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Abstract 

Introduction: Coronary artery disease (CAD) is the leading cause of death around the 

world, with well-described epidemiological sex and gender differences in prevalence, 

pathophysiology and management outcomes. It has been hypothesized that sex 

steroids, like estrogen, may contribute to these sex differences. There is a relatively 

large genetic component to developing CAD, with heritability estimates ranging between 

40-60%. In the last two decades, the computational methods, capabilities and scalability 

of genome-wide association studies (GWAS) have contributed substantially to 

advancing the understanding of which genetic candidates contribute to CAD. The aim of 

this study was to determine if genes discovered in CAD GWASs are affected by 

estrogen by means of direct modulation or indirect down-stream targets.  

Methods: A scoping review of the literature was conducted using MEDLINE and 

EMBASE through to April 24, 2024, for studies synonymous to an atherosclerotic 

coronary artery disease phenotype, and a genome-wide association study (GWAS) 

design. Analysis was limited to candidate genes with corresponding single nucleotide 

polymorphisms (SNPs) surpassing genome-wide significance and had been mapped to 

genes by study authors. The number of studies that conducted sex-stratified analyses 

with significant genes were quantified. A literature search of the final gene lists was 

done to examine any evidence suggesting estrogen may modulate the genes and/or 

gene products.  

Results:  There were 60 eligible CAD GWAS studies meeting inclusion criteria for data 

extraction. Of these 60, only 36 had genome-wide significant SNPs reported, and only 3 

of these had significant SNPs from sex-stratified analyses mapped to genes. From 
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these 36 studies, a total of 61 genes were curated, of which 26 genes (43%) were found 

to have modulation by estrogen. All 26 were discovered in studies that adjusted for sex. 

12/26 genes were also discovered in studies that conducted sex-stratified analyses. 

12/26 genes were classified as having a role in lipid synthesis, metabolism and/or 

lipoprotein mechanisms, while 11/26 were classified as having a role in vascular 

integrity, and 3/26 were classified as having a role in thrombosis.  

Discussion: This study provides further evidence of the relationship between estrogen, 

genetic risk and the development of CAD. More sex-stratified research will need to be 

conducted to further characterize estrogen’s relation to sex differences in the pathology 

and progression of CAD.  
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Introduction  

Coronary artery disease (CAD) is the leading cause of death around the world (1), with 

well-described epidemiological sex and gender differences in prevalence, 

pathophysiology, and management outcomes (2) (Box 1). CAD is attributed to 

atherosclerosis, where lesions (atheromas or atherosclerotic plaques) form in the 

luminal intima of coronary arteries. These lesions develop over time due to a complex 

interplay of risk factors within a state of chronic inflammation (3). Sex differences have 

been studied in the development and progression of atherosclerosis but are not 

completely understood (4). For instance, cisgender women have been found to have 

smaller coronary arteries and are more likely to experience plaque erosion, whereas 

men are more prone to plaque rupture (5).   

 

Sex differences in the presentation of CAD include the higher prevalence of traditional 

cardiovascular risk factors and a later average onset in women, approximately 10 years 

later than in men (6) . Higher sex-specific risk in developing CAD has been observed in 

women who have diabetes, a history of smoking, depression and/or anxiety.  Unique 

risk factors of women include sex-specific conditions such as premature menopause, 

gestational hypertension or preeclampsia, and polycystic ovarian syndrome (PCOS) (7–

9). In pre- and peri-menopausal populations of women, the risk of CAD is perceived to 

be lower due to the protective role of estrogens (10).  

 

Cardiovascular health is modulated in part by the steroid sex hormones: androgens, 

estrogens and progestogens, among which the most abundant subtypes are 
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testosterone, 17β -estradiol and progesterone, respectively (6,11). These hormones 

bind to receptors expressed on the surface of most cell types in the cardiovascular 

system in both sexes, exerting physiological effects through regulation of genomic 

expression (“slow response”, spanning hours to days), or acting on extranuclear 

components in the cell (“fast non-genomic” response, spanning seconds to minutes) 

(12,13). Estrogen has been shown to exert both direct and indirect regulatory effects on 

thousands of genes (14). Protective physiological effects include the promotion of 

vasodilation, anti-inflammatory cascades, and improvement of lipid profiles such as 

through decreased low-density lipoprotein (LDL) oxidation and binding (15–18). 

Theoretically, deleterious genetic variations in genes regulated by estrogen and with 

implications in cardiovascular health could increase the predisposition for CAD.   

 

There are sex differences in physiologically normal ranges of androgen to estrogen 

ratios, which further differ by age (i.e., puberty, menopause, andropause) (19,20). In 

women, premenopausal estradiol ranges from 30 to 400 pg/mL while postmenopausal 

estradiol ranges from 0 to 20 pg/mL (21,22),  while androgen levels mostly constant but 

gradually decrease over the course of a lifetime, and not to the rate or degree of 

estrogen decline (23). As such, the ratio of androgen to estrogens differs greatly 

between pre and post-menopausal women (19,20). When levels go outside normal 

ranges, variable effects are observed on cardiovascular health. Women with PCOS, a 

condition characterized by elevated androgen levels that disrupt the estrogen-to-

testosterone ratios, have been shown to experience accelerated atherosclerosis 

compared to women without PCOS (24,25). Further, a number of candidate gene 
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studies have identified associations with increased risk of CAD or myocardial infarction 

(MI) risk in individuals with deleterious variants in the estrogen receptor 1 (ESR1 or 

ERα,) or 2 genes (ESR2 or ERβ) causing dysfunctional or null activity (26–29).  

