1	Influenza vaccine effectiveness against influenza-associated hospitalizations in children,
2	Hong Kong, November 2023 to June 2024
3	
4	So-Lun Lee ^{1,2} *, Mike Y. W. Kwan ³ *, Caitriona Murphy ⁴ *, Eunice L. Y. Chan ¹ , Joshua S. C.
5	Wong ³ , Sheena G. Sullivan ^{5,6} , Malik Peiris ^{4,7} , Benjamin J. Cowling ^{4,8}
6	
7	*Joint first authors with equal contribution
8	
9	Affiliations
10	1. Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The
11	University of Hong Kong, Hong Kong Special Administrative Region, China
12	2. Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong
13	Special Administrative Region, China
14	3. Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong
15	Kong Special Administrative Region, China
16	4. WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of
17	Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
18	Special Administrative Region, China
19	5. School of Clinical Sciences, Monash University, Melbourne, Australia
20	6. Department of Epidemiology, University of California, Los Angeles, USA
21	7. Centre for Immunology & Infection, Hong Kong Science and Technology Park, New
22	Territories, Hong Kong Special Administrative Region, China
23	8. Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park,
24	New Territories, Hong Kong Special Administrative Region, China

- 25
- 26 Corresponding author: bcowling@hku.hk
- 27
- 28 Word count (abstract): 150
- 29 Word count (main text): 1,990

31 ABSTRACT

32	We conducted a test negative study from November 2023 to June 2024, enrolling 4,367
33	children hospitalized with acute respiratory illness in Hong Kong. Among the children who
34	tested negative for influenza virus and SARS-CoV-2, 56.8% had received influenza
35	vaccination. Between November 2023 and March 2024, influenza A(H3N2) predominated
36	and the VE against influenza A(H3N2) was estimated as 55% (95% CI: 29.6%, 71.8%). VE
37	point estimates were higher for younger children than older children. In February to June
38	2024 influenza A(H1N1) predominated and VE against influenza A(H1N1) was 54% (95% CI:
39	33%, 69%) during this period. Influenza B circulated at low intensity throughout the 2023/24
40	season and VE against influenza B was 66% (95% CI: 42%, 80%). Since its introduction in
41	2018/19 the school-based influenza vaccination program has substantially increased vaccine
42	uptake in children in Hong Kong and prevented influenza-associated hospitalizations.

44 INTRODUCTION

45	Annual influenza vaccination is recommended for all individuals over 6 months of age. In
46	Hong Kong, a school-based influenza vaccination program began in 2018 and progressively
47	expanded to include children up to 18 years of age by 2022/23 [1]. The program for the
48	2023/24 season covered 70% of secondary schools, 95% of primary schools and 80% of
49	kindergartens and childcare centers [2]. Children up to 6 years of age are also able to
50	receive free or subsidized influenza vaccines via primary care physicians. Most vaccines
51	administered in Hong Kong are inactivated split virion vaccines, and a small proportion of
52	vaccinated children receive live attenuated influenza vaccines. The northern hemisphere
53	vaccine formulation is used.
54	
55	We have been monitoring influenza vaccine effectiveness (VE) against influenza-associated
56	hospitalizations in children since 2009 [3,4]. Influenza was absent from Hong Kong between
57	March 2020 and February 2023, when various public health and social measures were being
58	used to control COVID-19 transmission [5]. Influenza circulation resumed in March 2023 and
59	several influenza A epidemics have occurred since then [6,7], accompanied by steady
60	circulation of influenza B. Here, we report estimates of influenza VE for the 2023/24 season
61	including the second waves of A(H3N2) and A(H1N1) since the COVID-19 pandemic.
62	
63	METHODS
64	Study design
65	We implemented a test-negative design study among children hospitalized with recent-
66	onset acute respiratory illness at the Queen Mary Hospital on Hong Kong Island and the

