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BrainGT: Multifunctional Brain Graph Transformer
for Brain Disorder Diagnosis

Ahsan Shehzad , Shuo Yu , Dongyu Zhang , Shagufta Abid , Xinrui Cheng, Jingjing Zhou, Feng Xia

Abstract—Brain networks play a crucial role in the diagnosis
of brain disorders by enabling the identification of abnormal pat-
terns and connections in brain activities. Previous studies exploit
the Pearson’s correlation coefficient to construct functional brain
networks from fMRI data and use graph learning to diagnose
brain diseases. However, correlation-based brain networks are
overly dense (often fully connected), which obscures meaningful
connections and complicates subsequent analyses. This dense
connectivity poses substantial performance challenges to tra-
ditional graph transformers, which are primarily designed for
sparse graphs. Consequently, this results in a notable reduction
in diagnostic accuracy. To address this challenging issue, we
propose a multifunctional brain graph transformer model for
brain disorders diagnosis, namely BrainGT, which is capable
of constructing multifunctional brain networks rather than a
dense brain network from fMRI data. It utilizes the fusion of
self-attention and cross-attention mechanisms to learn important
features within and across multiple functional brain networks.
Classification (diagnosis) experiments conducted on three real
fMRI datasets (i.e., ADNI, PPMI, and ABIDE) demonstrate
the superiority of the proposed BrainGT over state-of-the-art
methods.

Impact Statement—The proposed BrainGT model represents a
substantial advancement in computational neuroscience, offering
a promising tool for more accurate and efficient diagnosis of brain
disorders. By constructing multifunctional brain networks from
fMRI data, BrainGT overcomes the limitations of traditional
graph transformers and correlation-based brain networks. This
innovation has profound implications across social, economic,
and technological dimensions. Socially, BrainGT can enhance the
quality of life for individuals with brain disorders by enabling
more accurate diagnoses, leading to more effective treatments
and better patient outcomes. Economically, BrainGT has the
potential to reduce healthcare costs by streamlining the diagnostic
process and potentially reducing the need for more expensive
or invasive procedures. Technologically, BrainGT pushes the
boundaries of AI and neuroscience, opening new avenues for
research and development. It demonstrates the potential of AI
to handle complex and dense data structures, with applications
that could extend to other fields.

Index Terms—Brain graph transformer, brain network anal-
ysis, brain disorder diagnosis, graph learning, graph neural
networks, functional connectivity
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I. INTRODUCTION

THE diagnosis of brain diseases using brain network
analysis is a rapidly evolving field of research that holds

significant promise for improving medical outcomes [1]. Func-
tional Magnetic Resonance Imaging (fMRI) plays a crucial
role in the construction of these brain networks by measuring
brain activity and identifying connectivity patterns between
different regions [2]. The significance of brain network anal-
ysis lies in its potential to provide a more comprehensive
understanding of brain function and dysfunction enabling the
early detection and diagnosis of various brain diseases such
as Alzheimer’s disease (AD), Parkinson’s disease (PD), and
Autism pectrum disorder (ASD) [3]. By analyzing alterations
in brain network connectivity, researchers and clinicians can
identify biomarkers and develop targeted interventions that
ultimately lead to more effective treatments and improved
patient outcomes.

Numerous efforts have been made to analyze brain net-
works for the diagnosis of brain diseases. Conventional brain
network analyzes employing graph theory-based techniques
generally follow a two-step process [2], [4]. Firstly, feature
engineering is applied to graphs followed by an analysis
of derived features. In the feature engineering phase, graph
property metrics such as clustering coefficient are used to
encapsulate the functional connectivity of each node into
statistical measures. Then, due to high dimensionality of fMRI
data, regions of interest (ROIs) are frequently grouped into
highly interconnected communities to reduce dimensionality
or to enable data-driven feature selection [5]. However, in these
two-step methods, inaccuracies in the first step can result in
substantial errors in subsequent analysis.

Graph neural networks (GNNs) have gained popularity
for end-to-end graph learning, resulting in notable advance-
ments in brain network analysis [6], [7]. These methods
autonomously extract salient features from data sets that aid
in the diagnosis of brain disorders. GNNs process data from
the brain network to define intricate relationships between
nodes (brain regions) and edges (functional connections) [8].
However, their limited receptive field restricts comprehension
of the brain network’s global context, potentially omitting crit-
ical diagnostic patterns. The emergence of graph transformers
represents a pivotal development in graph learning that offers
substantial improvements in various applications, including the
diagnosis of brain disease [9], [10]. By integrating attention
mechanisms, graph transformers provide a more comprehen-
sive and adaptable interpretation of graph structures [11].
Initial applications of graph transformer-based approaches to
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brain networks have shown improved diagnostic accuracy for
neurological conditions [12], [13].

However, because of the widespread adoption of the Pearson
correlation method in constructing brain networks from fMRI
data, current correlation-based brain networks are overly dense
(often fully connected). This excessive density obscures mean-
ingful connections and complicates subsequent analyses [14].
As a consequence, previous methods, that are generally opti-
mized for sparse graphs, are facing a significant efficacy de-
crease. The inefficiencies and potential inaccuracies in analysis
compromise the detection and understanding of neurological
disorders. This underscores the need to develop more precise
and efficient methods for brain disorder diagnosis.

In addressing the challenges brought by the complexities of
fully connected brain networks, we propose BrainGT, a unified
framework aimed at improving brain network construction
and analysis. The proposed BrainGT first segments the fully
connected brain network into several functional brain networks
that reflect the brain’s inherent structure, and then employs
specialized graph transformers with a dual attention mecha-
nism. The dual attention mechanism combines self-attention
to identify intricate local relationships within each functional
network and cross-attention to understand interactions between
different functional networks [15]. Our proposed BrainGT
offers a holistic global perspective and effectively tackles
the challenges associated with fully connected networks and
demonstrate superior performance in the diagnosis of brain
diseases, marking a significant progression in neuroimaging
analytics. Our contributions are summarized as follows.

• We propose an effective solution for brain disorders di-
agnosis, namely BrainGT, which is an unified framework
designed for fully connected brain networks and thus
improving the diagnosis of neurological conditions.

