1	Long title:
2	Predictors of successful weaning from Veno-Arterial Extracorporeal Membrane
3	Oxygenation (V-A ECMO): A Systematic Review and Meta-analysis
4	
5	Short title: Predictors of V-A ECMO weaning success
6	
7	Authorship
8	Dr. Henry R. Hsu (1)*
9	Dr. Praba Sekhar (2,3)*
10	Ms Jahnavi Grover (4)
11	Dr. David H. Tian (2,5)
12	Dr. Ciaran Downey (6)
13	Dr Ben Maudlin (1)
14	Dr. Chathuri Dissanayake (6)
15	A/Prof Mark Dennis (1,6)
16	*Dr Hsu and Dr Sekhar contributed to the paper equally as first authors.
17	
18	Affiliations
19	1. The University of Sydney - School of Medicine, Sydney, New South Wales, Australia
20	2. Department of Anaesthesia and Perioperative Medicine, Westmead Hospital, Sydney,
21	Australia
22	3. The School of Public Health and Preventive Medicine, Monash University, Melbourne,
23	Victoria, Australia
24	4. School of Medicine - Western Sydney University, Sydney, New South Wales, Australia
25	5. Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
26	6. Royal Prince Alfred Hospital, Sydney, New South Wales, Australia

- 27
- 28

29 Correspondence

- 30 Dr. Mark Dennis
- 31 Faculty of Medicine and Health, Sydney, Australia
- 32 Missenden Road, Camperdown, Sydney, NSW 2050 Australia
- 33 Email: mark.dennis@sydney.edu.au
- 34

35 ABSTRACT

36 Background:

Venoarterial extracorporeal membrane oxygenation (V-A ECMO) use to support patients in cardiac failure is increasing. Despite this increased use, predicting successful weaning from ECMO can be challenging, no uniform guidelines on weaning exist. Therefore, we completed a systematic review to evaluate prognostic factors that predict successful weaning from V-A ECMO.

41

42 <u>Methods</u>:

Following the PRIMSA guidelines, a systematic literature search of Medline, Embase, SCOPUS and CENTRAL identified original research studies of patients requiring V-A ECMO where weaning was attempted. Data was collected on demographic factors and weaning protocol, biomarkers, haemodynamic, echocardiographic factors for the successfully weaned (SW) and not successfully weaned (NSW) groups. Two investigators reviewed studies for relevance, extracted data, and assessed risk of bias using the ROBINS-I tool. The study was registered on the international prospective register of systematic reviews (PROSPERO ID# CRD42022366153).

50

51 <u>Results</u>:

1219 records were screened, of which 20 studies were deemed sufficient to be included in the statistical analysis based on pre-specified criteria. Factors associated with successful weaning were higher left ventricular ejection fraction (LVEF) (MD 9.0, 95% CI 4.1 – 13.8; p<0.001) and left ventricular outflow tract velocity time integral (LVOT VTI) at time of weaning, (MD 1.35, 95% CI 0.28 – 2.40 lactate at admission (MD -2.5, 95%CI -3.8 – -1.1, p<0.001;), and CK-MB at admission (MD -4.11, 95%CI -6.6 to -1.6, p=0.001). Critical appraisal demonstrated moderate-high risk of bias owing to confounding and low sample sizes.

59

60 Conclusion:

- 61 In patients on V-A ECMO support being assessed for weaning multi-parametric assessment is
- 62 required. Moderate-high heterogeneity and low sample sizes warrant higher-quality studies to
- 63 help guide decisions to wean patients from V-A ECMO.
- 64
- 65 Keywords: Extracorporeal membrane oxygenation, Extracorporeal life support, V-A-ECMO,
- 66 Adults, Biomarkers, Haemodynamic, Echocardiography, Weaning, Successful

67 INTRODUCTION

Veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO) is increasingly being used (1,
2) in acute cardiac failure to provide end-organ perfusion whilst definitive treatment, myocardial
recover occurs or bridge to left ventricular assist device (LVAD) or heart transplant is completed.
Complications whilst on V-A ECMO support are common and effect mortality and increase with

duration of support(3). Therefore, minimising duration of V-A ECMO support, where possible, is
sought. However, premature withdrawal of V-A ECMO support, may result in recurrence of
cardiogenic shock and effect recovering organs. Minimizing complications associated with device
support with the potential for hemodynamic deterioration if support is prematurely discontinued
can be challenging.

78

The definition of successful V-A ECMO weaning has been proposed as when a patient survives for longer than 48 hours after ECMO explantation, with more, recent definitions as those having ECMO removed and not requiring further mechanical support because of recurring cardiogenic shock over the following 30 days(4, 5). Depending on the definition the proportion of V-A ECMO patients successfully weaned ranged between 30-75%(4-9).

84

A variety of clinical, haemodynamic, biochemical and echocardiographic variables have been proposed and used to guide clinical improvement and readiness to wean(10). However, criteria and variables have not been completely reviewed to ascertain effectiveness(11) and metaanalyses as yet not completed. Therefore, we systematically reviewed a broad range of biomarkers, haemodynamic, echocardiographic and scoring systems to predict successful weaning from V-A ECMO.

91

92 METHODS

The study was conducted as previously outlined in our registered and published protocol
(PROSPERO ID# CRD42022366153) and in accordance with the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines(12). Ethics approval and patient
consent were not required.

97

98 <u>Search strategy</u>

The search strategy is detailed in Supplementary Material. A comprehensive search of three 99 100 electronic databases (Medline, Embase, SCOPUS and CENTRAL) was conducted in October 101 2022, which were re-run in December 2023 and March 2024 prior to final analysis and further 102 studies retrieved for inclusion. Appropriate Boolean operators were used to combine search terms 103 that included V-A ECMO, ECMO, extra-corporeal life support, weaning, decannulation and ECLS. 104 The reference lists of all included studies were also reviewed to identify any additional articles. 105 and duplicate articles were removed. Studies that were not primarily in the English language were 106 included if they were accompanied by an English translation. There were no limitations on the 107 publication period.

108

109 Study characteristics

110 Inclusion criteria allowed for randomized controlled trials, cohort studies, case series and 111 conference abstracts that (1) considered adult or paediatric populations (2) involved patients who 112 were on V-A ECMO and (3) there was an attempt to de-cannulate/wean from ECMO. Studies 113 using ECMO as a bridge to ventricular assist device or heart transplant were excluded. Case 114 series were included if >5 patients. Studies had to report associations between variables within 115 the study and weaning success. Review publications, grey literature, non-English language 116 publications, editorials, comments, letters to the editor and animal studies were excluded. Studies 117 only assessing baseline variables with weaning success were excluded.

119 Study Selection

Title and abstract screening were conducted by independent investigators (P.S. or H.H. or C.D.). Likewise, full-text screening was performed by two independent investigators (P.S. or H.H. or C.D.). All conflicts were resolved by a third, senior investigator (M.D.). The systematic review platform Covidence (www.covidence.org; Veritas Health Innovation, Melbourne, Australia) was used to facilitate the screening process. Publications found to fulfil eligibility criteria underwent data extraction.

126

127 Data extraction

Data was extracted from studies by two independent reviewers (P.S. or H.H. or C.D. or J.G.) using 128 129 Microsoft Excel. Extracted variables included but not limited to patient demographics, weaning 130 protocol, successful weaning definition, weaning success, various prognostic factors including 131 biomarkers, haemodynamic, echocardiographic and scoring systems. The primary outcome was 132 weaning success defined survival post removal of mechanical circulatory support and not 133 requiring ventricular assist device or heart transplant. Meta-analysis was planned of predictors as 134 appropriate. Missing data was reported as not reported. Authors were attempted to be contacted 135 for further or missing data via email.