67 Princess Margaret Hospital in Kowloon. Based on their catchment populations, these two

68	hospitals cover approximately 14% of all pediatric hospitalizations in Hong Kong. Eligible
69	children were aged 6 months to 17 years with at least one respiratory symptom and a fever
70	measuring ≥38°C. Information on influenza vaccination status was collected by interviewing
71	parents or legal guardians using a standard questionnaire, and cross-checking responses
72	with medical records. Relevant demographic and clinical information were obtained by
73	chart review. At the time, all children admitted with respiratory symptoms were routinely
74	tested on admission for influenza A and B virus, SARS-CoV-2 and other common respiratory
75	viruses using an in-house multiplex PCR assay, and the FilmArray Respiratory Panel
76	(BioFire/bioMérieux, Salt Lake City, UT).
77	
78	Children were considered vaccinated if they had been fully vaccinated since 1 August 2023
79	and at least 2 weeks prior to hospitalization. Children were fully vaccinated if they were
80	aged 9 years or older and had received one vaccine dose or, for children aged <9 years, if
81	they had received two doses of influenza vaccine one month apart or one dose with a
82	previous dose prior to August 2023 [8]. Because the second vaccine dose for infants is
83	recommended at 7 months of age, we restricted enrolment to children aged at least 9
84	months of age. We reviewed influenza virus sequence data from GISAID to identify
85	circulating virus clades during the study period. Our study protocol was approved by the
86	Institutional Review Board of the Hospital Authority Hong Kong West Cluster and the
87	Hospital Authority Kowloon West Cluster Research Ethics Committee. Verbal consent was
88	obtained from the parents or legal guardians of participants.
89	

90 Statistical analysis

91	We determined relevant epidemic periods for influenza A subtypes by identifying
92	contiguous periods during which there were at least 5 hospitalizations with that subtype
93	each week. We used conditional logistic regression models to estimate conditional odds
94	ratios for influenza positivity by vaccination status, adjusting for age (quadratic term), sex,
95	prior year's vaccination status and the presence of underlying medical conditions,
96	conditioning by two-week periods of calendar time. VE was estimated as one minus the
97	adjusted conditional odds ratio, multiplied by 100%. For each type/subtype analysis, VE
98	estimates were made overall and stratified by age, and children were excluded from each
99	control group if they tested negative for the type/subtype in question but positive for a
100	different influenza type/subtype. Children testing negative for influenza but positive for
101	SARS-CoV-2 were also excluded from each control group given the potential correlation
102	between receipt of influenza vaccination and SARS-CoV-2 vaccination [9]. Statistical analyses
103	were conducted in R version 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria).
104	
105	RESULTS
106	During our study period, there was an epidemic of influenza A(H3N2) in November 2023 to
107	early 2024 and then an influenza A(H1N1) epidemic in the spring of 2024. Influenza B
108	circulated throughout the period with no distinct epidemic. Our focus in the following
109	analyses is on estimation of influenza VE against hospitalizations associated with: (1)
110	influenza A(H3N2) in the period November 2023 through March 2024; (2) influenza A(H1N1)
111	in the period February 2024 through June 2024; (3) influenza B during the overall study
112	period of November 2023 to June 2024 (Figure 1).
113	

113

114	In total from 16 November 2023 to 12 June 2024, 4565 children were enrolled with acute
115	respiratory illness. Among the influenza-negatives, there were 198 who tested positive for
116	SARS-CoV-2 and were removed from analyses. Of the remaining 4367 children aged 9
117	months to 17 years, 709 (16%) tested positive for influenza. There were 2311 children who
118	reported receipt of influenza vaccination (Table 1), including 2247 (97%) who received
119	quadrivalent inactivated influenza vaccine and 51 (2%) that received quadrivalent live
120	attenuated vaccine. Of the remaining 13 children, 8 received a trivalent vaccine and 5
121	received an unknown vaccination type.
122	
123	In the influenza A(H3N2) epidemic period, sequence data from GISAID indicated that a
124	majority of circulating viruses fell in the 2a.3a.1 clade. These viruses are antigenically drifted
125	from the 2023/24 northern hemisphere vaccine virus A/Darwin/9/2021(H3N2) and are more
126	similar to the A/Thailand/8/2022, the vaccine virus recommended for the 2024 southern
127	hemisphere vaccine. During these 17 weeks, 178 children tested positive for influenza
128	A(H3N2), while 1941 tested negative for influenza A(H1N1) and B, and SARS-CoV-2. VE
129	against influenza A(H3N2) was estimated to be 55% (95% confidence interval, CI: 30%, 72%)
130	(Table 2). VE estimates were higher for younger children (Table 1).
131	
132	Sequence data for the influenza A(H1N1) epidemic from February to June 2024 indicated

the predominant circulating clade was 5a.2a, similar to the A/Victoria/4897/2022 influenza