• The proposed BrainGT generates multiple functional
brain networks based on the organization of different
brain functions, as opposed to a fully connected network
from fMRI scan. It utilizes fusion of self-attention and
cross-attention mechanisms to learn important features
within and across multiple functional brain networks,
respectively.

• We validate our model using three different datasets:
ADNI, PPMI, and ABIDE, each representing a different
brain disease: AD, PD, and ASD, respectively. The ex-
perimental results demonstrate that BrainGT outperforms
state-of-the-art methods.

The remainder of this paper is organized as follows. Section
II examines related work, emphasizing significant contribu-
tions and pinpointing gaps that our study seeks to address.
Section III offers a comprehensive background that is essential
for grasping the context of this paper. Section IV explores
the design of BrainGT, highlighting its architecture and im-
plementation. Section V presents the experimental results and
discussions, evaluating the performance and implications of
our design. Lastly, Section VI wraps up the paper and proposes
directions for future research.

II. RELATED WORK

A. Brain Network Analysis for Brain Disorder Diagnosis

The human brain is a complex network of interconnected
regions involved in sophisticated communication patterns [16].
Brain network analysis is crucial in neuroscience to understand
functional connectivity between brain regions and helps to
identify biomarkers for the early diagnosis of neurological
disorders [17]. Brain networks are defined using fMRI data
and the Pearson correlation coefficient to measure linear
relationships between BOLD signals in different areas of the
brain [18], resulting in a network model in which nodes
represent regions of the brain and edges represent functional
connectivity. The initial methodologies employing graph the-
ory have been pivotal in defining the structural and functional
organization of the brain [5]. These models have been in-
strumental in identifying critical hub regions and pathways
essential for neural communication and cognitive processes.
However, despite their significant contributions, graph theory-
based approaches exhibit inherent limitations. They often
require manual feature selection, which introduces subjectivity
and potentially overlooks the intricate complexity of brain
connectivity.

Graph learning, particularly GNNs, represents a significant
advancement in brain network analysis [19]. These models
autonomously learn and discern patterns in brain connec-
tivity data, improving the understanding of brain functions
and pathologies. Cui et al. [6] provided a benchmark called
BrainGB for brain network analysis using GNNs, highlighting
challenges like the lack of useful initial node features and
real-valued connection weights. Anwar et al. [20] offered
an evaluation framework for graph machine learning models
in brain connectomics, introducing benchmark datasets and
standardized metrics for consistent comparisons. Wang et
al. [9] proposed an unsupervised contrastive graph learning
framework for fMRI data analysis, enhancing discriminative
feature learning for the detection of brain disorders. Li et al.
[10] developed an interpretable GNN framework for fMRI
data, focusing on the interpretability of predictions by identify-
ing key brain regions and interactions. Ma et al. [12] presented
a multiscale dynamic graph learning framework that takes
advantage of spatio-temporal dynamics in fMRI data, improv-
ing the robustness and accuracy of brain disorder detection.
However, previous graph learning approaches face challenges
such as limited receptive fields, which hinder their ability to
capture comprehensive network properties, affecting models’
effectiveness in tasks requiring a holistic understanding of
brain connectivity.

B. Graph Transformers

Graph transformers are a novel type of graph neural net-
work that extends the transformer architecture to various
graphs [21]. By using self-attention mechanisms to derive
node and edge representations from graph-structured data,
graph transformers capture complex dependencies and inter-
actions among nodes and edges. Unlike GNNs, which rely
on localized message passing and can suffer from over-
smoothing, graph transformers effectively capture long-range
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dependencies within graphs [22]. These models have been
applied in fields such as natural language processing [23],
computer vision [24], social network analysis [25], and drug
discovery [26]. Graph transformers have also shown promise
in the diagnosis of brain diseases by using brain networks and
self-attention mechanisms to capture extensive dependencies
between regions and brain modalities.

Kan et al. [14] proposed the Brain Network Transformer,
which uses connection profiles as node features and learns
pairwise connection strengths with efficient attention weights.
This model incorporates an Orthonormal Clustering Readout
operation, resulting in cluster-aware node embeddings and
informative graph embeddings. Fang et al. [27] introduced the
Path-based Heterogeneous Brain Transformer Network (PH-
BTN), which constructs brain graphs from rs-fMRI data and
learns compact edge features through heterogeneous graph
paths, enhancing brain network analysis. Other approaches
address specific challenges in brain network analysis. Zuo
et al. [28] developed a Distribution-Regularized Adversarial
Graph Autoencoder (DAGAE) with a Transformer generator
for dementia diagnosis, preprocessing fMRI data to construct
graph data, and using adversarial training to generate robust
functional networks of the brain. Cai et al. [29] proposed a
model to estimate brain age as a biomarker for AD diag-
nosis. Bannadabhavi et al. [30] introduced Com-BrainTF, a
transformer that predicts Autism by integrating community
information in fMRI analysis. Dai et al. [11] proposed THC, a
model for identifying brain modules and classifying networks
capable of handling dynamic brain networks and predicting
lesion locations. A notable challenge in applying Graph Trans-
formers to brain networks is their typical design for sparse
graph data, which is inefficient for fully connected brain net-
works. This leads to computational inefficiencies and hinders
significant pattern detection. Some approaches mitigate this by
sparsifying the network or modifying the attention mechanism
to focus on critical connections, but these adaptations do not
fully leverage the potential of Graph Transformers.

III. PRELIMINARIES

A. Brain Networks

A brain network can be mathematically defined as a graph
G = (V,E), where V is the set of nodes representing distinct
brain regions, and E is the set of edges representing the
functional or structural connections between these regions [1].
Each node vi ∈ V is associated with a specific ROI, and
each edge eij ∈ E between nodes vi and vj quantifies the
strength or presence of a connection, which can be derived
from neuroimaging data. In the context of functional brain
networks, let A be the adjacency matrix representing the
network, where Aij is the weight of the edge between nodes i
and j. For functional connectivity, Aij can be computed using
the Pearson correlation coefficient between the time series of
neural activity from regions i and j, as previously described:

Aij = rij =
∑T

t=1(Xi(t)−Xi)(Xj(t)−Xj)√∑T
t=1(Xi(t)−Xi)2

√∑T
t=1(Xj(t)−Xj)2

, (1)

Here, the matrix A captures the connectivity pattern of the
brain network, where the value of Aij indicates the strength
of the functional connection between regions i and j. For
structural brain networks, Aij might represent the number of
white matter tracts connecting regions i and j, derived from
diffusion MRI data. By representing the brain as a network,
graph property metrics can be applied to analyze its properties
and understand the differences between healthy and diseased
states, ultimately contributing to the diagnosis and treatment
of brain disorders [31]. This process of constructing a brain
network from fMRI data using the Pearson correlation method
is illustrated in Fig. 1.