 

There is a relatively large genetic component to developing CAD, with heritability 

estimates ranging between 40-60% (30,31). Most of the heritability of CAD is polygenic, 

owing to the individually small but cumulatively large contribution of hundreds to 

thousands of genes considered in CAD risk (32). In the last two decades, the 

computational methods, capabilities and scalability of genome-wide association studies 

(GWAS) have contributed substantially to advancing the understanding of which genetic 

candidates contribute to CAD. Following the first CAD GWAS published in 2007 (33), 

novel or overlapping candidate genes have emerged through replication between 

studies, with differences between studies reflecting parameters such as sample size, 

genetic ancestry, male/female representation, and CAD definitions. Historically, GWASs 

were predominantly in populations of European genetic ancestry; with time, more 

diverse and multi-ethnic cohorts have emerged to broaden the generalizability and 

unique candidates from GWAS findings across different population groups. 

Furthermore, in addition to the small effects of many common genetic variants towards 

CAD risk, there are also genes that can contribute large independent risk towards CAD 

if an individual carries deleterious variants, such as in LDLR, APOB, PCSK9, and LPA 

(34,35). 
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Investigating sex as a biological variable in GWAS studies is essential for accurately 

identifying sex-specific genetic associations and understanding their unique 

contributions to disease susceptibility through affected biological pathways. Studies that 

do not segregate by sex assume that the contributing genes to biological pathways of 

disease are shared between the sexes; this reduces trait specificity and inserts a level 

of bias into the results (36). The rationale may be from a fear of potential lowered 

statistical power when sample sizes are sex-stratified; however, this operates under the 

assumption that there are no sex differences. If there are indeed sex differences, sex-

stratified analyses could in fact increase the power to detect these differences.  

 

To our knowledge, there has not been a review conducted to date that quantifies CAD 

GWAS-identified gene candidates from both a sex-stratified lens and in assessment of 

associated modulation by estrogens. Therefore, the aims are twofold: first, we aim to 

quantify the number of CAD GWAS studies published to date that conducted any sex-

stratified analyses. Second, we aim to identify gene candidates listed in both sex-

stratified and non-stratified CAD GWAS publications that have functional evidence for 

direct or indirect regulation by estrogens.  

 

Box 1 

Throughout this review, the terms sex and gender are used interchangeably due 

to inconsistent terminology used throughout the studies. These terms are 

distinguished by the Canadian Institutes for Health Research Panel on Sex and 

Gender (37) as follows: “Sex refers to a set of biological attributes in humans and 
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animals. It is primarily associated with physical and physiological features 

including chromosomes, gene expression, hormone levels and function, and 

reproductive/sexual anatomy. Sex is usually categorized as female or male but 

there is variation in the biological attributes that comprise sex and how those 

attributes are expressed. Gender refers to the socially constructed roles, 

behaviours, opportunities, expectations, expressions and identities of girls, 

women, boys, men, and gender diverse people. It influences how people 

perceive themselves and each other, how they act and interact, and the 

distribution of power and resources in society. Gender is usually conceptualized 

as a binary (girl/woman/femininity and boy/man/masculinity) yet there is 

considerable diversity in how individuals and groups understand, experience, and 

express it.” There are nuanced differences in how gender identity and 

presentation influences the development of CAD risk such as the onset of CAD 

risk factors, time to treatment and prognoses that are discussed in depth 

elsewhere (38) and not the focus of this review.  Hereafter, mentions of “women” 

are assumed cisgender females with 46,XX chromosomes at birth, and “men” 

assumed cisgender males with 46,XY.  

Methods 

Search strategy 

A scoping review of the literature was conducted in consultation with a librarian by doing 

parallel electronic searches of MEDLINE (via Ovid, 1946 – April 24, 2024) and EMBASE 

(via Ovid, 1974 – April 24, 2024). The initial part of the search strategy included 
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synonymous terms related to our desired atherosclerotic coronary artery disease 

phenotype: “Coronary Artery Disease” or “coronary heart disease or coronary artery 

disease.ti”. The second part of the search strategy included terms related to our desired 

study type: “Genome wide association study.mp. or Genome-Wide Association Study/”. 

The phenotype and study type were linked using the “AND” operator.  In addition, 

manual searching was conducted through citations of relevant reviews and cross-

referencing with studies published in the GWAS catalog 

(https://www.ebi.ac.uk/gwas/home). 

Study selection 

To determine eligibility for full-text review, title and abstract screening was conducted by 

two independent reviewers (A.A., E.T.). All conflicts were resolved through discussion 

with investigators with the relevant domain expertise (A.L., T.S.). The same applied for 

screening full-text articles.   Studies included were those of: 1) CAD phenotype; and 2) 

original GWAS or a GWAS meta-analysis. 

 

There is heterogeneity in how CAD is defined in the GWAS literature. In general, 

obstructive CAD refers to ≥50% stenosis in the left main coronary artery or ≥70% in a 

major epicardial vessel identified through coronary angiography (39). However, in 

studies where researchers do not include angiography results, a history of MI and/or 

percutaneous coronary intervention (PCI) and/or coronary artery bypass grafting 

(CABG) are often used as proxies for CAD. Therefore, we included papers with a 

definition of CAD as: 1) luminal stenosis more than 50% in a major coronary artery; 2) 

MI; 3) CABG and/or 4) PCI.  An “original” GWAS refers to genome-wide association 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.24312812doi: medRxiv preprint 

https://www.zotero.org/google-docs/?1YuaO5
https://doi.org/10.1101/2024.08.29.24312812


 10 

analyses conducted in a novel study population. This includes papers from consortia 

that published consecutive GWASs over time from cohorts that expanded in case 

sample size over time.  

 

We excluded abstracts where no full text exists, non-English studies, non-GWAS study 

design (e.g. family studies, linkage analyses, candidate gene studies), CAD risk factors 

assessed as outcome (e.g. blood pressure, lipid traits), any non-CAD outcomes (e.g. 

heart failure), and any studies that exclusively were a secondary analysis using 

previously published GWAS data (e.g., Mendelian randomization, polygenic risk scores, 

causal pathway analysis). 