136

137 Evaluation of risk of bias

Critical appraisal of the risk of bias for individual studies was conducted using the ROBINS-I Tool (Risk of Bias in Non-Randomized Studies - of Interventions)(13). Each included study was scored by two independent investigators (P.S. or J.G. or H.H.). Any discrepancies between the two reviewers were resolved by discussion and mutual agreement. Studies of poor-quality following risk of bias assessment were not be excluded from being included in our synthesis. Where a poorquality study has contributed to a synthesized effect estimate, we explored the impact of study

quality by performing sensitivity analysis by removing the poor-quality study to observe the impactthat bias has had on the synthesized effect.

146

147 Statistical analysis

148 Meta-analysis was completed as per the Cochrane Handbook for Systematic Reviews of 149 Interventions when the outcomes were reported by two or more trials (14). Statistical analysis was 150 performed using Review Manager (version 5.3, The Cochrane Collaboration, Oxford, UK). For 151 continuous outcomes, mean, standard deviation (SD) and sample size were extracted from each 152 of the groups. Where studies reported median and ranges or interguartile range, derived mean 153 and standard deviation as described by Wan et al. were calculated. (15). Mean differences with 154 95% confidence interval (CI) were used for continuous outcomes. An inverse variance method 155 was applied for mean difference. Heterogeneity was assessed using I² statistics and values 156 between 50% and 90% were considered to represent substantial heterogeneity. A random effects 157 meta-analysis model and exploring heterogeneity with sensitivity and subgroup analysis were 158 applied where appropriate. Categorisation of reported risk factors of successful weaning from 159 studies that reported multivariable adjustment was completed.

160

161

162 **RESULTS**

163 Systematic search and study selection

The search strategy of relevant references yielded a total of 2199 references (Figure 1). After the removal of 980 duplicates, the remaining 1219 references were screened by title and abstract. A total of 62 publications were deemed to be eligible for full-text screening, of which 28 studies were excluded with reasons. A total of 34 articles were included in the final analysis, of which 20 studies were deemed sufficient to be included in the statistical analysis. Risk of bias assessment is summarised in Figure 2. The remaining 14 studies examined differing prognostic predictors that

170	were not able to be meta-analysed together. The sample sizes ranged from 12 to 265 patients,
171	with a pooled sample size of 1903 patients. Twenty-six publications were retrospective cohort
172	studies, seven were prospective cohort studies, and one not recorded. Cardiogenic shock was
173	the primary indication for V-A ECMO in ten publications, myocarditis in two, cardiomyopathy in
174	two, cardiac arrest in four, pulmonary embolism in one, post cardiac surgery in two, congenital
175	heart disease in one, acute respiratory distress syndrome in one, and eleven not recorded.
176	Geographically, fourteen publications were from Asia, eight were from North America, eleven
177	were from Europe, and one was from the Middle East. A summary of the baseline characteristics
178	of included papers and clinical variables is provided in Table 1.
179	
180	Figure 1: PRISMA flow diagram illustrating the number of studies identified by the search
181	and the stages in which they were chosen and eliminated
182	
183	Figure 2: Risk of bias of the included studies (ROBINS-I)
184	

Author	Country	Enrol ment perio d	I Type of t study	Total number of patients	Successful weaned	Unsuccessful wean	A	ge		Male		BMI	Heart failure (co- morbidity)	Indication for V-A-ECMO (%)	Successful weaning definition	Weaning success
							Success wean	Unsucces s wean	Succe ss wean	Unsucces s wean	Success wean	Unsuccess wean				
Aissaoui 2011 (16)	France	2007– 2008	Prospective cohort	38	25	13	49 ± 14	67 ± 11	25	8	NR	NR	8	CMP (47%), FM (6%), Post- cardiotomy shock (22%), Post-transplantation (10%), Other (16%)	ECMO remoV-AI and no further MCS because of recurring CS over the following 30 days	20/38=53%
Akin 2017 (29)	Netherland s	2014– 2016	Prospective cohort	13	10	3	56 ± 17	41 ± 16	9	1	NR	NR	0	PE (38%), Post-cardiotomy shock (23%), CS post-AMI (15%), Myocarditis (15%), Intoxication (8%)	Successful V-A-ECMO explantation within 48 h	10/13=77%
ksoy 2024(16)	Turkey	2010- 2019	Retrospective cohort	55	27	28	2.3	1.6	19	20	NR	NR	NR	Post-op complications following congenital heart surgery, including: low cardiac output syndrome, inability to wean from bypass, ECPR.	Wean trial when adequate myocardial contraction and haemodynamically stable; initiated with flow rate to 25%	27/55 = 49%
Chen 2022 (17)	Taiwan	NR	Retrospective cohort	47	31	16	69 ± 16	39 ± 18	15	9	NR	NR	NR	NR	Weaning from ECMO and surviV-AI beyond 48 h	31/47=66%
Colombo 2019 (31)	Italy	2013– 2017	Retrospective cohort	25	18	7	NR	NR	NR	NR	NR	NR	NR	CPR (71%), CS post-AMI (17%), Myocarditis (7%), PE (4%), Takotsubo (2%), Intoxication (2%)	Device remoV-AI without requirement for re- cannulation over the following 30 days	18/25=72%
Cusanno 2022 (25)	France	2016- 2021	Retrospective cohort	57	36	21	46 ± 19	57 ± 17	NR	NR	26 ± 6	25 ± 7	37	Ischemic CS (35%), Refractory CA (28%), Other (37%)	NR	36/57=63%
Daftari 2010 (27)	USA	2000- 2008	Retrospective cohort	27	16	11	NR	NR	NR	NR	NR	NR	27	Heart failure (100%)	NR	16/27=59%
unton 2023(17)	USA	2016- 2021	Retrospective cohort	265	140	125	59.1 ± 13.6	59.4 ± 13.2	95	100	30.8 ± 8.1	30.4 ± 7.4	75	CPR, cardiogenic shock, post cardiotomy shock	Survival to decannulation	140/265 = 53%
innigan 2020 (32)	United Kingdom	NR	NR	14	NR	NR	NR	NR	NR	NR	NR	NR	NR	Post cardiac surgery support (57%), Respiratory support (43%)	NR	NR
ederiksen 2018 (26)	Denmark	NR	Retrospective cohort	29	15	14	NR	NR	NR	NR	NR	NR	NR	NR	ECMO weaning and being alive 24 h later without hemodynamic MCS	15/29 =52%
onzalez Martin 2021 (33)	Spain	2013– 2020	Retrospective cohort	85	52	33	NR	NR	NR	NR	NR	NR	0	CS (47%), ECPR (9%), Electrical storm (9%), Post- cardiotomy CS (33%), Other (1%)	Survival>24 h after explant and no mortality from cardiogenic shock/heart failure or cardiac arrest during admission	52/85=61%
Huang 2018 (28)	Taiwan	2014– 2015	Retrospective cohort	46	28	18	59 ± 16	48 ± 15	18	15	NR	NR	8	CS/Cardiac arrest post AMI (50%), Dilated cardiomyopathy (15%), VT/VF Arrest (11%), Myocarditis (8%), PE (4%)	ECMO removal and no mortality and/or MCS because of recurring CD over the following 48 h	28/46=61%
tchins 2023(18)	USA	2015- 2021	Retrospective cohort	199	103	96	56.2 ± 14.6	53.1 ± 16.2	67	71	NR	NR	NR	Cardiogenic shock	Successful decannulation was defined as survivall without relapse to mechanical circulatory support or heart transplant within 30 days	103/199 = 51.8%
Joseph 2019 (34)	USA	NR	Retrospective cohort	30	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Kellnar 2024 (19)	Germany	2021- 2023	Prospective cohort	12	7	5	53.0 (IQR 47.0; 60.0)	58.0 (IQR 57.5; 67.0)	NR	NR	26.9 (IQR 25.2; 30.0)	24.9 (IQR 23.7; 26.9)	NR	Cardiogenic shock	Not requiring further mechanical circulatory support within 30 days	7/12= 58%
Kim 2021 (A) (24)	South Korea	2016– 2018	Prospective cohort	92	64	28	60 ± 12	59 ± 12	48	21	24 ± 3	25 ± 4	NR	CS post-AMI (48%) Ischemic cardiomyopathy (48%), Other (4%)	ECMO removal and not requiring further MCS over the following 30 days	64/92=70%
Kim 2021 (B) (18)	South Korea	2016– 2019	Prospective cohort	79	50	29	63 ± 13	58 ± 12	41	23	25 ± 3	25 ± 4	NR	Post-MI CMP (52%), Idiopathic dilated CMP (18%), Fulminant myocarditis (4%), Stress-induced CMP (4%)	Successful removal of V- A-ECMO and no further mechanical circulatory support in the following 30 days	50/79=63%
L'Acqua 2019 (19)	Italy	2012- 2018	Retrospective cohort	98	49	49	NR	NR	NR	NR	NR	NR	NR	NR	Patient weaned from V-A ECMO	49/98 = 50%
Lee 2023(20)	South Korea	2017- 2019	Retrospective cohort	55	38	17	NR	NR	NR	NR	NR	NR	NR	NR	NR	38/55=69%
Lim 2019 (35)	South Korea	2010– 2018	Retrospective cohort	122	72	50	57.8 ± 15.0	NR	NR	NR	NR	NR	NR	NR	NR	72/122=59%
atsumoto 2018 (13)	Japan	1995– 2014	Retrospective cohort	37	22	15	44 ± 32	40 ± 31	13	8	21 ± 3	22 ± 4	NR	Myocarditis (100%)	ECMO removal	22/37=59%
ongkolpun 2019 (38)	Belgium	NR	Retrospective cohort	22	12	10	NR	NR	NR	NR	NR	NR	NR	CS post-AMI (64%), post- cardiotomy (14%), Myocarditis (14%), PE (8%)	ECMO removal and HD Stabilization without the need to increase the Vasopressor dose within 24 h	12/22=55%