134 A(H1N1) vaccine virus used in the 2023/24 northern hemisphere vaccine. During this period,

- 135 287 children tested positive for influenza A(H1N1). Estimated VE against influenza A(H1N1)
- 136 was 54% (95% CI: 33%, 69%) overall, and higher in the younger children. Over the whole
- 137 study period, 164 children were hospitalized with influenza B. The estimated VE against

138	influenza B was 66% (95% CI: 42%, 80%) overall, and higher for children 9 months to 3 years
139	(Table 1).

140

141	DISCU	JSSION

142	We estimated VE against influenza A(H3N2) of 55% (95% CI: 30%, 72%) which was the same
143	as the VE estimate of 55% (95% CI: 20%, 74%) for children 0-17 years reported by the US
144	New Vaccine Surveillance Network (NVSN) for outpatients [10]. We are not aware of other
145	published VE estimates against A(H3N2) specifically for children for the 2023/24 season. Our
146	estimates are slightly higher than the interim all-age VE point estimates against influenza
147	A(H3N2) of 30% (95% CI: -3%, 54%) in primary care and 14% (95% CI: -32%, 43%) in hospitals
148	in Europe [11].

149

150 Our observed VE point estimate for A(H3N2) was also higher than in the preceding 2022/23 151 season in Hong Kong, which had the same vaccine formulation for influenza A(H3N2) and 152 where the circulating influenza A(H3N2) also fell in the 2a.3a.1 clade [7]. Waning immunity 153 was postulated to be a contributing factor to the low VE point estimate in 2022/23 against 154 influenza A(H3N2) (VE: 14%; 95% CI: -29%, 43%), as that epidemic peaked more than six 155 months after the usual vaccination period from October and November [7]. In contrast the 156 A(H3N2) epidemic in 2023/24 occurred soon after vaccines had been administered. 157 158 The VE against influenza A(H1N1) in Hong Kong was estimated as 54% (95% CI: 33%, 69%),

which was slightly lower than the estimate reported from the NVSN for inpatient children 6
months to 17 years (VE: 60%; 95% CI: 32%, 77%) [10] and from Canada for children 1-19
years (VE: 68; 95% CI: 42%, 83%) [12], and substantially lower than the VE reported among

162	children in primary care in Europe (VE: 85%; 95% CI: 71%, 93%) [11]. Sequences uploaded to
163	GISAID from the public health laboratory in Hong Kong indicated clade 5a.2a was circulating
164	from March 2024. The WHO vaccine recommendation for influenza A(H1N1) changed clade
165	from 5a.2a for the 2022/23 season to 5a.2a.1 for the 2023/24 season. Influenza A(H1N1)
166	strains detected in Europe were more similar to the 2023/24 vaccine strain which may
167	contribute to the higher VE estimated there.
168	
169	Influenza B circulated at relatively low levels throughout the season. We estimated a VE
170	against influenza B as 66% (42%, 80%). Estimates from the US NVSN outpatients reported a
171	similar estimate for children of 64% (95% CI: 47%, 75%), but another three US outpatient
172	networks reported higher VE against influenza B for children of 79% (95% CI: 71, 85;
173	VISION), 89% (95% CI: 70, 97; US Flu VE) [10], and 79% (95% CI: 76%, 82%; California) [13].
174	Surveillance networks in Europe and Canada did not report a VE estimate against influenza B
175	due to small sample sizes [11,12].
176	
177	Hong Kong has experienced a longer period of influenza circulation in the 2023/24 season,
178	lasting 28 weeks from mid-January [14] compared to 12 to 14 weeks for the same period in
179	previous years [15], or compared to an average of 22 weeks for the 2013/14 to 2018/19
180	influenza seasons [16] that included circulation before January. Disruption to influenza
181	seasonality after the COVID-19 pandemic has been reported elsewhere [17,18]. Whether or
182	how quickly influenza patterns will return to pre COVID-19 seasonality remains to be seen.
183	
184	Influenza vaccination coverage in Hong Kong has been higher in the 2023/24 season
185	compared to previous seasons, with 49% of children under 6 years of age and 68% of