B. Graph Learning and Graph Transformers
Graph learning is a subfield of machine learning that focuses

on the analysis and interpretation of data structured as graphs
[32]. In a graph G = (V,E), V represents the set of nodes (or
vertices), and E represents the set of edges that connect pairs
of nodes. The graph learning problem can be mathematically
defined as learning a function f : G→ Y that maps a graph G
or its components to target values Y , where Y could represent
node labels, edge labels, or global graph properties. Formally,
this involves optimizing a loss function L(f(G), Y ) over a
training dataset D = {(Gi, Yi)}Ni=1. Graph learning encom-
passes a broad range of tasks including node classification, link
prediction, and graph classification [33]. In the context of brain
network analysis, graph learning techniques are employed to
uncover patterns and connections within brain networks that
can aid in diagnosing brain diseases [34]. The application
of these techniques leverages the structural and functional
connectivity data obtained from neuroimaging modalities like
fMRI and diffusion MRI [35].

Graph transformers represent a significant evolution in the
field of graph learning combining the power of transformers
with graph-structured data to capture complex relationships
and dependencies [36]. Traditionally, transformers have been
highly successful in natural language processing and computer
vision due to their ability to model long-range dependencies
and interactions through self-attention mechanisms [37]. The
extension of transformers to graphs has opened new avenues
for analyzing and interpreting complex graph data including
brain networks. Traditional graph learning methods are mainly
based on localized operations to aggregate information from
neighboring nodes. Although these methods are effective for
various applications, they often face challenges due to their
limited receptive fields. This limitation hinders their ability
to capture long-range dependencies and the global structure
of the graph [38]. Graph transformers address this limitation
by using a global attention mechanism that allows each node
to attend to all other nodes in the graph, thus capturing
more comprehensive and nuanced relationships [39]. Graph
transformers incorporate several key features and mechanisms
that distinguish them from traditional graph learning methods.
At their core is self-attention mechanism which can be math-
ematically described as follows:

Given a set of node features X ∈ RN×d, where N is the
number of nodes and d is the feature dimension, the self-
attention mechanism computes attention scores using query,
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Fig. 1. Traditional brain network construction using Pearson correlation method on fMRI data.

key and value matrices Q, K, and V , derived from the input
features:

Q = XWQ, K = XWK , V = XWV , (2)

The attention scores are then computed as:

A = softmax
(
QKT

√
dk

)
, (3)

where dk is the dimension of the key vectors. The output of
the self-attention layer is given by:

Attention(Q,K, V ) = AV. (4)

This mechanism allows each node to aggregate information
from all other nodes weighted by attention scores enabling
model to capture global dependencies. Recent advancements
in graph transformer models have introduced various enhance-
ments to improve their efficiency and effectiveness [40], [41].
For example, Graphormer model [42] integrates additional
structural encodings such as shortest path distances and cen-
trality measures into the attention mechanism, improving its
ability to capture structural information from graphs. Another
model SAN (Structure-Aware Transformer) [43] incorporates
structural priors directly into the self-attention mechanism to
enhance its performance on graph tasks.

IV. THE DESIGN OF BRAINGT

A. The Overview of BrainGT

BrainGT represents a novel framework designed for the
diagnosis of brain diseases by addressing the complexity
of dense functional connectivity in brain networks. This
framework constructs multifunctional brain networks using the
AAL1 and Yeo20112 atlases to bypass the challenges associ-
ated with dense network analysis. The multifunctional graph
transformer module takes these networks as input embeddings,
incorporates absolute positional encoding for spatial context,
and processes each brain network independently with network-
wise encoders. Internetwork relationships are captured through
cross-network encoders, and the system culminates in adaptive
fusion classification to predict the presence of brain disease.
The framework and workflow of BrainGT are depicted in Fig.
2.

1https://www.gin.cnrs.fr/en/tools/aal
2https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation Yeo2011

B. Multifunctional Brain Networks Construction

1) Preprocessing of fMRI Data: This pivotal procedure
converts raw fMRI data into a processed dataset with slice
timing correction to synchronize the acquisition times of fMRI
image slices. Let Ti represent the acquisition time of the ith

slice and Tref the reference time. The corrected time Tcorr

for each slice is computed as follows:

Tcorr(i) = Ti − Tref . (5)

Subsequently, motion correction is implemented to compen-
sate for any head movements during the scan. This process
entails the estimation of motion parameters Mt at each time
point t, and the alignment of each volume to a reference
volume by minimizing the cost function C(M), defined as
the sum of squared differences between the image at time t
and the reference image:

C(Mt) =
∑
x,y,z

[It(x, y, z)− Iref (Mt(x, y, z))]
2. (6)

Following motion correction, spatial normalization is con-
ducted to ensure that each individual’s brain images conform
to a standardized template. The transformation matrix N is
calculated to map the brain images to the template space T ,
aiming to minimize the discrepancy between the individual
image I and the template T :

N(x, y, z) = argminN∥I(x, y, z)− T (N(x, y, z))∥. (7)

To enhance the signal-to-noise ratio, the images are smoothed
by convolving them with a Gaussian kernel G(σ), where σ
represents the standard deviation of the kernel, dictating the
degree of smoothing:

S(x, y, z) = I(x, y, z) ∗G(σ). (8)

The preprocessing concludes with detrending, which involves
the removal of linear trends from the time series data. For
a time series X(t), the detrended series D(t) is derived by
subtracting the linear trend, characterized by coefficients α
and β:

D(t) = X(t)− (αt+ β). (9)

2) Atlas Registration: The Atlas registration module is
crucial for constructing multifunctional brain networks. It uses
Yeo2011 and AAL atlases to define functional networks and
anatomical ROIs. Both atlases are registered to a standardized
space using the MNI152 template. This alignment ensures a
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Fig. 2. The framework of BrainGT.

precise overlay and comparison. The registration involves a
transformation matrix R, which adjusts the atlas coordinates
A to the template space T :

R(A) = T. (10)

The AAL atlas is resampled to match the voxel dimensions
of the Yeo2011 atlas, ensuring alignment of anatomical labels
with Yeo2011’s functional networks. The resampling function
f adjusts VAAL to match VY eo:

f(VAAL) = VY eo. (11)

After resampling, anatomical labels from the AAL atlas are
superimposed onto Yeo2011 functional networks. Each voxel
v receives a functional network label FY eo and an anatomical
label AAAL, providing dual descriptors:

L(v) = (FY eo(v), AAAL(v)). (12)

The preprocessed fMRI data is then transformed into a com-
mon space using the registration matrix R, ensuring accurate
alignment with the atlases. The transformed fMRI data D′ is
represented as:

D′ = R(D). (13)

3) Functional Networks Mapping: This module precisely
maps anatomical ROIs to their respective functional networks
by aggregating anatomical ROIs within each functional net-
work, as defined by the Yeo2011 atlas. For a specific functional
network fi, the aggregation Cfi represents the union of all
anatomical ROIs Raj

contained within fi:

Cfi =
⋃
j

Raj
where Raj

is within fi. (14)

Subsequent to aggregation, majority voting is utilized to de-
termine the most representative anatomical Region of Interest

(ROI) within each functional network. This determination is
made by counting the occurrences naj

of each ROI Raj
, and

selecting the ROI with the maximal frequency for the network
fi:

R∗
fi = argmax

Raj

naj
within fi. (15)

The ROIs that frequently recur within each functional network
are subsequently defined as nodes, thereby converting the
aggregated data into a structured network. The set of nodes
Nfi for each functional network fi is defined as follows:

Nfi = {R∗
fi |R

∗
fi is the majority ROI within fi}. (16)

The output of this module comprises a series of functional
networks, each characterized by nodes representing the pre-
dominant anatomical ROIs.

4) Functional Connectivity Estimation: The functional con-
nectivity is estimated using temporal correlations between
ROIs within each functional network. Specifically, for a node
corresponding to ROI R∗

fi
in a functional network fi, the

BOLD time series TR∗
fi

is derived by averaging the signal
intensities across all time points T :

TR∗
fi

=
1

T

T∑
t=1

SR∗
fi
(t), (17)

where SR∗
fi
(t) denotes the signal intensity at time t. Sub-

sequently, a correlation analysis was performed with a seed
region of interest (ROI), Rseed, serving as a reference. The
Pearson correlation coefficient, r, was calculated between the
time series of the seed ROI, TRseed

, and the time series of
each respective ROI, TR∗

fi
, to generate a correlation map:
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rRseed,R∗
fi

=

∑
(TRseed

− T̄Rseed
)(TR∗

fi
− T̄R∗

fi
)√∑

(TRseed
− T̄Rseed

)2
∑

(TR∗
fi
− T̄R∗

fi
)2
.

(18)
This analysis across all ROIs produced whole-brain connec-
tivity maps showing functional interconnections. These maps
reveal synchronous activity patterns, with positive correla-
tions indicating similarity and negative correlations indicating
anticorrelations. Significant connections are determined by
applying a threshold θ to the correlation coefficients C. The
binary connectivity matrix B is defined such that Bij = 1 if
the absolute value of the correlation coefficient between ROIs
i and j is at least θ, and 0 otherwise:

Bij =

{
1 if |Cij | ≥ θ

0 otherwise
. (19)

The binary matrices are transformed into a set of graphs
{Gf}Nf=1 where Gf = (N,E), where nodes N represent ROIs
and edges E indicate significant correlations.

C. Multifunctional Brain Graph Transformers

1) Input Embeddings: This module structures raw brain
network data for graph transformers. Brain networks are
graphs G = (V,E), where V are brain regions and E
are functional connections. Each node vi ∈ V has feature
vectors xi, transformed into embeddings hi by a learnable
function f , such that hi = f(xi). Edge weights wij are
projected into higher-dimensional space h′

ij by function g,
where h′

ij = g(wij). An aggregation function AGG combines
node and edge embeddings for each node i, yielding h′′

i . This
process is mathematically expressed as:

h′′
i = AGG(hi, {h′

ij |j ∈ N (i)}), (20)

where N (i) denotes the set of neighboring nodes connected
to node i.

2) Positional Encoding: The Positional Encoding module
facilitates the model’s comprehension of the absolute positions
of nodes, which is essential for discerning spatial relationships
in the diagnosis of brain diseases. It assigns a distinct posi-
tional encoding to each node based on its connectivity profile
within the functional network [14]. This profile, represented
as vector ci, encapsulates the node connectivity pattern and
is transformed into an absolute position encoding pi by a
mapping function ϕ, such that pi = ϕ(ci). This mecha-
nism augments initial embeddings by integrating positional
encoding into each node, thereby producing spatially aware
embeddings h′′′

i :

h′′′
i = h′′

i + pi. (21)

This addition ensures each node’s embedding reflects its
features, connectivity, and specific brain network location.

3) Network-wise Encoders: The Network-Wise Encoders
module within the BrainGT framework is responsible for en-
coding structural information into the model’s representations
by processing each brain network independently. This module
takes as input spatially aware node embeddings {h′′′

i }, which
contain detailed information regarding the nodes’ features and
spatial positions but lack structural context. To mitigate this
deficiency, the module utilizes a self-attention mechanism that
uses a connectivity map to integrate structural information
directly into the attention process [15]. The connectivity map
delineates the structural connections between nodes, thereby
forming the foundation of the model’s self-attention mecha-
nism.