Data extraction  

Following abstract screening, full texts were examined for further exclusion. We limited 

our analysis to any candidate gene with a corresponding single nucleotide 

polymorphism (SNP) rsID that had a P-value below the widely accepted Bonferroni-

corrected genome-wide significance value of p < 5*10^-8. Data corresponding to these 

SNPs were extracted from all materials available, including any supplemental materials.  

 

For the studies that met the above criteria, full texts were reviewed for extraction of the 

following  variables: Study identifiers (such as author, year of publication, title), study 

characteristics (sample size, CAD definition, genetic technology used to identify SNPs, 

population ethnicity(ies), sex ratio of included participants) and candidate gene 

information (SNP’s rsID, mapped gene(s), chromosomal position, risk allele, odds ratio, 

P-value, minor/estimated allele frequency). When sex/gender was regressed out as a 
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covariate and not treated as an independent variable, these analyses were termed “sex-

combined” analysis for our purposes. When quantifying ethnicity and ancestry 

representation, the following were grouped together: “White” and “Caucasian” as 

“European”; “Han Chinese”, “Japanese”, “Taiwanese” and “Korean” as “East Asian”; 

“Pakistani” and “Bangladeshi” as “South Asian”; “Saudi Arabian” and “Lebanese” as 

“Middle Eastern”; and “Black”, “Black British” and “African American” as “African 

descent”.  

Curating gene list from SNPs 

A summary of all genes mapped from SNPs was made using information provided by 

study authors of which SNPs were mapped to genes. If a SNP was not previously 

mapped to (a) gene(s) by study authors, they were excluded from further consideration; 

we did not infer mapping so as to not introduce bias in the interpretation and inflate (e.g. 

as SNPs can be mapped to multiple genes). Standardization of gene names was 

conducted, and the number of times each gene was listed  by authors were quantified.  

If a SNP was mapped to multiple loci as explicitly described in the publication, all genes 

were included. The purpose of this review was not to interpret putatively causal genes 

from mapped SNP loci towards CAD risk. However, recognizing how many SNPs may 

be mapped to inconsequential loci (from functional points of view), for studies that 

conducted non-sex-stratified analyses, a cutoff of genes appearing in at least 5 studies 

was considered for literature review of evidence of the gene’s relevant associations with 

coronary artery disease, and if there were any studies suggesting modulation by 

estrogens. Considering how few studies produced genome-wide significant sex-specific 

results, this minimum of 5 studies was not applied to the sex-stratified candidates. 
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Discussion 

GWAS Study Characteristics 

There were 36 studies that met inclusion criteria for review of gene candidates with 

genome-wide significant SNPs reported, including one paper that was included from 

manual searching (Figure 1).  Key cohort characteristics of these studies are 

summarized in Table 1. Studies that met inclusion criteria but did not contain genome-

wide significant results are summarized in Supplemental Table 1.  

 

Of the 36 studies included, only 4 reported any genome-wide significant sex-stratified 

results, from whom 3 had mapped their results to genes (Figure 2A) (40–42). More 

details of the studies and SNPs identified from sex-combined and sex-stratified 

analyses can be seen in Supplemental Tables 2 and 3, respectively. The size and 

clinical heterogeneity of the CAD presentation within and between cohorts are 

suspected to contribute to the under-representation and lack of sex-specific results. 

However, exploring the reasoning for why women were under-enrolled in the cohorts 

used for these GWAS analyses is beyond the scope of this paper, 

 

Most of the 36 studies included composite definitions that specified at least one of MI, 

PCI, CABG, and/or CAD with stenosis limits of >50%, >70% or >75%. In their definition 

of CAD, 33 studies included MI, 25 included CABG, 24 included PCI, and 20 included 

>50%, >70% or >75% stenosis limits (Figure 2B). An important limitation to underscore 

in any generalization of MI as CAD, in the absence of PCI, CABG or angiographic 

reporting of >50% epicardial stenosis, is the potential for confounding with non-
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atherosclerotic causes of MI. These causes are impossible to quantify without further 

individual-level information regarding the event. Specifically, MI with no obstructive 

coronary arteries (MINOCA) is a term encompassing coronary plaque disruption due to 

rupture, erosion, and calcific nodules (atherosclerotic causes) and non-atherosclerotic 

etiologies of MI, the most prevalent being epicardial vasospasm, coronary 

microvascular dysfunction (CMD), and spontaneous coronary artery dissection (SCAD). 

Further, non-ischemic causes of MI include MINOCA “mimickers”, such as Takotsubo 

cardiomyopathy, myocarditis and supply-demand mismatch (Type 2 MI) (43). MINOCA 

makes up about 6-15% of all MIs, (43),and is approximately 3 times more prevalent in 

women than men (44), which adds to clinical heterogeneity in CAD groups solely using 

MI as their inclusion criteria. Interestingly, a high polygenic risk score (PRS) for SCAD 

has been shown to have associations with lower risk for atherosclerotic CAD and vice 

versa (45). Therefore, robust phenotype inclusion for CAD GWAS study designs are 

recommended so as to not risk accidental inclusion of individuals with non-CAD 

etiologies of MI, which could influence statistical significance of SNP candidates.  