Naruke 2010 (22)	Japan	1996– 2008	Retrospective cohort	25	18	7	54 ± 14	49 ± 18	8	5	NR	NR	3	Myocarditis (52%), CS post- AMI (36%), ACHF (12%)	ECMO weaning	18/25=72%
Naruke 2012 (40)	Japan	NR	Retrospective cohort	30	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	V-A-ECMO weaned of without severely deteriorated cardiac output indicated by ETCO2<10 mmHg or LVET<100 ms	NR
North 2018 (41)	USA	2012- 2017	Retrospective cohort	60	42	18	NR	NR	NR	NR	NR	NR	NR	NR	V-A-ECMO decannulation	42/60 = 709
Ouazani 2019 (42)	USA	NR	Prospective cohort	12	9	3	NR	NR	NR	NR	NR	NR	NR	NR	ECMO removal without requiring any further MCS	9/12=75%
Punn 2019 (23)	USA	2010- 2018	Prospective cohort	63	25	38	58 ± 21	32 ± 40	16	20	NR	NR	NR	Congenital heart defect (63%), Myocarditis (15%), Idiopathic dilated cardiomyopathy (14%), Sepsis (2%), Others (6%)	wean within 48 hours of assessment and survived without ventricular assist devices or orthotopic heart transplantation	25/63=40%
Sawada 2021 (20)	Japan	2013– 2017	Retrospective cohort	50	24	26	76 ± 21	64 ± 29	20	17	23 ± 6	23 ± 6	5	CS post-AMI (54%) FM (24%) CMP (10%) other heart disease (12%)	ECMO removal and survival beyond 30 days without needs for further MCS	24/50=48%
Stull 2013(21)	USA	2010- 2013	Retrospective cohort	23	15	8	NR	NR	NR	NR	NR	NR	NR	ARDS (100%)	NR	15/23=65%
Sugiura 2019 (21)	Japan	2012– 2016	Retrospective cohort	55	28	27	64 ± 14	68 ± 16	21	25	25 ± 4	25 ± 5	NR	CS post-AMI (100%)	ECMO removal	28/55=51%
ugiyama 2019 (46)	Japan	2011- 2018	Retrospective cohort	74	37	37	NR	NR	NR	NR	NR	NR	NR	NR	Patient survives more than 48 h after the removal of cannulas of ECMO	37/74 = 509
V-ArodomV- Anichkul 2023 (22)	Thailand	2018- 2021	Retrospective cohort	57	46	11	NR	NR	NR	NR	NR	NR	NR	Cardiogenic shock	NR	46/57=81%
Voigt 2022 (14)	Germany	2017- 2020	Retrospective cohort	40	16	24	51 ± 17	60 ± 15	10	18	28 ± 6	27 ± 6	NR	Cardiac arrest (40%), Cardiogenic shock (60%)	V-A-ECMO decannulation and subsequent discharge	16/40 = 409
Vatanabe 2023)	Japan	2010- 2016	Retrospective cohort	41	17	24	70.6±13.2	68.0±14.5	12	17	NR	NR	NR	NR	Survival for more than 24 hours after V-A-ECMO withdrawal without requiring reintroduction	17/41=41%

186

187 Table 1: Characteristics of included studies

188

ACHF acute on chronic heart failure, AMI acute myocardial infarction, ARDS acute respiratory distress syndrome, CA Cardiac arrest, CMP cardiomyopathy, CPR cardiopulmonary resuscitation, CS cardiogenic shock, ECMO extracorporeal membranous oxygenation, FM fulminant myocarditis, MCS mechanical cardiac support, NR not reported, PE pulmonary embolism, VF ventricular fibrillation, VT ventricular tachycardia

194

195 <u>Biomarkers</u>

Markers of organ damage were inversely associated with weaning success – Figure 3. Lower levels of creatinine kinase (CK-MB) (MD -4.1, 95%CI -6.6 – -1.6, p=0.001; $I^2 = 24\%$), lactate at admission (MD -2.5, 95%CI -3.8 – -1.1, p<0.001; $I^2 = 85\%$), and lower levels of alanine aminotransferase (ALT) (MD -36.7, 95%CI -65.5 – 7.9, P=0.01; $I^2 = 0\%$) at the time of weaning

200 were associated with weaning success. Too few studies reported NT-ProBNP or Troponin to

- 201 enable analysis.
- 202

Figure 3 Forrest plot of comparison of haemodynamic parameters on V-A ECMO Weaning

- 205
- 206 <u>Haemodynamics</u>
- 207 Patients with higher pulse pressure (MD 13.1, 95%Cl 7.7 18.5, p<0.001; l² = 44%) and systolic
- blood pressure (MD 15.7, 95%CI 5.4 25.9, p<0.001; I^2 = 86%) were associated with weaning
- success Figure 4.
- 210

211 Figure 4 Forrest plot of comparison of laboratory parameters on V-A ECMO

- 212
- 213 Echocardiography
- 214 Patients with higher left ventricular ejection fraction (LVEF) at time of weaning (MD 9.0, 95% CI
- 4.1 13.8; p<0.001; l² = 85%), left ventricular outflow tract velocity time integral (LVOT VTI) (MD
- 216 1.35, 95% CI 0.28 2.40, p=0.01; l² = 0%), E/Ea (MD -2.72, 95% CI -4.45 -0.98, p=0.002; l² =
- 217 29%) were associated with weaning success Figure 5.
- 218

Figure 5 Forest plot of the comparison of different echocardiographic parameters on V-A
 ECMO weaning

221

222 <u>Multi-variable adjusted: Risk predictors</u>

Thirteen studies provided multi-variable adjusted analysis to identify predictors of successful weaning. Covariates tested varied widely between studies; only lack of renal failure or CRRT during ECMO, and post-weaning lactate, reported by more than one study as predictors of successful ECMO weaning – Table 2.