Attention(Q,K, V,C) = softmax
(
QKT + αC√

dk

)
V, (22)

where, Q, K, and V represent the query, key, and value
matrices, respectively, which are derived from the node embed-
dings. The parameter α serves as a scaling factor that adjusts
the impact of the connectivity map on the attention scores.
Additionally, dk denotes the dimensionality of the key vectors.

4) Cross-network Encoders: This module elucidates inter-
actions among brain networks. The Cross-network encoders
receive encoded features from Network-Wise encoders and use
cross-attention to learn inter-network dynamics. It generates a
query Q from one network’s features and compares it with
keys K from other networks. Attention scores from these
interactions capture the influence of one network’s features
on another [44]. The mathematical formulation of the cross-
attention process is as follows.

Cross-Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (23)

where V denotes the value matrices and dk represents the
dimensionality of the keys. This formulation enhances the
attention mechanism’s sensitivity to the interplay among brain
networks, aiding the model in discerning their collective
influence on brain functionality and potential pathological con-
ditions. The output is an integrated feature set encapsulating
aggregated data across all brain networks.

5) Adaptive Fusion and Classification: This module pro-
cesses features from Cross-Network Encoders, aggregating
information across brain networks. The adaptive fusion mech-
anism assigns weights to features based on their classifica-
tion significance. The classification phase uses a Multi-Layer
Perceptron (MLP) with multiple neuron layers and activation
functions to predict brain disease.

y = σ(Wn . . . σ(W2σ(W1x+ b1) + b2) · · ·+ bn), (24)

where x is the fused input features, W and b are the weights
and biases of the MLP layers, σ is the activation function, and
y is the output prediction vector. To enhance classification
robustness and reduce overfitting, the module uses a cross-
entropy loss function with L2 regularization, defined as:
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L = −
N∑
i=1

ti log(yi) + λ
∑
w

w2, (25)

where ti are the true labels, yi are the predicted labels, λ
is the regularization parameter, and w represents the MLP
weights. An optimization algorithm like SGD adjusts weights
and biases to minimize the loss function and improve classifier
performance. The Adaptive Fusion and Classification module
outputs a diagnostic prediction for brain disease likelihood.
The pseudocode of BrainGT is shown in Algorithm 1.

Algorithm 1 BrainGT Algorithm
1: Input: Raw fMRI data
2: Output: Disease prediction: y
3: procedure BRAINGT(fMRIRaw)
4: fMRIP ← Preprocess(fMRIRaw)
5: fMRIR ← AtlasRegistration(fMRIP)
6: {Nf}Nf=1 ← NetworksMapping(fMRIR)

7: {Cf}Nf=1 ← ConnectivityEstimation({Nf}Nf=1)

8: {Gf}Nf=1 ← NetworksConstruction({Cf}Nf=1)

9: hv ← InputEmbeddings({Gf}Nf=1)
10: Initialize weights θ for Transformer encoders
11: pv ← ϕ(cv) for each node v
12: E ← number of epochs
13: for e← 1 to E do
14: for f ← 1 to N do
15: h′

f ← NetworkEncoder({hv}v∈Gf
)

16: h′′
f ← CrossNetworkEncoder({h′

v}v∈Gf
)

17: end for
18: end for
19: hfinal ← AdaptiveFuse({h′′

f}Nf=1)
20: y ← σ(Wn . . . σ(W1hfinal + b1) . . .+ bn)
21: Compute loss L
22: Backpropagate error and update θ
23: return y
24: end procedure

V. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Datasets:
a) ADNI Dataset: , namely The Alzheimer’s Disease

Neuroimaging Initiative (ADNI)3 dataset, derived from the
ADNI database, comprises an extensive collection of fMRI
data designed to explore the progression of Alzheimer’s
Disease (AD). Researchers can access the dataset following
approval of their application, which supports research into
neuroimaging and biomarker analysis. The primary objective
with this dataset involves the identification of biomarkers for
the detection and monitoring of AD. Subjects are classified
into three categories: cognitively normal, mild cognitive im-
pairment, and AD. A specific subset of the ADNI dataset,
chosen for its inclusion of resting-state fMRI data, consists of
426 participants, 199 of whom (46.7%) are female and 146

3http://adni.loni.usc.edu/data-samples/access-data

TABLE I
THE STATISTICES OF DATASETS

Dataset Subjects Age Range Male/Female Labels

ADNI 426 50-100 227/199 CN (280), AD (146)
PPMI 324 40-85 194/130 Control (94), PD (230)
ABIDE 1118 8-40 957/161 Control (581), ASD (537)

(34.2%) have been diagnosed with AD, ranging in age from
50 to 100 years. The selection process was rigorous, ensuring
that only subjects with confirmed diagnoses were included.

b) PPMI Dataset: , namely The Parkinson’s Progression
Markers Initiative (PPMI)4 dataset, available on the PPMI
website, contains fMRI data to study Parkinson’s Disease
(PD) progression. Researchers meeting specific criteria can
access this dataset to explore PD biomarkers. The dataset
aims to identify diagnostic and progression markers for PD,
distinguishing between healthy controls and PD patients. The
study cohort includes fMRI data from 823 individuals, with
230 (70.9%) diagnosed with PD, 130 (40.1%) female, and
ages 40 to 85, representing a cross-section of the PD-affected
population.

c) ABIDE Dataset: , namely The Autism Brain Imag-
ing Data Exchange (ABIDE)5 dataset provides fMRI data
for Autism Spectrum Disorder (ASD) research. This dataset,
sourced from multiple international locations, aims to elucidate
ASD neural underpinnings and identify diagnostic biomarkers.
Participants are categorized into ASD or control groups. It
includes fMRI data from 1118 subjects aged 8 to 40 years,
engaged in social cognition tasks. Of these, 537 (48%) are
diagnosed with ASD and 161 (14.5%) are female. A detailed
summary of the datasets is presented in Table I.