 

Most studies (26, 72%) reported only one ethnicity.  The most commonly reported 

individuals were of self-reported European ethnicity (51%), followed by East Asian 

(23%), then South Asian (11%) (Figure 2C). There is a plethora of research 

demonstrating epidemiological differences in CAD prevalence in different racial/ethnic 

subgroups, for example with 2-4x higher rates observed in South Asian (46,47), 

Hispanic, and Black (48) individuals compared to White individuals. There is an ongoing 

challenge by researchers to disentangle genetic risk (ancestry) from social 
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(race/ethnicity) and environmental influences on this risk, such as differences in diet, 

exposure to stress, exercise, that increase CAD risk through variation in gene 

expression that strongly affect these observed ethnic differences (49) (Box 2). The 

generalizability of results produced by SNP array technologies used in GWASs should 

be scrutinized based on the population for which the arrays were designed; for example, 

accuracy is greatly reduced when SNP arrays created from European-ancestry allele 

frequencies are applied on individuals of African ancestry (50). This technical bias is 

further perpetuated by analyses that include filtering of alleles of rare frequency 

(typically <5% or <1% prevalence in a referenced population). Importantly, there is the 

concept of “sex-influenced inheritance” (a.k.a. “sex-biased inheritance”) wherein there 

are more inter-sex similarities than inter-population similarities for a number of traits, 

reflected in sex-stratified analyses comparing the sexes within cohorts of diverse 

genetic ancestry. This is exemplified in recent very large multi-ethnic sex-stratified 

GWASs of complex traits such as blood pressure (51) and lipid traits (52,53) identifying 

sex-specific gene associations contributing to the traits. The more that risk genes are 

identified and replicated between GWAS studies with sex-stratified analyses of diverse 

genetic ancestries, the more robust these genes are for generalizability across 

population groups.  

Box 2 

In health research, the concepts of “race”, “ethnicity” and “genetic ancestry” are 

terms often used interchangeably when referring to inter-population differences in 

prevalence and outcomes of disease observed between groups. In genomics 

research, differences in SNP prevalence between these groups has implications 
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when evaluating rarity against a background referent population in databases 

such as the Genome Aggregation Database (https://gnomad.broadinstitute.org/).  

However, race/ethnicity are social constructs and do not reflect biological 

variation underpinning these differences as much as the term “genetic ancestry” 

attempts to do so. Race is a construct used to categorize people based on 

perceived differences in physical appearance, such as skin tone (54) whereas 

ethnicity refers more to the community and shared cultural group membership 

with features such as shared language, geographic origin, nationality, cultural 

traditions, migration history, etc. (54). Genetic ancestry refers to the inheritance 

of segments of DNA from “source” populations; the majority of individuals contain 

a mosaic of ancestries from different populations (“admixed”), and this 

heterogeneity does not always correlate with self-described or perceived 

race/ethnicity (50).  

Gene Candidates and Estrogen Modulation  

From the 36 studies included, 61 genes were identified for further literature 

review if modulated by estrogen. There were 52 genes found in sex-combined analyses 

with corresponding SNPs surpassing genome-wide significance in at least 5 studies 

(Table 2), and 29 genes found in sex-stratified analyses whose corresponding SNPs 

also surpassed genome-wide significance (Table 3). Due to the small fraction of studies 

that had significant SNPs mapped to genes from sex-stratified analysis (n=3), all genes 

that surpassed genome-wide significance were retained, even if not replicated. The 

majority of these 29 sex-stratified gene associations (n=20/29) were also identified in 

the sex-combined analyses replicated in at least 5 other studies (Figure 3).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.24312812doi: medRxiv preprint 

https://www.zotero.org/google-docs/?69dpve
https://www.zotero.org/google-docs/?DnUvDj
https://www.zotero.org/google-docs/?3OSV6O
https://doi.org/10.1101/2024.08.29.24312812


 16 

 

Following literature review of the 61 genes, 26 (43%) were identified to be 

affected by estrogen (Figure 3, bold and underlined text). All 26 genes were identified in 

at least 5 papers with sex-combined analyses, while 12 of these 26 were also identified 

in at least 1 sex-stratified analysis. Of these 12, 8 were identified in male-stratified 

analyses in addition to the sex-combined analyses (APOB, COL4A1, COL4A2, EDNRA, 

KCNE2, LDLR, PHACTR1, TCF21), and 4 were identified in the male-stratified, female-

stratified, and sex-combined analyses (APOC1, APOE, LPA, PCSK9). Of note, all 

significant sex-stratified gene associations identified in females also overlapped with 

males. None of these 26 genes are on the X-chromosome. The remaining 35 genes did 

not have literature supporting any modulation of estrogen, directly or indirectly through 

relation to CAD or other diseases (e.g., breast cancer). These 35 genes were: ABO, 

ADAMTS7, AP000318.2, CDKN2A, CDKN2B, CDKN2B-AS1, CELSR2, CFDP1, 

CNNM2, FES, FGF5, GOSR2, HHIPL1, HNF1A, ICA1L, IL6R, JCAD, KCNE5, LPAL2, 

MIA3, MRAS, MRPS6, NECTIN2, PDGFD, PECAM1, PLPP3, RAPH1, SLC22A3, 

SLC5A3, SORT1, SWAP70, TEX41, TNS1, TRIB1, and ZC3HC1.  

 

Of the 26 genes with evidence of estrogen modulation, the connection with CAD 

can be largely categorized by their involvement in lipid production/metabolism, arterial 

vascular properties, and/or thrombosis, and are expanded on below with relation to 

genetic variation towards CAD risk.  
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Lipids 

The following 12 genes were classified as having a role in lipid synthesis, 

metabolism and/or lipoprotein mechanisms: LDLR, APOB, PCSK9, LPA, LIPA, ABCG8, 

SCARB1, APOA5, APOE, APOC1, KCNE2, and HDAC9. Of these, most had evidence 

of estrogen modulating some aspect of the CAD-related process, except KCNE2 and 

HDAC9, which had estrogen modulation evidence in other tissues (e.g. breast tissue, 

ovarian tissue). 

 

LDLR encodes a cell surface receptor predominantly expressed in the liver 

involved in the endocytosis of LDL particles, where they are further metabolized and 

degraded in hepatocytes (55,56). Missense or loss of function (LoF) mutations in the 

LDLR gene results in reduced affinity or inability of the LDLR to bind LDL, resulting in 

higher plasma lipid levels and thus increased risk of hypercholesterolemia (57). 