Baseline characteristics	Study
Normal RV function	Puerto(24)
No pre-existing ischemic cardiopathy	Cusanno(9)
Post PCI TIMI flow	Sugiura(25)
While on ECMO	
No CRRT	Kim(26)
No need for LV venting	Kim (26)
10% improvement of tricuspid S' during ECMO flow study	Kim(27)
Any improvement of lateral e' during ECMO flow study	Kim(27)
ECMO duration	Punn(28)
Implantation-weaning test delay < 7 days	Cusanno(9)
Echo findings on weaning	
VTI	Lim(29), Punn(28)
LV EF	Punn(28)
Corrected LV ejection time/PAWP	Sawada(30)
Tricuspid annular S'/RSVP >0.33	Kim(26)
RV EF	Huang(31)
Normal RV function	Puerto(24)
RV free wall strain	Huang(31)
RV FAC	Huang(31)
Hemodynamics	
HR on day of decannulation	Liu(32)
MAP at weaning	Lim(29)
MAP at 4hrs	Sugiura(25)
Post-test SBP > 120 mmHg	Cusanno(9)
CVP on day of decannulation	Huang(31)
Post de-cannulation	
Lactate at 12hrs	Chen(33)
Lactate at 24hrs	Sugiura(25)
Lower vasoactive-inotropic score 24hrs post cannulation	Dunton(17)
Improvement of RV systolic function > 24hrs after decannulation	Puerto(24)

227

Table 2. Risk factors predictive of successful ECMO weaning from multi-variable logistic
regression models. CRRT, continuous renal replacement therapy; CVP, central venous pressure;
ECMO, extracorporeal membrane oxygenation; EF, ejection fraction; FAC, fractional area
change; HR, heart rate; LV, left ventricle; MAP, mean arterial pressure; PAWP, pulmonary artery
wedge pressure; PCI, percutaneous coronary intervention; RV, right ventricle; SBP, systolic blood
pressure; TIMI, Thrombolysis in Myocardial Infarction score; VTI, velocity time integral.

234

235 Study quality

A total of 34 publications were eligible for quality assessment, of which 12 publications were of poor quality, i.e. 'critical' risk of bias (Figure 2). Many studies did not provide detailed protocols, limiting methodological assessment, appraisal of the confounding effect of intervention and bias in selection of participants into the study.

240

241 **DISCUSSION**

In this systematic review of predictors of V-A ECMO weaning success 34 predominantly small
observational, studies were identified. On pooled analysis, lower levels of biochemical markers of
end-organ perfusion or injury (lactate, CK-MB and ALT), haemodynamic (pulse pressure and
systolic blood pressure) and echocardiographic indicators of myocardial function (LVEF, LVOT
VTI, E/Ea) were associated with successful weaning form V-A ECMO.

247

248 To our knowledge this review is only the second to systematically assess predictors of V-A ECMO 249 wean success. The first, in adult patients with specifically cardiogenic shock or cardiac arrest 250 identified similar results to our review, with lower creatine kinase and lactate levels, and higher 251 LVEF being predictors for successful weaning from V-A-ECMO (10) Other, non-systematic, 252 reviews have reported also reported lower creatine kinase and lactate levels, and higher LVEF 253 and LVOT VTI being predictors for successful weaning from V-A-ECMO (34). Several other V-254 variables used in clinical practice (9) i.e. Troponin, NT-ProBNP, RV to PA coupling indices were 255 not identified owing to limited numbers of studies and patients reported with these.

256

257 Despite significant heterogeneity, small sample sizes and a significant risk of bias, there are some 258 conclusions that can be drawn from this review and the available literature. First, determination 259 of likely weaning success, should consider multiple variables and not be focussed on one

260 individual predictor. Factors associated with success (or failure), were present across clinical, 261 biochemical, haemodynamic and echocardiographic parameters and clinicians should avoid 262 relying on one variable over the complete picture of the patient. Second, initial severity of illness 263 (e.g. lactate), markers of end-organ perfusion, and then recovery of such are important 264 considerations in attempting to wean (25, 35, 36). Further, absolute cut offs for specific variables 265 e.g. LVEF or LVOT VTI to predict weaning success vary between studies, are based empirical 266 clinical weaning protocols (34, 37) and therefore cannot yet be elucidated. Overall restitution and 267 improvement of the overall clinical state of the patient as well as cardiac function is likely key to 268 successful weaning rather than a specific variable or level of a variable.

269

Formal weaning or "ramp" studies that assess haemodynamic and echocardiographic changes to alterations to ECMO flows protocols are recommended (38) but as yet no standardised protocols exist, are only variably reported in ECMO trials, and are not formally assessed in this systematic review. However, they are critical tools to assess the response of cardiac function to reduction, and then removal, of mechanical circulatory support (9, 39). Future prospective clinical trials should publish weaning strategies and protocols to enable further assessment and comparison of strategies.

277

278 Limitations

Our review is limited by the lack of large high-quality trial, with all included studies consisting of observational studies with small sample sizes and these small trials were used to investigate widely varying interventions amongst this population group, often performed without covariate adjustment. However, we completed a comprehensive review of the literature including all commonly used variables for V-A ECMO weaning. Micro-circulation indices were not assessed but are not in uniform clinical practice which was our focus.

285

286 CONCLUSIONS

In patients requiring V-A ECMO support, multiple biochemical, haemodynamic and echocardiographic parameters of recovery, rather than a single variable should be used to guide appropriateness for weaning. Further larger studies are required to determine optimal weaning strategies.

291

292 AUTHOR CONTRIBUTIONS

293 Praba Sekhar, Henry Hsu and Mark Dennis conceived and designed the project. Praba Sekhar,

Henry Hsu, Ciaran Downey and Jahnavi Grover conducted the systematic review with guidance

- from Mark Dennis. Praba Sekhar, Jahnavi Grover and Mark Dennis drafted the manuscript.
- 296 Chathuri Dissanayake and Ben Maudlin provided critical clinical input and advice with the
- 297 manuscript. All authors read, edited, and approved the final manuscript prior to submission.
- 298

299 ACKNOWLEDGMENTS

- 300 Although this project received no specific funding, one author is currently supported by funding
- 301 from the National Heart Foundation of Australia and The University of Sydney (M.D.).
- 302

- 303 CONFLICT OF INTEREST
- 304 None of the authors has any conflict of interest to disclose.
- 306 ORCID
- 307 Praba Sekhar 0000-0003-2495-6739
- 308 Henry Hsu 0009-0001-8733-1309
- 309 David Tian 0000-0002-5213-9499
- 310 Mark Dennis 0000-0002-1281-1324

311 References

312

Schrage B, Becher PM, Gossling A, Savarese G, Dabboura S, Yan I, et al. Temporal
 trends in incidence, causes, use of mechanical circulatory support and mortality in cardiogenic
 shock. ESC Heart Fail. 2021;8(2):1295-303.

Mebazaa A, Combes A, van Diepen S, Hollinger A, Katz JN, Landoni G, et al.
 Management of cardiogenic shock complicating myocardial infarction. Intensive Care Med.
 2018;44(6):760-73.

Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, et al. A meta-analysis
 of complications and mortality of extracorporeal membrane oxygenation. Crit Care Resusc.
 2013;15(3):172-8.

Chen YS, Chao A, Yu HY, Ko WJ, Wu IH, Chen RJ, et al. Analysis and results of prolonged
 resuscitation in cardiac arrest patients rescued by extracorporeal membrane oxygenation. J Am
 Coll Cardiol. 2003;41(2):197-203.

5. Chang WW, Tsai FC, Tsai TY, Chang CH, Jenq CC, Chang MY, et al. Predictors of
mortality in patients successfully weaned from extracorporeal membrane oxygenation. PLoS One.
2012;7(8):e42687.

Cavarocchi NC, Pitcher HT, Yang Q, Karbowski P, Miessau J, Hastings HM, et al.
 Weaning of extracorporeal membrane oxygenation using continuous hemodynamic
 transesophageal echocardiography. J Thorac Cardiovasc Surg. 2013;146(6):1474-9.