2) Baselines: In this paper, we performed a detailed assess-
ment of BrainGT by benchmarking it against a comprehensive
suite of cutting-edge techniques, categorized into four types
of groups: conventional Machine Learning (ML) algorithms
including Support Vector Machines (SVM) [45], Random For-
est, and Multi-Layer Perceptron (MLP) [46]; Graph Learning
(GL) approaches such as Graph Neural Network (GNN) [47],
Graph Isomorphism Network (GIN) [48], and Graph Atten-
tion Networks (GAT) [49]; Graph Transformer techniques
like SAN [22], Graphormer [42], BRAINNETTF [14]; and
specialized Brain Network Models, specifically BrainNetCNN
[50], BrainGNN[10], and BrainGB [6]. These baselines were
strategically selected to reflect their proven effectiveness in
graph analysis and their applicability to brain network re-
search. ML algorithms were utilized to process graph theory
features derived from functional brain networks, whereas GL
and Graph Transformer approaches were used directly on the
networks, exploiting their inherent connectivity data. Brain
Network Models were executed according to their original
protocols, tailored for dense network data. To ensure consis-
tency and fairness in our comparative evaluation, all methods
were applied to dense functional brain networks generated
using the BrainGB pipeline. ML algorithms analyzed extracted
graph theory features, GL and Graph Transformer approaches

4https://www.ppmi-info.org/access-data-specimens/download-data
5http://fcon 1000.projects.nitrc.org/indi/abide
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handled the complete networks without prior feature extrac-
tion, and Brain Network Models adhered to their specified
implementations, each fine-tuned for the specific analysis.
This rigorous configuration methodology guarantees that our
findings are reproducible and transparent in the application of
each technique to the analyzed datasets.

3) Evaluation Metrics: The efficacy of the BrainGT frame-
work was assessed using three principal metrics: accuracy,
which reflects the overall performance; the F1 score, vital
for medical diagnostics as it harmonizes precision and recall,
particularly advantageous for datasets with class imbalances;
and the Area Under the Curve (AUC), which encapsulates
the model’s performance across various thresholds, especially
pertinent for imbalanced datasets. These metrics are crucial for
the diagnosis of brain diseases, offering a holistic evaluation
of the effectiveness of the model. To verify that performance
enhancements were statistically significant and not attributable
to random variations, a paired t-test was performed, compar-
ing the performance of our model against other models on
identical datasets, with a significance threshold of 0.05.

4) Implementation Details: The BrainGT framework, de-
veloped in PyTorch, comprises two principal components:
the Multifunctional Brain Networks Construction module and
the Multifunctional Brain Graph Transformers module. The
former module processes fMRI data through atlas registration,
ROI extraction and assignment to functional networks, func-
tional connectivity estimation, and construction of multifunc-
tional brain network datasets. The latter module embeds these
networks, implements positional encoding, utilizes network-
specific and cross-network encoders, and adaptively fuses the
output for classification purposes. Data were partitioned into
training, validation, and testing subsets with proportions of
70%, 15%, and 15%, respectively. Training was performed
using the Adam optimizer, configured with a learning rate of
0.001, a batch size of 32, and stopping criteria set at 100
epochs. Hyperparameter tuning was performed using a grid
search approach. All computational experiments were carried
out on a workstation equipped with an NVIDIA 4090 RTX Ti
16 GB GPU.

5) Computational Complexity: computational complexity of
BrainGT is a crucial multifaceted aspect for its application in
neuroimaging analysis. preprocessing and network construc-
tion stages involve linear operations with respect to the number
of voxels V and the regions R, resulting in a complexity of
O(V × R). functional connectivity estimation that includes
the pairwise correlation analysis across N nodes introduces
a quadratic complexity of O(N2). transformer model which
incorporates self-attention and cross-attention mechanisms in
functional networks F with feature dimensionality D further
contributes to the scaling of complexity as O(F ×N2 ×D).
Finally, adaptive fusion and classification steps, depending on
the architecture of the MLP classifier, add a complexity of
O(F ×D). In general, the total computational complexity of
BrainGT can be approximated by O(V ×R+F ×N2×D+
F ×D).

B. Performance of BrainGT

BrainGT framework has undergone a comprehensive eval-
uation using three distinct datasets: ADNI PPMI and ABIDE
to determine its effectiveness in the diagnosis of various
neurological disorders. Empirical results indicate significant
promise. Specifically for the ADNI dataset that includes sub-
jects with Alzheimer’s disease (AD) and cognitively normal
(CN) BrainGT achieved an accuracy of 72.76% an F1 score of
66. 72% and an AUC of 76. 37%, which affirms its precision
and reliability. In the PPMI data set that focuses on the
framework of Parkinson’s Disease (PD) achieved an accuracy
of 78. 89%, an F1 score of 65.82% and an AUC of 6868. 14%
demonstrating its ability to discern complex patterns within
PD. Furthermore, in the ABIDE dataset that refers to Autism
Spectrum Disorder (ASD) in various age groups, BrainGT
exhibited an accuracy of 76. 4%, an F1 score of 70.0% and
an AUC of 78. 7%, which supports its robust performance in
detecting subtle manifestations of ASD.
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GIN GAT
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SAN Graphormer
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Fig. 3. Comparison of our method with baseline methods using the F1 score.

C. Comparison with Baseline Methods

The performance of BrainGT is assessed through a compar-
ative analysis with established baseline methods in different
categories of models. The detailed results are presented in
Table II. BrainGT outperforms traditional machine learning
techniques such as SVM, Random Forest, and MLP, com-
monly used in medical diagnostics. For example, in the ADNI
dataset, BrainGT achieves an accuracy of 72. 76%, exceeding
the accuracy of 61. 90% of MLP, the traditional method that
performs the best. This discrepancy in performance is pri-
marily due to the traditional methods’ limitations in capturing
complex patterns and managing the high dimensionality and
interconnectedness of brain network data. The comparison
with baseline methods on the F1 score is shown in Fig. 3.

Graph Learning Models such as GNN, GIN, and GAT are
tailored for processing graph-structured data. These models
generally surpass traditional machine learning techniques in
performance metrics. However, BrainGT demonstrates supe-
rior robustness, achieving higher accuracy and F1 scores. For
example, on the PPMI dataset, BrainGT achieves an F1 score
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TABLE II
COMPARATIVE PERFORMANCE ANALYSIS (%). BRAINGT DEMONSTRATES STATISTICALLY SIGNIFICANT IMPROVEMENTS OVER BASELINE MODELS,

CONFIRMED BY T-TESTS (P-VALUE < 0.05).