Estrogen influences plasma lipid concentration through LDLR-dependent and LDLR-

independent pathways (58). It has been shown in rabbit and rat models that LDLR 

expression increases up to 10-fold when treated with estrogen, resulting in increased 

clearance of plasma LDL (59,60).  

 

APOB encodes for a major apolipoprotein ApoB, which is a high affinity ligand for 

LDLR attached to LDL particles (61). Missense or LoF variants in APOB can result in 

decreased binding affinity of LDL to bind to LDLR, resulting in elevated plasma lipid 

levels (62). Estrogen can reduce ApoB concentrations as demonstrated by experiments 

in mice via LDLR-independent mechanisms (63). 
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PCSK9 encodes proprotein convertase subtilisin/kexin type 9, which plays a 

crucial role in cholesterol metabolism by promoting LDLR degradation (64) . PCSK9 

gain of function (GoF) mutations further increase LDLR, thus increasing plasma lipid 

levels. Estradiol reduces PCSK9-mediated LDLR degradation through a mechanism 

involving activation of the G-protein-coupled estrogen receptor (65). Moreover, 

circulating levels of PCSK9 are generally higher in women than in men, and this 

difference is more pronounced post-menopause, which has been suggested to be due 

to lower circulating estrogen(66). However, in premenopausal women, PCSK9 levels 

vary with the menstrual cycle, showing an inverse relationship with estradiol (67). 

 

Several studies of the SLC22A3-LPAL2-LPA gene cluster have suggested that 

polymorphisms in this region are associated with an increased risk of CAD (68,69). 

From our review, among genes with evidence to be modulated by estrogen, the SNPs 

mapped to genes in this cluster had the highest odds ratios, with the highest in LPA of 

1.51 (1.33-1.70) (Refer to Supplementary Table 2).  

LPA encodes a highly polymorphic glycoprotein, apolipoprotein-a (“apo-a”), 

which attaches to LDL and is, together, referred to as lipoprotein-a (“Lp(a)”) . Lp(a) is 

similar to LDL but an independent risk factor of CAD that does not lower with statins 

(70). Copy number variations in the kringle-iv repeat region of LPA are the main genetic 

determinants of circulating Lp(a) concentrations (71). When apo(a) is cleaved, it results 

in fragments that are prone to attaching to atherosclerotic lesions and promoting 

thrombogenesis through plasminogen activation (70,71) . There is evidence that 
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estrogen decreases Lp(a) plasma levels by increasing its uptake via LDLR (72). In 

postmenopausal women, taking hormonal therapy has been associated with lower Lp(a) 

values and subsequent lower risk of CAD (72).   

 

ABCG8 encodes for jejunal and ileal sterol efflux transporters (73). LoF 

mutations of ABCG8 have been shown to lead to elevated plasma sitosterol and LDL 

levels (74). ABCG8 has been shown to significantly increase sitosterolemia and 

potentially accelerate progression of CAD (75). Estrogen upregulates intestinal ABCG8 

activity through the intestinal ERa pathway, thus leading to increased cholesterol 

absorption (73). Interestingly, this upregulation can be completely counteracted by use 

of an estrogen antagonist (73). 

 

APOA5 encodes a minor apolipoprotein that is an important component of the 

high density lipoprotein (HDL) and very lower density lipoprotein (VLDL) (76). It directly 

regulates triglycerides by increasing lipoprotein lipase (LPL), which stimulates the 

breakdown of triglyceride-rich lipoproteins resulting in lower plasma triglycerides levels 

(77). Knockout mouse models of APOA5 have shown 4-fold increases in triglyceride 

levels, and as such it has been linked as a CAD risk gene (78). Oral administration of 

estrogen has been shown to increase triglyceride concentration, suggested to be due to 

increased hepatic production of triglycerides due to reduced ApoB production and 

decreased triglyceride clearance through inhibition of LPL (79). In addition, APOA5 has 

been shown to be higher in women than in men, potentially suggesting that there may 

be sex differences in its regulation (80).  
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APOE encodes a plasma protein that is involved in transport and metabolism of 

cholesterol and triglycerides (81). It is a major ligand for LDLR (82) and is known for 

having 3 major alleles impacting disease risk: APOE2, APOE3, and APOE4 (82). 

Expression of these alleles result in higher circulating plasma LDL levels: the E2 and E3 

alleles demonstrate poorer binding affinity to LDLR receptors, and E4 alleles bind 

preferentially to very low density lipoprotein particles (VLDLs), resulting in decreased 

lipid uptake by LDLR on hepatocytes (82,83). While these variants have similar 

background population frequencies between sexes, there have been sex differences 

observed in associated cardiovascular risk. For example, the E4 allele is associated 

with higher risk in men, while the E2 has a protective effect observed in women only 

(84). APOE has been demonstrated to be upregulated by estrogen through the 

estrogen-receptor alpha pathway (85), although  the effects are variable based on the 

APOE alleles carried. For example, the E4 allele has shown to have higher expression 

following menopausal hormone therapy than E2 and E3 variants (84). Many studies use 

APOE-knockout murine models to study accelerated atherosclerosis and effects of 

estrogen, underscoring the importance of this ligand in atherosclerotic pathology (86).  

 

SCARB1 encodes an HDL receptor that mediates the cholesterol transfer to and 

from HDL (87). LoF or missense alleles increased dimerization and decreased 

hepatocellular uptake of HDL, resulting in higher risk of atherosclerosis (87). Estradiol 

has been shown to be an indirect modulator of the SCARB1 receptor in rat models (88). 

Estradiol does not directly decrease expression of SCARB1 in the liver, however it has 
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been demonstrated to decrease SCARB1 expression levels secondary to the estrogen-

induced increase in LDLR activity and ACTH presence (88). 