186	children 6 to 12 years of age vaccinated this year [1]. This is an increase from 38% and 60%
187	in the 2022/23 season for the same age groups. Similarly, among the controls in our study
188	the vaccination coverage for children under 6 years and 6-12 years has increased from 8%
189	and 12% respectively in 2009 to 2014 [3], to 14% and 15% in 2015/16 [19], to 30% and 59%
190	in 2022/23 [6], and now to 43% and 70% in this study. In particular, influenza vaccine uptake
191	in children has increased very substantially since the introduction of school-based
192	vaccination in 2018/19 [1]. We estimated the direct effect of vaccination, but this school-
193	based vaccination program may also have indirect benefits to unvaccinated and vaccinated
194	children by reducing the overall prevalence of infection.
195	
196	Some limitations of our study include a small sample size when stratifying estimates by age
196 197	Some limitations of our study include a small sample size when stratifying estimates by age group resulting in low precision, particularly for the older age group which experienced
197	group resulting in low precision, particularly for the older age group which experienced
197 198	group resulting in low precision, particularly for the older age group which experienced fewer hospitalizations. Second, multiplex rapid antigen tests that detect several respiratory
197 198 199	group resulting in low precision, particularly for the older age group which experienced fewer hospitalizations. Second, multiplex rapid antigen tests that detect several respiratory viruses including influenza are now readily available in Hong Kong [20] which could impact
197 198 199 200	group resulting in low precision, particularly for the older age group which experienced fewer hospitalizations. Second, multiplex rapid antigen tests that detect several respiratory viruses including influenza are now readily available in Hong Kong [20] which could impact hospitalization rates if parents sought care or were prescribed antivirals based on timely
197 198 199 200 201	group resulting in low precision, particularly for the older age group which experienced fewer hospitalizations. Second, multiplex rapid antigen tests that detect several respiratory viruses including influenza are now readily available in Hong Kong [20] which could impact hospitalization rates if parents sought care or were prescribed antivirals based on timely rapid test results. Use of rapid tests might also be correlated with receipt of vaccination. In
197 198 199 200 201 202	group resulting in low precision, particularly for the older age group which experienced fewer hospitalizations. Second, multiplex rapid antigen tests that detect several respiratory viruses including influenza are now readily available in Hong Kong [20] which could impact hospitalization rates if parents sought care or were prescribed antivirals based on timely rapid test results. Use of rapid tests might also be correlated with receipt of vaccination. In both scenarios, the use of rapid tests may alter healthcare seeking behavior and cause

against hospitalizations during a 17-week influenza A(H3N2) epidemic as 55% (95% CI: 30%,

207 72%) and during a 17-week influenza A(H1N1) epidemic as 54% (95% CI: 33%, 69%).

208 Influenza B circulated throughout and the VE against influenza B was 66% (95% CI: 42%,

209 80%). School-based vaccination has led to increases in influenza vaccination coverage in

- 210 children and reduced the burden of influenza-associated hospitalizations in children in Hong
- 211 Kong.
- 212
- 213

214 ACKNOWLEDGMENTS

- 215 The authors thank colleagues at Queen Mary Hospital and Princess Margaret Hospital for
- facilitating participant enrolment. The authors thank Julie Au for technical support.
- 217

218 FUNDING

- 219 This research was financially supported by a grant from the Health and Medical Research
- 220 Fund, Health Bureau, the Government of the Hong Kong Special Administrative Region
- 221 (grant number INF-HKU-3). BJC is supported by the National Institute of Allergy and
- 222 Infectious Diseases, National Institutes of Health, Department of Health and Human
- 223 Services, under contract no. 75N93021C00015, the Theme-based Research Scheme (grant
- number T11-712/19-N) of the Research Grants Council of the Hong Kong SAR Government,
- and an RGC Senior Research Fellowship from the University Grants Committee (grant
- number HKU SRFS2021-7S03).
- 227

228 POTENTIAL CONFLICTS OF INTEREST

- BJC consults for AstraZeneca, Fosun Pharma, GSK, Haleon, Moderna, Novavax, Pfizer, Roche,
- and Sanofi Pasteur. SGS has consulted for Moderna, Novavax, Pfizer, Evo Health, and CSL
- 231 Seqirus. The authors report no other potential conflicts of interest.
- 232
- 233