Type Method ADNI PPMI ABIDE

Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

Machine
Learning

SVM 60.34±0.17 32.44±0.17 62.58±4.80 74.09±0.24 44.21±0.08 49.21±1.48 59.45±2.31 36.79±24.03 62.41±3.52
Random Forest 60.51±2.85 35.36±2.86 63.38±3.50 77.02±1.97 49.45±3.51 58.51±0.11 51.25±5.44 33.97±34.22 55.37±1.94

MLP 61.90±1.22 29.14±0.57 65.74±2.37 77.99±2.78 52.96±4.52 59.65±6.80 60.72±12.69 51.12±40.97 66.72±3.87

Graph
Learning

GNN 65.85±6.42 52.29±5.15 69.36±5.09 78.41±1.62 54.46±3.08 63.24±3.77 63.63±1.98 63.73±8.34 69.75±3.35
GIN 64.63±2.35 57.12±1.81 65.32±1.42 79.34±2.21 55.98±3.08 64.15±2.67 67.87±2.75 63.89±9.78 74.93±2.43
GAT 66.62±4.85 53.93±4.01 72.17±3.23 78.42±3.53 56.55±6.48 63.07±7.75 65.22±1.23 66.47±11.47 76.44±1.25

Brain
Network
Models

BrainNetCNN 64.93±4.90 55.94±5.42 67.94±5.42 77.30±1.52 50.96±4.20 63.93±4.89 59.43±2.35 36.75±24.05 62.4±3.54
BrainGNN 67.09±2.77 54.09±2.77 73.36±4.26 79.52±6.23 57.45±6.28 64.09±3.25 69.34±6.37 56.74±34.04 72.42±3.71
BrainGB 65.97±0.13 57.32±0.06 70.00±0.20 78.91±3.61 56.86±2.68 63.14±5.37 68.97±8.21 55.46±15.08 70.59±6.34

Graph
Transformers

SAN 67.46±0.82 60.79±0.83 70.18±1.16 79.39±0.52 47.68±3.12 61.29±2.11 67.43±1.73 62.42±7.85 73.58±5.42
Graphormer 68.92±1.29 61.45±1.28 72.16±1.41 78.29±2.58 52.59±2.1 65.35±4.71 69.41±5.31 68.43±7.84 76.52±5.48

BRAINNETTF 70.42±011 63.30±2.08 73.33±0.78 79.63±1.92 53.43±4.6 64.23±2.79 70.24±4.94 58.67±16.07 73.25±4.57

Ours BrainGT 72.76± 1.2 66.72±1.17 76.37±1.46 78.89±0.26 65.82±6.43 68.14±5.01 76.47±1.07 70.05±1.24 78.73±22.34

of 65.82%, which is significantly higher than GIN’s 55.98%.
This enhanced performance can be attributed to BrainGT’s
integration of both structural and functional brain atlases in
network construction, a feature absent in the aforementioned
models. Moreover, BrainGT’s sophisticated attention mecha-
nisms facilitate a deeper understanding of node relevance and
feature extraction.

Graph Transformers such as SAN, Graphormer, and
BRAINNETTF represent the latest advancements in graph
neural networks by integrating attention mechanisms to en-
hance performance on graph structured data. BrainGT demon-
strates a significant improvement in performance metrics
across datasets compared to other Graph Transformers. Specif-
ically, on the ABIDE dataset, BrainGT achieves an AUC of
78.7%, markedly higher than BRAINNETTF’s 73.2%. The
architecture of BrainGT, incorporating both self-attention and
cross-attention mechanisms, facilitates more effective feature
extraction from complex brain networks. This distinct design
element sets BrainGT apart from other Graph Transformers,
particularly in handling densely connected brain network data.

Brain network models, including BrainNetCNN,
BrainGNN, and BrainGB, are specialized tools for brain
network analysis. In particular, BrainGT has shown superior
performance, as evidenced by its improved accuracy in
the ADNI dataset, surpassing BrainGNN by 5.67%. This
improvement can be attributed to BrainGT’s adaptive fusion
technique, which is not present in the other models. This
technique synergistically integrates features across various
functional brain networks, thereby enhancing the capabilities
for disease diagnosis.

D. Ablation Study

In ablation study of the BrainGT framework, we method-
ically deconstructed the model by sequentially removing its
key components to create a series of progressively simplified
models. Subsequently, these ablated models were subjected
to rigorous testing using ADNI PPMI and ABIDE datasets
to assess the impact of each component on the diagnostic
accuracy of the framework for brain disorders. study started
with the complete BrainGT model which includes all com-

ponents and systematically evaluated the effects of excluding
multifunctional brain networks network-wise encoders cross-
network encoders and adaptive fusion component. most simpli-
fied model devoid of all specialized components was utilized
as a baseline for comparative analysis. Performance metrics
for each variant were computed and contrasted with both
this baseline and fully integrated BrainGT framework, thereby
elucidating the contribution of each individual component to
overall efficacy of the model. The results of the ablation study
are presented in Table III.

The findings indicate a significant decline in performance
with sequential removal of components that highlight their
collective importance. The full model (none) exhibits the
highest performance in all metrics, emphasizing the synergistic
effect of the combined components. In particular, removal of
multifunctional brain networks results in a marked decrease in
performance, underscoring its critical role in managing dense
connectivity of brain networks. Similarly, network-wise and
cross-network encoders are crucial for capturing intra- and
inter-network interactions. adaptive fusion component is also
essential for the effective integration of the extracted features.
most substantial decline in performance is observed when all
specialized components are ablated (All Components), reaf-
firming the necessity of each element in BrainGT framework
for accurate diagnosis of brain diseases.