 

LIPA encodes lipase A, which functions in lysosomes to hydrolyze cholesteryl 

esters and triglycerides to generate free cholesterol and free fatty acids following LDLR-

mediated LDL endocytosis in hepatocytes (89).  LoF variants in LIPA have been shown 

to result in accumulation of triglycerides and cholesterol esters that contribute to foam 

cell development and premature atherosclerotic plaque formation (89,90). Deficient 

LIPA activity may have an indirect effect on CAD risk through its downstream effects on 

estrogen production. Since LIPA functions in hydrolysis of triglycerides and cholesterol, 

it provides energy while also influencing the synthesis and secretion of sex hormones 

including estrogen (91).  

 

APOC1 encodes an apolipoprotein C1 family member that plays a role in HDL 

and VLDL metabolism through highly selective inhibition of  cholesteryl ester transfer 

protein (CETP) in plasma (92,93). Decreased expression of APOC1 from LoF or 

missense variants, leads to increased plasma triglycerides, which confers increased 

CAD risk (94). One study suggested that APOC1 could promote the estrogen receptor 

expression in the context of ovarian cancer (95). In addition, there is marked APOC1 

elevation in women with PCOS; however it is unclear how much of the altered lipid 

metabolism is due to estrogen and/or androgen metabolism or because of insulin 

resistance (96).  
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KCNE2 encodes a voltage-gated potassium channel involved in regulating heart 

rate, neurotransmitter release and smooth muscle contraction (97). Demonstrated by 

mouse knockout models, causal links between KCNE2 and atherosclerosis have been 

suggested to be due to raising serum LDL and impairing glucose tolerance (98,99). 

Estrogen action alters KCNE2 expression directly through binding of estrogen receptor 

alpha to the estrogen-responsive element in the KCNE2 regulatory domain (100). 

Estrogen was observed to be less responsive in the presence of variants altering affinity 

of DNA-binding domains in either the estrogen receptor or KCNE2 estrogen-responsive 

element (100). Further, the nuclear estrogen-related receptor has also been shown to 

have a crucial role in modulating KCNE2 by binding to its promoter (101).  

 

HDAC9 encodes enzyme histone deacetylase 9, and has been implicated in 

progression of atherosclerosis through histone acetylation and subsequent expression 

of specific genes related to lipid metabolism and macrophage polarization (102). 

Missense and LoF HDAC9 mutations result in downregulation of inflammatory genes 

and increased Apolipoprotein-A1 and HDL-mediated cholesterol efflux, resulting in 

decreased plasma cholesterol levels (103). As such, it is thought that upregulation of 

HDAC9 in macrophages has increased atherosclerotic risk through suppression of 

cholesterol efflux and proinflammatory actions (103). A variant has also been shown to 

directly modulate the expression of TWIST1, a gene that regulates arterial wall 

proliferation and calcification (104). Increased expression of HDAC9 has been shown to 

be associated with decreased expression and activity of estrogen receptor alpha in 

MCF-7 cells in breast cancer studies (105).  
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Vascular Integrity 

The following 11 genes were classified as having a role in vascular integrity through 

roles in the vascular endothelium and/or smooth muscle cells: BCAS3, COL4A1, 

COL4A2, SMAD3, CYP17A1, CDH13, CXCL12, EDNRA, NT5C2, TCF21, PHACTR1. 

Of these, BCAS3, COL4A1, COL4A2, SMAD3 and CYP17A1 had evidence of estrogen 

modulating some aspect of CAD development, and the rest had estrogen modulation 

evidence in other tissues (e.g. breast tissue, uterine endothelium).  

 

BCAS3 encodes for a cytoskeletal protein that functions in angiogenesis and 

related processes like TGFβ signaling, cell adhesion, peptidase activity and matrix 

organization (106). It is thought to do this by activating Cdc42 which in turn affects actin 

organization, cell polarity and cell motility in endothelial cells (107). Endothelial BCAS3 

knockout mice survive to only embryonic day 11.5 and have diffuse vascular patterning 

defects (106). However, despite numerous studies citing BCAS3 association with CAD, 

functional studies are still lacking. Estrogen directly induces BCAS3 transcript 

expression by binding to estrogen receptor alpha and subsequently inducing MTA1, 

which is a transcriptional factor of BCAS3 (108).  

 

 COL4A1 and COL4A2 encode subunits of type IV collagen, which is an essential 

structural component of the basement membrane (109). LoF alleles in these genes 

result in lower collagen IV abundance and thinner fibrous caps, thus creating very 

unstable plaques and contributing to smooth muscle cell pathology (110). SMAD3 

encodes the SMAD family member 3, a signaling molecule involved in the transforming 
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growth factor-beta (TGF-β) signaling pathway(111), which is a cell growth inhibitor 

crucial in the regulation of inflammation and fibrosis (112). SMAD3-knockout mice have 

decreased fibrotic response, resulting in thin, unstable fibrous caps (113). SMAD3 

induces TGF-β which is necessary for TGFβ-stimulated expression of both COL4A1 and 

COL4A2 (113). Estrogen  inhibits TGF-β signaling by binding to estrogen receptor 

alpha, thus decreasing SMAD3 levels, which subsequently decreases COL4A1 and 

COL4A2 expression (114,115). 

 

CYP17A1 encodes a member of the CYP450 superfamily of enzymes, which 

contain a heme cofactor and mostly function as monooxygenases (116). CYP17A1 is 

specifically localized in the endoplasmic reticulum and involved in the steroidogenic 

pathway that produces mineralocorticoids, glucocorticoids, androgens, progestins and 

estrogens (117). One study showed that CYP17A1 knockout mice develop 

atherosclerotic lesions at a higher rate compared to WT (118). The functional evidence 

linking CYP17A1 and CAD is not entirely understood, however it is thought to involve 

glucose homeostasis regulation by promoting glucose uptake and utilization (118). 