234 **REFERENCES**

- [1] Centre for Health Protection, Government of the Hong Kong SAR. Statistics on
- 236 Vaccination Programmes in the Past 3 years 2024.
- 237 https://www.chp.gov.hk/en/features/102226.html (accessed July 11, 2024).
- [2] Wong WH-S, Peare S, Lam HY, Chow CB, Lau YL. The estimated age-group specific
- influenza vaccine coverage rates in Hong Kong and the impact of the school outreach
- vaccination program. Hum Vaccin Immunother 2022;18:1–5.
- [3] Cowling BJ, Chan K-H, Feng S, Chan ELY, Lo JYC, Peiris JSM, et al. The effectiveness of
- influenza vaccination in preventing hospitalizations in children in Hong Kong, 2009-
- 243 2013. Vaccine 2014;32:5278–84.
- [4] Chua H, Kwan MYW, Chan ELY, Wong JSC, Peiris JSM, Cowling BJ, et al. Influenza vaccine
- 245 effectiveness against influenza-associated hospitalization in children in Hong Kong,
- 246 2010-2020. Vaccine 2021;39:4842–8.
- [5] Xiong W, Cowling BJ, Tsang TK. Influenza Resurgence after Relaxation of Public Health

and Social Measures, Hong Kong, 2023. Emerg Infect Dis 2023;29:2556–9.

- [6] Cowling BJ, Kwan MYW, Murphy C, Chan ELY, Wong JSC, Sullivan SG, et al. Influenza
- 250 Vaccine Effectiveness Against Influenza-Associated Hospitalization in Hong Kong
- Children Aged 9 Months to 17 Years, March-June 2023. J Pediatric Infect Dis Soc
 2023;12:586–9.
- [7] Murphy C, Kwan MYW, Chan ELY, Wong JSC, Sullivan SG, Peiris M, et al. Influenza
- vaccine effectiveness against hospitalizations associated with influenza A(H3N2) in
- 255 Hong Kong children aged 9 months to 17 years, June-November 2023. Vaccine
- 256 2024;42:1878–82.
- [8] Grohskopf LA, Blanton LH, Ferdinands JM, Chung JR, Broder KR, Talbot HK, et al.

- 258 Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the
- Advisory Committee on Immunization Practices United States, 2022-23 Influenza
- 260 Season. MMWR Recomm Rep 2022;71:1–28.
- 261 [9] Doll MK, Pettigrew SM, Ma J, Verma A. Effects of Confounding Bias in Coronavirus
- 262 Disease 2019 (COVID-19) and Influenza Vaccine Effectiveness Test-Negative Designs
- 263 Due to Correlated Influenza and COVID-19 Vaccination Behaviors. Clin Infect Dis
- 264 2022;75:e564–71.
- [10] Frutos AM, Price AM, Harker E, Reeves EL, Ahmad HM, Murugan V, et al. Interim
- 266 Estimates of 2023-24 Seasonal Influenza Vaccine Effectiveness United States. MMWR
- 267 Morb Mortal Wkly Rep 2024;73:168–74.
- [11] Maurel M, Howard J, Kissling E, Pozo F, Pérez-Gimeno G, Buda S, et al. Interim 2023/24
- 269 influenza A vaccine effectiveness: VEBIS European primary care and hospital
- 270 multicentre studies, September 2023 to January 2024. Euro Surveill 2024;29.
- 271 https://doi.org/10.2807/1560-7917.ES.2024.29.8.2400089.
- [12] Skowronski DM, Zhan Y, Kaweski SE, Sabaiduc S, Khalid A, Olsha R, et al. 2023/24 mid-
- 273 season influenza and Omicron XBB.1.5 vaccine effectiveness estimates from the
- 274 Canadian Sentinel Practitioner Surveillance Network (SPSN). Euro Surveill 2024;29.
- 275 https://doi.org/10.2807/1560-7917.ES.2024.29.7.2400076.
- [13] Zhu S, Quint J, León TM, Sun M, Li NJ, Tenforde MW, et al. Interim Influenza Vaccine
- 277 Effectiveness Against Laboratory-Confirmed Influenza California, October 2023-
- January 2024. MMWR Morb Mortal Wkly Rep 2024;73:175–9.
- [14] Centre for Health Protection, Government of the Hong Kong SAR. CHP announces end
- of influenza season 2024.
- https://www.info.gov.hk/gia/general/202407/25/P2024072500406.htm (accessed