Aso S, Matsui H, Fushimi K, Yasunaga H. In-hospital mortality and successful weaning
from venoarterial extracorporeal membrane oxygenation: analysis of 5,263 patients using a
national inpatient database in Japan. Crit Care. 2016;20:80.

8. Pappalardo F, Pieri M, Arnaez Corada B, Ajello S, Melisurgo G, De Bonis M, et al. Timing
 and Strategy for Weaning From Venoarterial ECMO are Complex Issues. J Cardiothorac Vasc
 Anesth. 2015;29(4):906-11.

337 9. Cusanno A, Aissaoui N, Minville V, Porterie J, Biendel C, Volle K, et al. Predictors of
338 weaning failure in case of VA ECMO implantation. Sci Rep. 2022;12(1):13842.

10. Charbonneau F, Chahinian K, Bebawi E, Lavigueur O, Levesque E, Lamarche Y, et al.
Parameters associated with successful weaning of veno-arterial extracorporeal membrane
oxygenation: a systematic review. Crit Care. 2022;26(1):375.

11. Lusebrink E, Stremmel C, Stark K, Joskowiak D, Czermak T, Born F, et al. Update on
Weaning from Veno-Arterial Extracorporeal Membrane Oxygenation. J Clin Med. 2020;9(4).

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg.
2021;88:105906.

347 13. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al.
348 ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ.
349 2016;355:i4919.

Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance
for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews
of Interventions. Cochrane Database Syst Rev. 2019;10(10):ED000142.

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from
the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.
Aksoy T, Arslan AH, Ugur M, Ustunsoy H. Lactate and Lactate Clearance Are Predictive
Factors for Mortality in Patients with Extracorporeal Membrane Oxygenation. Braz J Cardiovasc
Surg. 2024;39(2):e20230091.

358 17. Dunton K, Weeks PA, Gulbis B, Jumean M, Kumar S, Janowiak L, et al. Evaluation of
359 Vasoactive-Inotropic Score and Survival to Decannulation in Adult Patients on Venoarterial
360 Extracorporeal Life Support: An Observational Cohort Study. ASAIO J. 2023;69(9):873-8.

18. Hutchins E RA, Feng J, Chandra N, Hsu JJ, Bui A. Abstract 13293: Predicting Successful
 ECMO Decannulation - A Novel Machine Learning Approach. American Heart Association2023.

363 19. Kellnar A, Naumann D, Scherer C, Lusebrink E, Joskowiak D, Peterss S, et al. Aortic arch
364 blood flow measurements as a predictor of successful ECMO weaning in cardiogenic shock.
365 Heliyon. 2024;10(5):e26773.

20. Lee J LS, Joo S, Park Y, et al. Abstract: Pulse pressure as a potential predictive factor for
successful weaning in patients supported by Venoarterial Extracorporeal Membrane Oxygenation
without Left Ventricular Venting. ASAIO J. 2023;69:17.

369 21. Stull C BM, Pitcher H, Hirose H, Guarav K, Cavarocchi N. . Predictors of a successful 370 wean from extracorporeal membrane oxygenation (ECMO) for ARDS. Crit Care Med. 2013;41.

371 22. Varodomvanichkul C, Puwatnuttasit, P, Ariyachaipanich, A. et al. . LEFT ATRIAL STRAIN

372 FOR PREDICTING SUCCESSFUL EXTRA-CORPOREAL MEMBRANE OXYGENATOR
373 WEANING FROM CARDIOGENIC SHOCK. JACC. 2023;81:686.

Watanabe M AY, Hasegawas S, Hamada K, Tsukamoto K, Saito T, Furuya R, Komatsu
T, Mori F. Clinical factors associated with successful venoarterial extracorporeal membrane
oxygenation weaning: A single-center retrospective cohort study. Critical Care and Shock.
2023;26:115-24.

Puerto E, Tavazzi G, Gambaro A, Cirillo C, Pecoraro A, Martin-Asenjo R, et al. Interaction
between VA-ECMO and the right ventricle. Hellenic J Cardiol. 2022;68:17-24.

Sugiura A, Abe R, Nakayama T, Hattori N, Fujimoto Y, Himi T, et al. Predictors of
Successful Weaning From Veno-Arterial Extracorporeal Membrane Oxygenation After Coronary
Revascularization for Acute Myocardial Infarction Complicated by Cardiac Arrest: A Retrospective
Multicenter Study. Shock. 2019;51(6):690-7.

384 26. Kim D, Park Y, Choi KH, Park TK, Lee JM, Cho YH, et al. Prognostic Implication of RV
385 Coupling to Pulmonary Circulation for Successful Weaning From Extracorporeal Membrane
386 Oxygenation. JACC Cardiovasc Imaging. 2021;14(8):1523-31.

387 27. Kim D, Jang WJ, Park TK, Cho YH, Choi JO, Jeon ES, et al. Echocardiographic Predictors
388 of Successful Extracorporeal Membrane Oxygenation Weaning After Refractory Cardiogenic
389 Shock. J Am Soc Echocardiogr. 2021;34(4):414-22 e4.

28. Punn R, Falkensammer CB, Blinder JJ, Fifer CG, Thorsson T, Perens G, et al.
Hemodynamic and Echocardiographic Predictors of Mortality in Pediatric Patients on Venoarterial
Extracorporeal Membrane Oxygenation: A Multicenter Investigation. J Am Soc Echocardiogr.
2023;36(2):233-41.

29. Lim YJ JJ. Predictors of successful weaning from veno-arterial extracorporeal membrane
oxygenation support. Perfus Ger, 2019;34:88-9.

30. Sawada K, Kawakami S, Murata S, Nishimura K, Tahara Y, Hosoda H, et al. Predicting
Parameters for Successful Weaning from Veno-Arterial Extracorporeal Membrane Oxygenation
in Cardiogenic Shock. ESC Heart Fail. 2021;8(1):471-80.

399 31. Huang KC, Lin LY, Chen YS, Lai CH, Hwang JJ, Lin LC. Three-Dimensional
400 Echocardiography-Derived Right Ventricular Ejection Fraction Correlates with Success of
401 Decannulation and Prognosis in Patients Stabilized by Venoarterial Extracorporeal Life Support.
402 J Am Soc Echocardiogr. 2018;31(2):169-79.

403 32. Liu SF HC, Lee CK, Kao PHL. . Clinical Predictors of Successful Weaning VA-ECMO. J
404 Am Coll Cardiol. 2022:S29-30.

33. Chen TY CC, Hsu JY, Sheu JJ, Kuo HC, Hsu MH, et al. . Comparison of the predictive
ability of lactate and central venous blood gas in pediatric venoarterial mode extracorporeal
membrane oxygenation outcome. Pediatr Neonatol. 2022;63(5):474-83.

408 34. Brahmbhatt DH, Daly AL, Luk AC, Fan E, Billia F. Liberation From Venoarterial 409 Extracorporeal Membrane Oxygenation: A Review. Circ Heart Fail. 2021;14(7):e007679.

410 35. Asaumi Y, Yasuda S, Morii I, Kakuchi H, Otsuka Y, Kawamura A, et al. Favourable clinical
411 outcome in patients with cardiogenic shock due to fulminant myocarditis supported by
412 percutaneous extracorporeal membrane oxygenation. Eur Heart J. 2005;26(20):2185-92.

36. North M, Eckman P, Samara M, Chavez I, Schmidt C, Garberich R, et al. Peak troponin
predicts successful weaning from VA ECMO in patients with acute myocardial infarction
complicated by cardiogenic shock. Int J Artif Organs. 2022;45(1):68-74.

416 37. Ortuno S, Delmas C, Diehl JL, Bailleul C, Lancelot A, Naili M, et al. Weaning from veno-

417 arterial extra-corporeal membrane oxygenation: which strategy to use? Ann Cardiothorac Surg.