Further, there is evidence of genetic variants that are associated with severe 

hypertension, a well-known risk factor for CAD (119,120). CYP17A1 has a role in 

estrogen production; it is highly expressed in granulosa cells, and can catalyze 

pregnenolone and progesterone to form androstenedione, which CYP19A1 later 

converts to estrogen (121). Missense/LoF variants in CYP17A1 have been shown to 

cause fertility impairments and related cancers (119,122). 
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CDH13 encodes a T-cadherin that is expressed on endothelial and smooth 

muscle cells (123). Increased CDH13 activity results in increased migration and 

proliferation of endothelial cells and therforefore effects vascular remodeling and 

atherosclerosis development (124). Knockout T-cadherin and adiponectin mice had 

increased neointimal thickness following carotid artery ligation (125). A variant within 

this gene was found to be associated with estrogen signaling metabolism in breast 

cancer, menstruation patterns and pregnancy (126). 

 

CXCL12 encodes for a chemokine that is produced in endothelial cells and as 

such has an important role in angiogenesis, hematopoiesis, and tissue regeneration 

(127,128). CXCL12-knockout mice models demonstrated compromised artery 

coverage, suggesting a key role in arterial development and regulation (129). CXCL12 

has also been shown to consistently be upregulated in individuals with calcific aortic 

valve disease (130). However, the underlying mechanism between poor prognosis of 

CAD and high levels of CXCL12 is not understood (127). Research has shown estradiol 

regulation of the CXCL12 axis in the growth of breast cancer cells (131). Estradiol 

directly induces transcription of CXCR4 and CXCR7, which are both receptors of 

CXCL12, through control of their promoters (131).  

 

EDNRA encodes endothelin receptor A, which mediates cell proliferation and 

long-lasting vasoconstriction (132). In coordination with EDNRB, EDNRA can mediate 

contraction post-relaxation of intact endothelium vessels (132). Increased EDNRA 

expression has shown to play an important role in hypertension and thus progression of 
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vascular proliferation (132,133). One study showed that EDNRA transcript in 

endometrial stromal cells increases in the proliferative phase when given estradiol in 

rhesus macaque (134). Estrogen binding to estrogen receptor alpha directly results in 

increased epithelial EDN3 expression, which is thought to act via EDNRA to further 

stimulate cell proliferation (134). 

NT5C2 encodes for a 5' nucleotidase that functions in purine metabolism (135), 

and has a suggested role in type 2 diabetes and hypertension (136).  NT5C2 is present 

on vascular endothelium cells and likely has an inflammatory process relation to CAD 

(136,137). Knockdown NT5C2 zebrafish had higher blood flow and elevated linear 

velocity, in addition to increased inflammatory markers such as angiotensin-converting 

enzyme and C-reactive protein (138). There is some evidence to suggest that NT5C2 

may be involved in the estradiol regulation of fibroblasts (137). Expression levels of 

NT5C2 were increased 2 hours after estradiol administration in primary uterine 

endometrial epithelial cells (137).  

 

TCF21 encodes a transcription factor that has been identified as a “master 

regulator” for smooth muscle cell gene expression (139). Increased TCF21 expression 

has been suggested to be associated with decreased risk of CAD  by influencing 

smooth muscle cell behavior in developing lesions, contributing to a protective fibrous 

cap (140). It achieves this by disrupting the MYOCD-SRF pathway, which is crucial for 

SMC differentiation (140), as shown by in vitro experiments of variants causing 

overexpression of TCF21 and TCF21-knockout mouse models (141). TCF21 interacts 

with USF2 in endometriotic stromal cells and activates the promoters of SF-1 and 
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estrogen receptor beta, thereby influencing the estrogen pathway in endometriosis 

(142). While it is unknown if this estrogen activation is widespread throughout the body, 

it is interesting to note that TCF21 also regulates fibrosis in endometriosis (142).  

 

PHACTR1 encodes for a member of the phosphatase and actin regulator family 

(143). It has a crucial role in binding to actin to regulate the organization of the actin 

cytoskeleton and important roles in tubule formation, and thus in endothelial cell survival 

(143). PHACTR1 deficiency from knockout mice or LoF experiments demonstrated 

accelerated foam cell formation and thus increased atherosclerosis (144). In ovarian 

granulosa cells, PHACTR1 was identified to be a regulatory target by estrogen through 

experiments in estrogen receptor 2-depleted mice (145); however this connection has 

not been replicated in vascular endothelial cells.   

Thrombosis  

Three genes were identified to have a role in thrombosis, and all had evidence of 

estrogen modulating some aspect of CAD development: GUCY1A1, PLG and FN1.  

 

GUCY1A1 encodes the alpha subunit of the guanylate cyclase enzyme, which is 

an essential enzyme in platelets (146). LoF alleles result in lack of guanylate cyclase 

enzyme in platelets, which have been shown experimentally to result in vascular 

inflammation through increased leukocyte recruitment and endothelial cell activation, 

and thus atherosclerotic plaque progression (146). Estradiol has been shown to highly 

up-regulate both expression and activity of the a1 subunit of guanylate cyclase through 

estrogen receptor activation (147). 
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PLG encodes a plasminogen protein that is converted to active plasmin by 

plasminogen activators such as tissue plasminogen activator (148). Plasmin acts as an 

antithrombotic agent, and is responsible for degrading fibrin-containing blood clots 

(148), in addition to cleaving fibronectin and von Willebrand factor (149). It is 

hypothesized that increased binding of plasminogen kringle domains to tissue 

plasminogen activator can lead to increased activator activity, thus increasing the 

conversion of plasminogen to plasmin, and as such cause unstable plaque formations 

to occur (148). Estrogen directly increases PLG expression by binding to 5’-region-

flanking enhancers, and is tissue-specific to hepatocytes (150).  