282 August	23,	2024)	
------------	-----	-------	--

- [15] Centre for Health Protection, Government of the Hong Kong SAR. COVID-19 & Flu
- Express Volume 2, Number 28 (published on Jul 18, 2024) 2024.
- https://www.chp.gov.hk/files/pdf/covid_flux_week28_18_7_2024_eng.pdf (accessed
- August 23, 2024).
- [16] Wong N-S, Leung C-C, Lee S-S. Abrupt Subsidence of Seasonal Influenza after COVID-19
- 288 Outbreak, Hong Kong, China. Emerg Infect Dis 2020;26:2753–5.
- [17] Skowronski DM, Chuang ES, Sabaiduc S, Kaweski SE, Kim S, Dickinson JA, et al. Vaccine
- 290 effectiveness estimates from an early-season influenza A(H3N2) epidemic, including
- unique genetic diversity with reassortment, Canada, 2022/23. Euro Surveill 2023;28.

292 https://doi.org/10.2807/1560-7917.ES.2023.28.5.2300043.

- [18] Wang MH, Hu ZX, Feng LZ, Yu HJ, Yang J. [Epidemic trends and prevention and control
- of seasonal influenza in China after the COVID-19 pandemic]. Zhonghua Yi Xue Za Zhi
- 295 2024;104:559–65.
- [19] Cowling BJ, Kwan MYW, Wong JSC, Feng S, Leung C-W, Chan ELY, et al. Interim
- 297 estimates of the effectiveness of influenza vaccination against influenza-associated
- hospitalization in children in Hong Kong, 2015-16. Influenza Other Respi Viruses
- 299 2017;11:61-5.
- [20] Murphy C, Mak L, Cheng SMS, Liu GYZ, Chun AMC, Leung KKY, et al. Diagnostic
- 301 performance of multiplex lateral flow tests in ambulatory patients with acute
- respiratory illness. Diagn Microbiol Infect Dis 2024;110:116421.

303

305 FIGURE LEGEND

- 306
- 307 Figure 1. Number of children admitted to hospital and enrolled in this study from November
- 308 2023 to June 2024. The 2023-24 influenza A(H3N2) and influenza A(H1N1) epidemics were
- 309 specified by the number of weekly hospitalizations and are indicated using brackets.
- 310
- 311

Table 1. Characteristics of children hospitalized and enrolled in this study.