418 2019;8(1):E1-E8.

- 419 38. Lorusso R, Shekar K, MacLaren G, Schmidt M, Pellegrino V, Meyns B, et al. ELSO Interim
- 420 Guidelines for Venoarterial Extracorporeal Membrane Oxygenation in Adult Cardiac Patients.
- 421 ASAIO J. 2021;67(8):827-44.

422 39. Aissaoui N, Caudron J, Leprince P, Fagon JY, Lebreton G, Combes A, et al. Right-left
423 ventricular interdependence: a promising predictor of successful extracorporeal membrane
424 oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care
425 Med. 2017;43(4):592-4.

Figure 1 PRISMA Flow

	Risk of bias domains												
		D1	D2	D3	D4	D5	D6	D7	Overall				
	Aissaoui 2011	8	8	8	•	•	+	+	-				
	Akin 2017	8	8	8	+	+	+	+	-				
	Aksoy 2024			8	+	+	•	+	8				
	Chen 2022	8	8	8	•	•	•	+	-				
	Colombo 2019	-	-	-	•	8	•	8					
	Cusanno 2022	8	8	8	+	•	+	+	-				
	Daftari 2010	8	8	8	+	•	8	8					
	Dunton 2023	+	-	8	+	•	+	+	-				
	Finnigan 2020			8	+	•	8	8					
	Frederiksen 2018			8	•	-	8	-					
	Gonzalez Martin 2021			8	+	8	8	8					
	Huang 2018	8	8	8	+	•	+	+	-				
	Hutchins 2023	?	8	8	?	•	+	+	8				
	Joseph 2019 medRxiv preprint	doi: https://doi.org/10	0.1101/2024.08.30.24	312815; this version	posted August 31, 2	024. The copyright h	older for this preprint	+					
	Kellnar 2024	+	It is made available	under a C-BY 4.0	International license	· •	• • • • • • • • • • • • • • • • • • •	+	-				
	Kim 2021 (A)	8	8	8	•	•	•	+	-				
\(pr	Kim 2021 (B)	•	+	+	+	•	+	+	+				
Sti	L'Acqua 2019			8	•	•	8	8					
	Lee 2023	?	8	8	?	?	•	?	8				
	Lim 2019			8	8	•	8	-					
	Matsumoto 2018	8	8	8	8	•	8	+	8				
	Mongkolpun 2019			8	•	•	•	8					
	Naruke 2010	8	8	8	•	•	8	8	8				
	Naruke 2012			8	+	•	+	8					
	North 2018			8	8	•	•	+					
	Ouazani 2019			8	8	•	8	8					
	Punn 2019	8	8	8	+	•	•	+	•				
	Sawada 2021					-							

Figure 2 Robins Risk of Bias

Heart Rate

Systolic Blood Pressure (mmHg)

	Succ	essfully Weaned	1	Not Su	ccessfully Wear	ned		Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl		
Naruke 2010	84	31	18	85	4	7	12.1%	-1.00 [-15.62, 13.62]	2010			
Matsumoto 2018	84	11.85185185	22	86	17.7777778	15	13.9%	-2.00 [-12.27, 8.27]	2018			
Kim 2021 (A) JASE	100.3	10.3	64	97.3	15.4	28	15.2%	3.00 [-3.24, 9.24]	2021			
Sawada 2021	114	25.18518519	24	100	25.92592593	26	12.3%	14.00 [-0.17, 28.17]	2021			
Watanabe 2023	122.5	24.5	17	79.1	41.9	24	9.8%	43.40 [22.99, 63.81]	2023			
Hutchins 2023	116	21.6	103	93.4	22.3	96	15.3%	22.60 [16.49, 28.71]	2023			
Lee 2023	109.4	12.3	38	81.6	17.2	17	14.3%	27.80 [18.74, 36.86]	2023			
Kellnar 2024	111.7786	16.5338	7	80.9155	29.6661	5	7.1%	30.86 [2.12, 59.61]	2024			
Total (95% CI)			293			218	100.0%	15.65 [5.44, 25.86]		-		
Heterogeneity: Tau ² =	168.11; Chi	² = 51.12, df = 7	(P < 0.00	0001); I ² =	86%					-50 -25 0 25 50		
Test for overall effect:	Z = 3.01 (P	= 0.003)								Successfully Weaned Not Successfully Weaned		

Pulse Pressure

	Succ	essfully Weane	d	Not Su	ccessfully Wean	ed		Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
Aissaoui 2011	52	12	38	39	19	13	15.5%	13.00 [1.99, 24.01]	2011			
Punn 2019	33.6	14.6	25	26.6	13.7	38	24.3%	7.00 [-0.19, 14.19]	2019			
Sawada 2021	50	30.37037037	24	45	14.81481481	26	11.8%	5.00 [-8.42, 18.42]	2021			
Lee 2023	32.8	8.1	38	18.4	8.7	17	31.5%	14.40 [9.53, 19.27]	2023	+		
Watanabe 2023	60.1	17.6	17	35.2	21	24	14.0%	24.90 [13.04, 36.76]	2023			
Kellnar 2024	50.6221	21.1265	7	24.3595	30.6717	5	2.9%	26.26 [-4.85, 57.37]	2024			
Total (95% CI)			149			123	100.0%	13.09 [7.65, 18.53]		•		
Heterogeneity: Tau ² =	18.29; Chi	² = 8.92, df = 5 (F	P = 0.11	$ ^2 = 44\%$						-50 -25 0 25 50		
Test for overall effect:	Z = 4.71 (F	P < 0.00001)								Successfully Weaned Not Successfully Weaned		

Figure 3

Lactate (initial)

	Succ	essfully Wean	ed	Not Suc	ccessfully Wea	ned		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Aissaoui 2011	7.3	5.4	38	7.3	6.1	15	7.2%	0.00 [-3.53, 3.53]	2011	
Matsumoto 2018	1.35	2.5926	22	2.8	6.68	15	7.2%	-1.45 [-5.00, 2.10]	2018	
L'Acqua 2019	8	4.9	49	11.9	4.9	49	10.8%	-3.90 [-5.84, -1.96]	2019	
Sugiura 2019	11.8	4.74074074	27	13.8	3.85185185	27	9.9%	-2.00 [-4.30, 0.30]	2019	
Kim 2021 (B) (JACimaging)	3.3	3.037	50	5.8	4.5185	29	11.0%	-2.50 [-4.35, -0.65]	2021	
Sawada 2021	1.2	0.59259259	24	1.6	0.96296296	26	13.6%	-0.40 [-0.84, 0.04]	2021	-
Chen 2022	6.5	5.2	31	9	6.1	16	7.3%	-2.50 [-6.00, 1.00]	2022	
Voigt 2022	7.7	4.5	16	11.5	4.9	24	8.4%	-3.80 [-6.75, -0.85]	2022	
Hutchins 2023	1.69	2.06	103	6.6	6.47	96	12.2%	-4.91 [-6.26, -3.56]	2023	
Watanabe 2023	1.9	1.2	17	13.1	7.4	0		Not estimable	2023	
Aksoy 2024	3.7	2.3	27	6.2	2.6	28	12.3%	-2.50 [-3.80, -1.20]	2024	
Total (95% CI)			404			325	100.0%	-2.46 [-3.83, -1.09]		◆
Heterogeneity: Tau ² = 3.54; Ch										
Test for overall effect: Z = 3.52	-10 -5 0 5 10 Successfully Weaped Not Successfully Weaped									