E. Parameter Analysis

In an effort to optimize the BrainGT model for diagnosing
brain disorders, a thorough parameter analysis was carried out,
focusing on two main variables: the number of functional
networks, denoted by n, and the number of layers within
the encoders, represented by l. The analysis began with an
exploration of the parameter space, in which n was varied
from 1 to 17 to encompass the range of predefined functional
networks within the Yeo2011 atlases. Simultaneously, l was
adjusted from 1 to 20 to determine the optimal depth of the
network-wise and cross-network encoders. The experiments
were carried out using three datasets: ADNI, PPMI, and
ABIDE. The initial parameter settings were derived from pre-
liminary trials, serving as a baseline for the analysis. As n and
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TABLE III
PERFORMANCE IMPACT OF COMPONENT ABLATION ON BRAINGT FRAMEWORK: A COMPARATIVE ANALYSIS ACROSS ADNI, PPMI, AND ABIDE

DATASETS

Component Ablated ADNI PPMI ABIDE

Accuracy F1-Score AUC Accuracy F1-Score AUC Accuracy F1-Score AUC

None (Full BrainGT) 72.76 66.72 76.37 78.89 65.82 68.14 76.47 70.05 78.73
Multifunctional brain networks 68.62 63.43 73.17 74.35 62.66 64.63 73.21 65.89 75.31

Network-wise Encoders 65.48 59.99 68.71 70.97 59.23 61.31 68.81 63.14 70.83
Cross-network Encoders 70.16 65.05 74.08 77.13 63.19 66.21 73.97 68.25 75.71

Adaptive Fusion 71.30 66.24 73.16 78.10 62.85 66.78 74.18 69.35 77.15
All Components 58.21 54.04 60.33 63.11 53.31 53.83 61.18 56.74 62.20

Accuracy F1-Score AUC
0

10

20

30

40

50

60

70

Metrics

S
co

re
s

Accuracy F1-Score AUC
0

10

20

30

40

50

60

70

Metrics

S
co

re
s

Accuracy F1-Score AUC
0

10

20

30

40

50

60

70

Metrics

S
co

re
s

10

20

30

40

50

60

70
None (Full BrainGT)

Multifunctional
brain networks

Network-wise
Encoders

Cross-network
Encoders

Adaptive Fusion

All Components

S
co

re
s

ADNI dataset PPMI dataset ABIDE dataset

Fig. 4. Ablation studies of BrainGT.

l were systematically varied, the performance of the model was
meticulously recorded, with particular attention to accuracy
and F1-score metrics. The results were visualized through
performance curves, providing an intuitive understanding of
the impact of parameter variations on the model’s efficacy.

Our findings indicate that the relationship between the
number of functional networks and the model’s performance
is non-linear, with an optimal range of functional networks
beyond which performance improvements become negligible.
Similarly, increasing the number of layers exhibits diminishing
returns, suggesting an optimal architecture that balances com-
plexity with computational efficiency. For the ADNI dataset,
the optimal parameters were identified as n = 11 and l = 2.
The PPMI and ABIDE datasets yielded optimal values of
n = 9, l = 3 and n = 14, l = 2, respectively, with the
selection criteria based on achieving the highest combined
accuracy and F1-score. The parameters n and l are critical
to the performance of the BrainGT model, with their optimal
values varying across different datasets and brain diseases.
Although these results may represent a locally optimal so-
lution, they underscore the importance of parameter tuning
in computational models for neuroscience. Recognizing the
limitations of our study, we recommend further exploration
of the parameter space to enhance the model’s diagnostic
capabilities more comprehensively.

F. Discussion

Our proposed BrainGT shows its effectiveness in diagnosing
brain diseases. Using a multifunctional brain network con-
struction method and attention mechanisms, BrainGT outper-
forms traditional techniques in precision F1, AUC score, and
paired t-test results. To validate these findings and provide
strong evidence to support our hypothesis, we performed a
comparative baseline analysis, showing that BrainGT con-

sistently outperforms existing neuroimaging methods using a
two-sample t-test. Ablation studies confirmed the importance
of each component (functional network segmentation, self-
attention, and cross-attention) by observing performance drops
when removed. Parameter analysis demonstrated the model’s
robustness to hyperparameter changes. Overall, BrainGT cap-
tures intricate brain connectivity patterns essential for iden-
tifying neurological disorders. Its superior performance sug-
gests that it could become a valuable tool for clinicians and
researchers, potentially leading to earlier and more precise
diagnoses of conditions such as Alzheimer’s, Parkinson’s and
autism spectrum disorder, allowing timely interventions and
improving patient outcomes.

However, it is imperative to acknowledge the constraints in-
herent in our study. Despite the promising capabilities demon-
strated by BrainGT, the current research has been conducted on
a limited array of datasets. The generalizability of our findings
to other datasets and populations remains to be substantiated.
Additionally, the computational demands of BrainGT may
pose significant challenges for its integration into clinical
practice. Future investigations should aim to address these
limitations to further substantiate the efficacy of BrainGT.

VI. CONCLUSION

This study introduces BrainGT an innovative multifunc-
tional brain graph transformer model that represents a substan-
tial advancement in the domain of neuroimaging and diagnosis
of brain disorders. In contrast to conventional methodologies
that depend on densely connected brain networks, BrainGT
constructs multifunctional networks that emphasize salient fea-
tures and connections, thereby offering a more precise depic-
tion of brain activity. Incorporation of self-attention and cross-
attention mechanisms facilitates a detailed comprehension of
both intra- and inter-network dynamics which is essential for
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(c) ABIDE Dataset.

Fig. 5. The accuracy and F1-score of BrainGT w.r.t. different n values.
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Fig. 6. The accuracy and F1-score of BrainGT w.r.t. different l values.

accurate disease diagnosis. Our empirical evaluations on ADNI
PPMI and ABIDE datasets have demonstrated BrainGT’s
superior performance in classification of brain diseases un-
derscoring its potential as a valuable instrument for medical
professionals.

Promising results obtained by BrainGT open several av-
enues for future research. One immediate direction is explo-
ration of BrainGT’s applicability to a wider range of brain
disorders beyond those studied here. Additionally, further
refinement of model’s attention mechanisms could yield even
more precise network representations potentially leading to
breakthroughs in early diagnosis and intervention strategies.
Another exciting prospect is the integration of BrainGT with
real-time fMRI data processing, which could transform the
model into a dynamic diagnostic system. Lastly, the develop-
ment of a more interpretable version of BrainGT would not
only enhance its clinical utility but also provide deeper insights
into neural underpinnings of brain diseases.
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