 

 FN1 encodes fibronectin, a glycoprotein involved in the cell adhesion and 

migration processes of thrombosis and coagulation (151). Fibronectin works with fibrin 

and fibrinogen in clot formation, contributing to thrombus stability (151). Fibronectin has 

also shown to play a role in mediating platelet adhesion(151). In knockout mouse 

models, a splice variant of fibronectin containing extra domain A has been shown to 

have twice the amount of atherosclerotic lesions and macrophage content in plaques 

(152). Inhibition of the estrogen receptor is suggested to significantly decrease FN1 

expression (153), consistent with studies demonstrating increased expression in breast 

cancer cells through G-protein coupled transmembrane receptors (154).  

Limitations  

There are several limitations from the methods used in our study. It must be 

acknowledged that due to the lack of sex-stratified data available, sex-stratified gene 
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associations were only required to be discovered once. This means that there is less 

credibility to these sex-stratified genes. This is in comparison to  sex-combined genes 

analysis where a cutoff of 5 studies in which a gene was replicated was included. This 

cutoff was chosen so as to increase confidence in the SNPs included in the discussion, 

as several identified papers listed all potential genes that could be mapped to a SNP 

(41,155–157), without secondary analysis that would result in one high confidence 

causal gene.  

 

Additionally, due to the nature of our search for estrogen, it is possible that there 

are connections between estrogen and genes that were missed. For example, any 

downstream metabolites or effectors of the estrogen system were not included in this 

review. In addition, estrogen is not the only sex hormone. There are androgens that 

may have a role in CAD that were not evaluated. Androgen regulation has 

demonstrated potential involvement in the CAD pathway (158), and is an area that 

continues to grow with more research.  

 

Moreover, there are flaws innate to the study design of GWASs that limit the 

conclusions that can be made. To increase power in a GWAS, meta-analyses will 

incorporate many cohorts to increase sample size. However, this causes heterogeneity 

and leads to decreased confidence as many of these cohorts use varying 

inclusion/exclusion criteria, technology to identify SNPs, and have varying amounts of 

male to female participants. In fact, every study that reported case/control sex ratios 

had a larger percentage of men in the cases (data not shown) and more women being 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.24312812doi: medRxiv preprint 

https://www.zotero.org/google-docs/?87BQkf
https://www.zotero.org/google-docs/?tQxyDh
https://doi.org/10.1101/2024.08.29.24312812


 30 

included as controls. We speculate that this may be due to the observation that women 

tend to develop CAD later in life than men by about 10 years (159) and/or assumptions 

that there are no genetic sex differences that will influence results. This may thus 

confound the validity of the results. It is thus an important consideration for future 

studies to include equal proportions of the sexes and conduct sex-stratified analyses to 

be able to identify candidates with sex-specific effects in the pathogenesis of CAD. 

Conclusion 

Our scoping review identified 26 genes through CAD GWASs that are modulated by 

estrogen. Some of these genes are well-studied contributors to the development of 

CAD, such as LDLR and PCSK9. This study provides further evidence of the 

relationship between the actions of estrogen and the development of CAD. More 

research will need to be conducted to establish estrogen’s relation to sex differences in 

the pathology and progression of CAD.  
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Figures 

Figure 1: Abstract screening of CAD GWAS studies included shown through 

PRISMA flow diagram. “Significant” refers to genome-wide significance of p<5*10^-08 

and “data” refer to SNPs. 
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Figure 2: Representation of key characteristics of the GWASs that had genome-

wide significant SNPs mapped to genes (n=36). A. Frequency of studies that did sex-

stratified analyses and/or sex-combined analyses; B. Frequency of definitions used for 

cases; C. Frequency of inclusion of the large ethnicity supergroups in the studies. Note: 

Percents do not add up to 100% because multiple CAD definitions or ethnicities may 

have been reported per study. 
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Figure 3: Venn diagram mapped genes from significant SNPs identified in CAD 

GWASs. Genes emphasized by bold and underscore were identified to have evidence 

of estrogen modulation of gene expression and/or translated protein activity. No SNPs 

were identified to be significant just in females.   
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Tables 

Table 1: Summary of GWAS studies included that had genome-wide significant data 

(n=36) 

 

Table 2: All SNPs with a p<5x10^-8 mapped to genes that were replicated in at least 5 

GWASs that did sex-combined analyses are presented here. A total of 324 unique 

significant SNPs were mapped to the 52 genes. 26 of these genes were found to have 

modulation or relation to estrogen pathways. 9 of these genes had evidence of estrogen 

modulation unrelated to CAD.  

 

Table 3: All SNPs with a p<5x10-8 mapped to genes found in at least 1 sex-stratified 

GWAS are presented here. A total of 26 unique significant SNPs were found among the 

29 genes. Of these 29 genes, 20 of them were also identified in sex-combined 

analyses.  21 genes were identified in male sex-stratified analyses. No genes were 

found to be significant in females only that weren’t also identified in male sex-stratified 

analyses. 12 were found to have modulation or relation to estrogen pathways. 4 of 

these genes had evidence of estrogen modulation unrelated to CAD.  
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Supplemental Tables  

Supplemental Table 1: These 24 studies had sex-combined analyses that met all other 

inclusion criteria, but contained no SNPs that surpassed genome-wide statistical 

significance of p<5*10^-8.  

Supplemental Table 2: This table contains the 1658 SNPs that achieved genome-wide 

significance (p<5*10^-8) from the included GWASs in sex-combined analyses.  

Supplemental Table 3: This table contains the 597 SNPs from sex-stratified analyses 

that had achieved genome-wide significance (p<5*10^-8) from the 4 papers that met our 

criteria. 413 SNPs were mapped from female-stratified data while 184 SNPS were 

mapped from male-stratified data.  
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