CK-MB Max (IU/L)

medRxiv preprint doi:	Successf https://doi.org/	ully Wear 10.1101/2024	ned 4.08.30.243	Not Succes 12815; this vers	ssfully Wea	aned gust 31, 20	24. The copy	Mean Difference	Vear	Mean Difference		
which washot co	ertified by pee	r review) is t	he author/fu	inder, who has	granted medR	xiv a license	e to display th	ne preprint in perpetuity.	rour	IV, Nandolli, 5576 GI		
Matsumoto 2018	7.7	4.42 made	e available u	under a CC-BY	4.0 Internation	al license.	19.9%	-7.21 [-12.30, -2.12]	2018			
Sugiura 2019	2.5	9.64	28	7.2	6.34	27	26.3%	-4.70 [-9.00, -0.40]	2019			
Voigt 2022	2.6	3.2	16	5.27	5.1	24	53.7%	-2.67 [-5.24, -0.10]	2022			
T-1-1/050/ OD							400.000					
Total (95% CI)			66			66	100.0%	-4.11 [-6.58, -1.64]		-		
Heterogeneity: Tau ² = 1.24; Chi ² = 2.63, df = 2 (P = 0.27); I ² = 24% -10 -5 0 5 10												
Test for overall effect: 2	. = 3.26 (P =	0.001)		Successfully Weaned Not Successfully Weaned								

BUN

	Suco	essfully Weand	ed	Not Su	ccessfully Wear	ned		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Matsumoto 2018	32.5	17.7777778	22	34	14.07407407	15	23.1%	-1.50 [-11.79, 8.79]	2018	
Sawada 2021	31	22.22222222	24	34	14.81481481	26	22.3%	-3.00 [-13.56, 7.56]	2021	
Chen 2022	19.6	11	31	16.2	15.1	16	29.6%	3.40 [-4.95, 11.75]	2022	
Aksoy 2024	27.3	18.4	27	38.2	18.1	28	25.0%	-10.90 [-20.55, -1.25]	2024	
Total (95% CI)			104			85	100.0%	-2.74 [-8.89, 3.42]		-
Heterogeneity: Tau ² = 15	5.14; Chi	² = 4.87, df = 3 (P = 0.18);	I ² = 38%						-20 -10 0 10 20
Test for overall effect: Z	= 0.87 (F	P = 0.38)								Successfully Weaned Not Successfully Weaned

pH

	Succ	essfully Wean	ed	Not Su	ccessfully We	aned		Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
Aissaoui 2011	7.33	0.1	38	7.35	0.15	13	11.9%	-0.02 [-0.11, 0.07]	2011			
Matsumoto 2018	7.45	0.08148148	22	7.36	0.13333333	15	12.6%	0.09 [0.01, 0.17]	2018			
L'Acqua 2019	7.33	0.1	49	7.26	0.2	49	13.3%	0.07 [0.01, 0.13]	2019			
Sugiura 2019	7.12	0.3037037	27	7.01	0.28888889	27	8.0%	0.11 [-0.05, 0.27]	2019			
Sawada 2021	7.46	0.05185185	24	7.47	0.1037037	26	14.2%	-0.01 [-0.05, 0.03]	2021			
Chen 2022	7.4	0.1	31	7.4	0.1	16	13.5%	0.00 [-0.06, 0.06]	2022	+		
Cusanno 2022	7.45	0.05925926	36	7.45	0.07407407	21	14.5%	0.00 [-0.04, 0.04]	2022	+		
Watanabe 2023	7.44	0.08	17	7.11	0.2	24	11.9%	0.33 [0.24, 0.42]	2023			
Total (95% CI)			244			191	100.0%	0.06 [-0.00, 0.13]		•		
Heterogeneity: Tau ² = 0	0.01; Chi ²	= 56.72, df = 7	(P < 0.00	0001); l ² =	88%					0.5 0.25 0 0.25 0.5		
Test for overall effect: 2	Z = 1.95 (P = 0.05)					Successfully Weaned Not Successfully Weaned					
										Successfully weared inot Successfully weared		

ALT (IU/L)

	Successfully Weaned Not Successfully Weaned							Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
Sugiura 2019	46.5	64.07407407	27	88.5	55.92592593	27	80.5%	-42.00 [-74.08, -9.92]	2019			
Sawada 2021	41	169.6296296	24	56	61.48148148	24	15.9%	-15.00 [-87.18, 57.18]	2021	-		
Chen 2022	270.7	1,107.4	31	225.1	689.3	31	0.4%	45.60 [-413.58, 504.78]	2022			
Aksoy 2024	169	310	27	190	294	28	3.2%	-21.00 [-180.79, 138.79]	2024			
Total (95% CI)			109			110	100.0%	-36.68 [-65.46, -7.91]		•		
Heterogeneity: Tau ² = 0 Test for overall effect: 2	0.00; Chi ² = 2.50 (= 0.61, df = 3 (F P = 0.01)			-1000 -500 0 500 1000 Successfully Weaned Not Successfully Weaned							

Figure 4

2.7 Fractional Shortening

	Suc	cessfully Wean	ed	Not Su	ccessfully Wear		Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Daftari 2010	20.5	28.81481481	16	11.8	18.2962963	11	6.6%	8.70 [-9.08, 26.48]	2010	
Matsumoto 2018	14	8.14814815	22	15.5	11.11111111	15	28.7%	-1.50 [-8.07, 5.07]	2018	-
Punn 2019	31	16.8	25	23.5	15.5	38	22.1%	7.50 [-0.73, 15.73]	2019	-
Sawada 2021	18	7.40740741	24	11	7.40740741	26	42.6%	7.00 [2.89, 11.11]	2021	-
Total (95% CI)	0.92. Chi		87	12 - 40%		90	100.0%	4.78 [-0.04, 9.60]		
Test for overall effect: 2	² = 0.16);	r = 42%						-50 -25 0 25 50 Successfully Weaned Not Successfully Weaned		

2.9TAPSE

	Succ	essfully Wear	ed	Not Suc	cessfully We	aned		Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Rando	m, 95% CI		
Frederiksen 2018	16	2.22222222	15	8	3.7037037	14	19.7%	8.00 [5.76, 10.24]	2018				
Huang 2018	8.7	4	28	6.9	2.1	18	20.8%	1.80 [0.03, 3.57]	2018		-		
Kim 2021 (which was not certified	/doi.org/10 d by peer (0.1101/2024.08.30 review) is the aut	.24312815; hor/funder. v	this version who has orar	posted August 3 nted medRxiv a li	1, 2024. The icense to dis	e copyright	holder for this preprint 79	2021		-		
Kim 2021 (B) (JACimaging)	12.8	It is made availa	ble under a	CC-BY 4.0	laternational lice	nse. 29	20.3%	1.50 [-0.50, 3.50]	2021	-	-		
Cusanno 2022	18	5.18518518	36	16	3.7037037	21	19.5%	2.00 [-0.32, 4.32]	2022	-	-		
										1 2 4 2 4 4 4 4 5 5 5	-		
Total (95% CI)			193			110	100.0%	2.55 [-0.09, 5.19]			-		
Heterogeneity: Tau ² = 7.90; Chi ² = 31.43, df = 4 (P < 0.00001); l ² = 87%										4	_		
Test for overall effect: 7 = 1.89	(P = 0.0)	6)								-10 -5 (2 2	1	0
	1 0.0									Successfully Weaned	Not Succe	essfully V	Veaned

1.10 LVOT VTI

	Succ	essfully Wean	ed	Not Suc	cessfully We	aned	Mean Difference			Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI			
Frederiksen 2018	11.3	3.6	15	9.4	4.4	14	13.0%	1.90 [-1.04, 4.84]	2018				
Punn 2019	7.1	3.8	25	5.8	4.1	38	28.7%	1.30 [-0.68, 3.28]	2019				
Kim 2021 (B) (JACimaging)	8.5	4.88888889	50	7.4	5.7037037	29	18.3%	1.10 [-1.38, 3.58]	2021				
Kim 2021 (A) JASE	10.8	4.1	64	9.4	4.6	28	28.8%	1.40 [-0.58, 3.38]	2021				
Cusanno 2022	15	5.56	31	14	5.86	21	11.1%	1.00 [-2.18, 4.18]	2022				
Total (95% CI)			185			130	100.0%	1.34 [0.28, 2.40]		◆			
Heterogeneity: Tau ² = 0.00; Chi	df = 4 (P = 0.9	9); I ² = 0 ⁴	%										
Test for overall effect: Z = 2.47 (P = 0.01)										Successfully Weaned Not Successfully Weaned			

