated that deep learning models can extract the density

signal even if the labels are variable [5]. These classification results imply even with a

small positive signal the model can learn a good representation.
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We showed that the uncertainty for all the models correlates with differences to

labels, differences to the standard regression model and also to the differences to other

views from the same woman. The results all show the pattern we would expect if the

uncertainties were correctly estimating a true uncertainty. In particular the uncertainties

being correlated with differences between predictions and labels is significant because

when using these models we would usually not have available expert reader VAS labels.

The distribution of uncertainty across the density prediction distribution (see

Figure 2 and Figure 3) show a similar distribution to the differences between pairs

of expert reader density scores [6, 7]. This may imply that some of the increased

uncertainty is being caused by the reader variability or that some other issue with

mammograms causing both expert readers and the models to have greater uncertainty.

The distributions of uncertainty across the density prediction range may also be partially

a feature of the production of the prediction estimates, especially for the classification

approaches. For the non-parametric version of the classification method the expectation

is used to make the prediction. To produce predictions close to either end of the density

distribution requires there to be limited probability density placed in bins far away from

the expectation otherwise the expectation would be shifted away from the ends of the

distribution. This means that the uncertainty cannot be too high for the images at the

ends of the distributions.

Our results show little evidence to enable us to choose between the two uncertainty

models or between the parametric and non-parametric approaches. The quality of

prediction of the classification and ordinal methods are similar and show no statistically

significant differences. We can conclude that both methods appear to produce

uncertainty estimates that show the sorts of behaviour we would expect to see. When

considering the two approaches the ordinal method seems intuitively like it should

produce better results due to the issues that we have discussed for the classification

method. However, we do see any evidence in the data. Therefore we present both

methods as equally valid for uncertainty estimation.

In the introduction we specified multiple potential uses of uncertainty estimates

for mammographic density predictions with brief descriptions of the approach to take.

We have demonstrated the capacity of these approaches to produce model uncertainty

estimates with no loss of predictive power. The detailed specifics of how to utilise the

uncertainty estimates for clinical uses and to further improve the models will need to

be further investigated.

Appendix A. Additional results

Plots of the predictions versus labels in Figure A1 with NP and P standing for the non-

parametric and parametric models respectively. We show a random selection of 5,000

out of the 25,158 test images for ease of viewing. Similarly to the results in Table 1

there is no evidence of reduction in performance when using either the classification or

ordinal models compared to the standard regression.
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Figure A1. Predictions plotted against labels for the test set. Only 5,000 results

out of a possible 25,158 are shown to make viewing easier.

In addition to the metrics in Table 2 we also show, in Figure A2 how the five model

predictions compare to one another, as with Figure A1 we show just 5000 points. The

are some systematic differences, for example between the regression and ordinal models.

The different models also show some noise between them but the general trends of all

are similar.

An additional comparison we make to try and elucidate the quality of the

uncertainty estimates is to compare to the predictions made by the regression model.

We perform the same approach as to the labels but substitute the regression prediction.

The results for these are shown in Figure A3 with all the same plots as in Figure 5. We

see a very similar pattern - where the uncertainties are higher we see larger differences

in prediction to the regression model - note that the y-axis is differently scaled between

Figures A3 and 5.
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Figure A2. Model predictions plotted against one another to show the direct

similarities and differences in model predictions.
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Figure A3. The model uncertainties are split into six bins and the absolute

differences between the regression predictions and classification/ordinal predictions

are shown. Left and middle) boxplots showing the absolute differences for the

different uncertainty binned results. Right) averages of the absolute differences between

classification/ordinal predictions and regression predictions in each of the uncertainty

bins. The uncertainty bounds are via bootstrapping at the 95% level. Top plots are

for the classification model and bottom plots for the ordinal model.
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