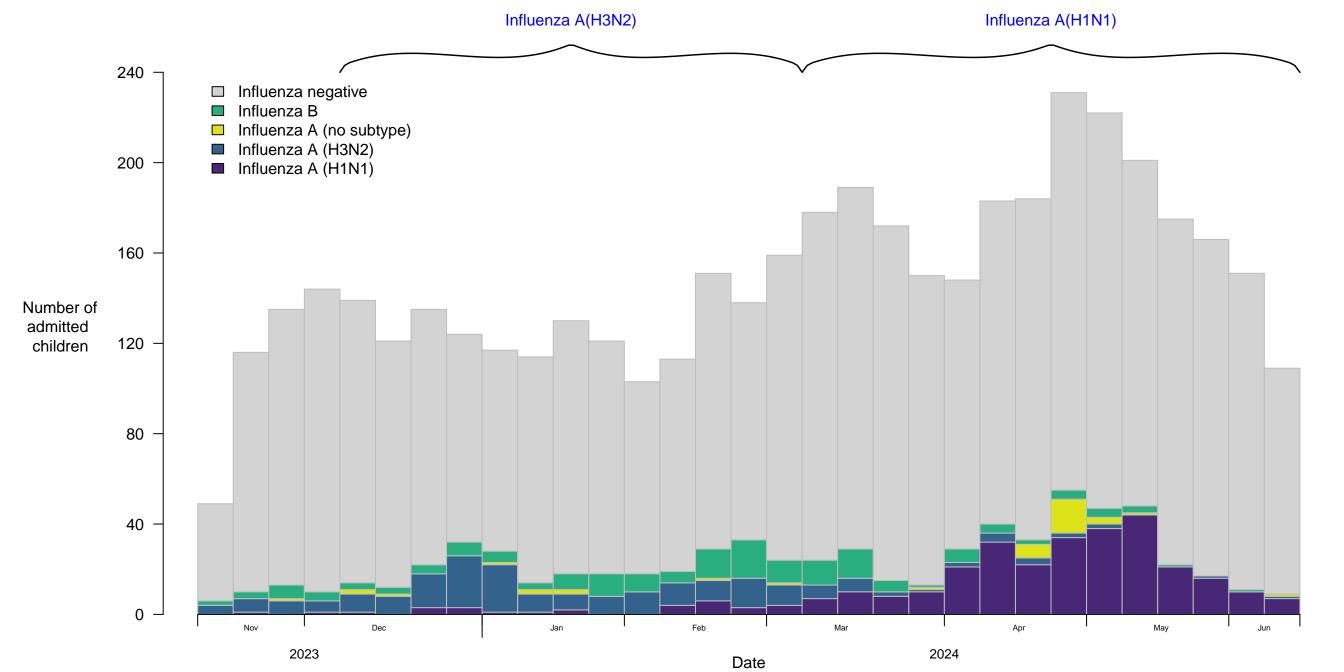
Variable	Influenza positive	Influenza negative	p-value	
	(n=709)	and SARS-CoV-2		
		negative (n=3658)		
Male n (%)	410 (57.8)	2015 (55.1)	0.192	
Age group n (%)				
9 months to 3 years	264 (37.2)	1292 (35.3)	<0.001	
4 to 8 years	261 (36.8)	1610 (44.0)		
9 to 17 years	184 (26.0)	756 (20.7)		
Underlying medical conditions				
Lung diseases	17 (2.4%)	198 (5.4%)	0.379	
Cardiac diseases	3 (0.4%)	18 (0.5%)		
Other	4 (0.6%)	30 (0.8%)		
Receipt of influenza vaccine n (%)				
9 months to 3 years	39 (14.8)	466 (36.1)	0.003	
4 to 8 years	117 (44.8)	1119 (69.5)		
9 to 17 years	78 (42.4)	492 (65.1)		
Allages	234 (33.0)	2077 (56.8)		

313

Table 2: Influenza vaccine effectiveness estimates against hospitalization associated with influenza A(H3N2), A(H1N1) and B, overall and stratified by age.

	Total	Influenza positive by PCR			Influenza negative and SARS- CoV-2 negative by PCR			Vaccine Effectiveness*	
		n vac	Ν	%	n vac	Ν	%	%	95% CI
Influenza A(H3N2) [†]	2119	70	178	39.3	1055	1941	54.4	55.4	29.6 to 71.8
Age stratified									
9 months to 3 years	794	10	59	16.9	250	735	34.0	60.3	13.0 to 81.9
4 to 8 years	922	43	80	53.8	581	842	69.0	55.9	13.9 to 77.4
9 to 17 years	403	17	39	43.6	224	364	61.5	27.0	-149.5 to 78.7
Influenza A(H1N1) [‡] Age stratified	2465	97	287	33.8	1308	2178	60.1	54.4	33.4 to 68.8
9 months to 3 years	848	21	130	16.2	280	718	39.0	60.1	31.8 to 76.6
4 to 8 years	1075	47	110	42.7	691	965	71.60	66.2	34.6 to 82.5
9 to 17 years	542	29	47	61.7	337	495	68.1	26.2 [¶]	-39.0 to 60.8
Influenza B [§]	3822	38	164	22.4	2077	3658	56.8	66.1	42.2 to 80.1
Age stratified									
9 months to 3 years	1343	3	51	5.9	466	1292	36.1	84.1	45.8 to 95.3

4 to 8 years	1657	17	47	36.2	1119	1610	69.5	58.2	-2.1 to 82.9
9 to 17 years	822	18	66	27.3	492	756	65.1	44.7	-62.4 to 81.2


*Adjusted for age, sex, prior vaccination and underlying conditions

[†]Influenza A(H3N2) VE was estimated during the period 19 November 2023 to 23 March 2024

⁺Influenza A(H1N1) VE was estimated during the period 25 February to 12 June 2024

[§]Influenza B VE was estimated during the period 16 November 2023 to 12 June 2024

[¶]Adjusted for age, sex and underlying conditions but not for prior vaccination status due to insufficient sample size