2.6 E/Ea

	Succ	essfully Wean	ed	Not Suc	cessfully Wea	aned	Mean Difference			Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
Aissaoui 2011	8.7	3.4	38	9.4	4.6	13	27.6%	-0.70 [-3.42, 2.02]	2011			
Kim 2021 (A) JASE	12.7	12.4	64	14.6	7.6	28	14.6%	-1.90 [-6.04, 2.24]	2021			
Kim 2021 (B) (JACimaging)	9.6	8.66666667	50	14.4	5.55555556	29	22.5%	-4.80 [-7.94, -1.66]	2021			
Cusanno 2022	7.7	4.4444444	36	11	4	21	35.3%	-3.30 [-5.54, -1.06]	2022			
Total (95% CI)			188			91	100.0%	-2.72 [-4.45, -0.98]				
Heterogeneity: Tau ² = 0.90; Chi ² = 4.20, df = 3 (P = 0.24); l ² = 29%										-10 -5 0 5 10		
Test for overall effect: $Z = 3.07$								Successfully Weaned Not Successfully Weaned				

1.4 LVEF

Successfully Weaned				ccessfully Wear		Mean Difference		Mean Difference		
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
34	19	18	20	13	7	6.2%	14.00 [0.97, 27.03]	2010		
37	11	20	10	7	13	9.5%	27.00 [20.86, 33.14]	2011		
30	3.7037037	15	20	14.81481481	14	8.6%	10.00 [2.02, 17.98]	2018		
35	12.3	28	25.6	16.3	18	8.2%	9.40 [0.60, 18.20]	2018		
10	9.03703704	27	10	7.40740741	27	10.3%	0.00 [-4.41, 4.41]	2019	-	
42.7	17.8	25	32.9	17.9	38	8.1%	9.80 [0.80, 18.80]	2019		
25.3	15.8	64	26.3	14.4	28	9.3%	-1.00 [-7.59, 5.59]	2021		
24	11.85185185	50	23	16.2962963	29	9.2%	1.00 [-5.78, 7.78]	2021		
30	2	16	23	9	24	10.6%	7.00 [3.27, 10.73]	2022		
35	14.07407407	36	24	8.14814815	21	9.7%	11.00 [5.23, 16.77]	2022		
38.5	17.4	103	25.9	17.4	96	10.1%	12.60 [7.76, 17.44]	2023		
		402			315	100.0%	8.96 [4.12, 13.80]		•	
Heterogeneity: Tau ² = 54.04; Chi ² = 66.74, df = 10 (P < 0.00001); I ² = 85%										
Test for overall effect: Z = 3.63 (P = 0.0003)										
	Succ Mean 34 37 30 35 10 42.7 25.3 24 30 35 38.5 ChP = 66.7 (P = 0.00	Successfully Weam Mean SD 34 19 37 11 30 3.7037037 35 12.3 10 9.03703704 42.7 17.8 25.3 15.8 24 11.85185185 30 2 35 14.07407407 38.5 17.4	Successfully Weaned Mean SD Total 34 19 18 37 11 20 30 3.7037037 15 35 12.3 28 10 9.03703704 27 42.7 17.8 25 25.3 15.8 64 24 11.85185185 50 30 2 16 35 14.07407407 36 38.5 17.4 103 402 Chi ² = 66.74, df = 10 (P < 0.00001);	Not Successfully Weaned Not Su Mean SD Total Mean 34 19 18 20 37 11 20 10 30 3.7037037 15 20 35 12.3 28 25.6 10 9.03703704 27 10 42.7 17.8 25 32.9 25.3 15.8 64 26.3 24 11.85185185 50 23 30 2 16 23 35 14.07407407 36 24 38.5 17.4 103 25.9 402 Chi ² = 66.74, df = 10 (P < 0.00001); I ² = 85% i (P = 0.0003) 402	Not Successfully Wean Mean SD Total Mean SD 34 19 18 20 13 37 11 20 10 7 30 3.7037037 15 20 14.81481481 35 12.3 28 25.6 16.3 10 9.03703704 27 10 7.40740741 42.7 17.8 25 32.9 17.9 25.3 15.8 64 26.3 14.4 24 11.85185185 50 23 16.2962963 30 2 16 23 9 35 14.07407407 36 24 8.14814815 38.5 17.4 103 25.9 17.4 402	Not Successfully Weaned Mean SD Total Mean SD Total 34 19 18 20 13 7 37 11 20 10 7 13 30 3.7037037 15 20 14.81481481 14 35 12.3 28 25.6 16.3 18 10 9.03703704 27 10 7.40740741 27 42.7 17.8 25 32.9 17.9 38 25.3 15.8 64 26.3 14.4 28 24 11.85185185 50 23 16.2962963 29 30 2 16 23 9 24 35 14.07407407 36 24 8.14814815 21 38.5 17.4 103 25.9 17.4 96 402 315 50% 66.74, df = 10 (P < 0.00001); P = 85%	Not Successfully WeanedMeanSDTotalMeanSDTotalWeight341918201376.2%371120107139.5%303.7037037152014.81481481148.6%3512.32825.616.3188.2%109.0370370427107.407407412710.3%42.717.82532.917.9388.1%25.315.86426.314.4289.3%2411.85185185502316.2962963299.2%302162392410.6%3514.0740740736248.14814815219.7%38.517.410325.917.49610.1%402315100.0%Chi ² = 66.74, df = 10 (P < 0.00001); I ² = 85%i (P = 0.0003)510.00001); I ² = 85%510.00001); I ² = 85%	Not Successfully Weaned Mean Difference Mean SD Total Mean SD Total Weight IV, Random, 95% CI 34 19 18 20 13 7 6.2% 14.00 [0.97, 27.03] 37 11 20 10 7 13 9.5% 27.00 [20.86, 33.14] 30 3.7037037 15 20 14.81481481 14 8.6% 10.00 [2.02, 17.98] 35 12.3 28 25.6 16.3 18 8.2% 9.40 [0.60, 18.20] 10 9.03703704 27 10 7.40740741 27 10.03 0.00 [-4.41, 4.41] 42.7 17.8 25 32.9 17.9 38 8.1% 9.80 [0.80, 18.80] 25.3 15.8 64 26.3 14.4 28 9.3% -1.00 [-7.59, 5.59] 24 11.85185185 50 23 16.2962963 29 9.2% 1.00 [5.23, 16.77] 35 14.07407407	Not Successfully WeanedMean DifferenceMeanSDTotalMeanSDTotalWeightIV, Random, 95% CIYear341918201376.2%14.00 [0.97, 27.03]2010371120107139.5%27.00 [20.86, 33.14]2011303.7037037152014.81481481148.6%10.00 [2.02, 17.98]20183512.32825.616.3188.2%9.40 [0.60, 18.20]2018109.0370370427107.407407412710.3%0.00 [-4.41, 4.41]201942.717.82532.917.9388.1%9.80 [0.80, 18.80]201925.315.86426.314.44289.3%-1.00 [-7.59, 5.59]20212411.85185185502316.2962963299.2%1.00 [-5.78, 7.78]2021302162392410.6%7.00 [3.27, 10.73]20223514.0740740736248.14814815219.7%11.00 [5.23, 16.77]202238.517.410325.917.49610.1%12.60 [7.76, 17.44]2023402315100.0%8.96 [4.12, 13.80]Chi² = 66.74, df = 10 (P < 0.00001); I² = 85%	

Successfully Weaned Not Successfully Weaned

Figure 5