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Abstract 

Summary: The ever-growing genetic cohorts lead to an increase in scale of molecular Quantitative 

Trait Loci (QTL) studies, creating opportunities for more extensive two samples Mendelian 

randomization (MR) investigations aiming to identify causal relationships between molecular traits 

and diseases. This increase led to the identification of multiple causal candidates and potential drug 

targets over time. However, the increase in scale of such studies and higher dimension multi-omic 

data come with computational challenges. We present "LArge SCAle MOLecular Mendelian 

Randomization with Julia" (LaScaMolMR.jl), an open-sourced integrated Julia package optimized 

for Omic-wide Mendelian Randomization (OWMR) Studies. This versatile package eliminates the 

two-language problem and implements fast algorithms for instrumental variable selection 

approaches with both cis and trans instruments and performs the most popular regression estimators 

for MR studies with molecular exposures. It reduces the compute time via meta-programming 

allowing easy deployment of multi-threaded approach and the internalization of linkage 

disequilibrium investigation of potential instrumental variables. Via its integrated approach and 

high-computational performance, LaScaMolMR.jl allows users who have minimal programming 

experience to perform large scale OWMR studies. 

Implementation and availability: LaScaMolMR is freely available at 

github.com/SamuelMathieu-code/LaScaMolMR.jl. 
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Introduction 

This paper introduces a high throughput Mendelian Randomization (MR) pipeline to identify 

molecular risk or protective factors of partially heritable diseases. Figure 1A describes this pipeline 

and its implementation. MR is a meta-regression analysis used to infer a causal link between two 

phenotypes by observing the effect of single nucleotide variants (SNVs) associated with the 

exposure on the outcome. This technique leverages the random attribution of genetic variants to 

use those as instrumental variables (IVs). The selected instruments must fulfil three conditions for 

validity1 (Figure 1B).  

1. The instrument must be associated with exposure.  
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2.  The instrument must not be associated with a confounding factor between the exposure 

and the outcome.  

3. The instrument must not be associated to the outcome through another variable than the 

exposure.  

The last assumption is also known as the exclusion restriction principle. Horizontal pleiotropy 

consists of the violation of assumption 3. With the augmented scale of recent Genome Wide 

Association Studies (GWAS) and Quantitative Trait Loci studies (QTL) and their greater 

availability, more studies investigate molecular risk factors in large scale MR screens2–7. Also, 

more complex settings for OWMR studies such as mediation analysis between different Omic 

levels8,9 are proposed. For these reasons, robust IV selection protocols and integrated tools for such 

analyses are more than ever relevant. Although multivariate approaches to OWMR better account 

for local pleiotropy (i.e. local to effects measured in the exposure dataset)10, a significant proportion 

of studies prefer a univariate approach2–7 and investigate pleiotropic effects with a follow up 

multivariate analysis among related traits (for example genes in a locus or biologically similar 

traits). Although this does not allow to systematically account for pleiotropic effects within 

investigated exposures, it simplifies the pipeline and benefits from the statistical power of the 

univariate setting. We thus implement a univariate solution to the problem while allowing the user 

to remove IVs potentially associated to multiple targets. This approach limits the study to direct 

and genetically independent effects. Significant associations among pleiotropic loci or groups of 

traits are encouraged to be further investigated using a multivariate MR estimator11,12 or a 

functional analysis. 

Julia is a free open-sourced scientific computing programming language. It uses a Just in Time 

(JIT) compiler that compiles a function at first call. This allows powerful meta-programming 

macros modifying expressions before compilation. Julia packages thus often show outstanding 

performance while offering a high-level interface to users. This allows to address what is known 

as the two-language problem or the tendency of scientific code to use a slow but flexible language 

for frontend (such as R or Python) and a fast but less flexible language in backend (such as Rust or 

C). This widespread practice makes development less accessible to scientists and adds complexity 

to code optimization process. 
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Methods 

The Mendelian Randomization pipeline 

LaScaMolMR provides two data types describing the structure of genetic association tabular data 

(`GWAS` and `QTLStudy`) providing a high-level interface to file parsing. `QTLStudy` describes 

association data with multiple targets. Files can be stored in different folders or files depending on 

chromosome or target name, thus allowing multiple formats depending on the usage (Study among 

selected targets/all targets, cis/trans instruments). Handling of tabular data is done using the 

InMemoryDatasets.jl and DLMReader.jl Julia packages. These threaded packages implement fast 

file parsing and data manipulation functions.  

The pipeline is divided in three steps (Figure 1A). In the first step, files are parsed according to 

structure defined in `GWAS` and `QTLStudy` objects in the function `mrStudy`. `mrStudy` also 

takes a `type` argument which corresponds to cis or trans IV selection. Cis potential IV filtering 

includes 3 filters: 

1. Filter out variants for which the association p-value to the exposure is higher than `p_tresh` 

2. Filter out variants further than window base pairs from the exposure trait (typically gene 

transcription starts site) 

3. Filter out indels and non-biallelic variants. 

Trans selection only includes the first and the third filter. Other filters can be applied by the user 

to filter out rare variants, instruments which might induce reverse causality, or local pleiotropic 

variants.  The "Mitigated Local Pleiotropy" (MiLoP) approach filters out potential IVs which are 

associated to a second target at `p_tresh_MiLoP` level (Figure 1C), in opposition to the said 

"naive" approach which does not include a local pleiotropy assessment. Both approaches are 

implemented in the package although "naive" is the default. 

In the second section of the pipeline, independent IVs are selected among potential IVs (Figure 

1A). In order to assess linkage disequilibrium (LD) between potential IVs, composite LD13 is 

calculated and fed into a clumping algorithm (Algorithm 1). The user must provide a reference 

panel in Plink 1.9 format. The reference data is parsed with SnpArrays.jl package brought by the 

OpenMendel project14. The function `ClumpAndMR` takes a dataset of potential IVs grouped by 

exposure and performs clumping and MR analysis for each exposure. This function can also 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.24312805doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312805
http://creativecommons.org/licenses/by/4.0/


provide detailed information relative to chosen IVs. The documentation provides detailed 

information to that matter. 

The last section of the pipeline is the MR analysis. The package implements 4 popular MR 

estimators. These include Inverse Variance Weighted, Weighted Median, Egger and the Wald ratio. 

While the 3 first methods aim at assessing a causal relationship, the Wald ratio (or any single IV 

approach) cannot distinguish causality from pleiotropy15. All MR implementations share a 

common interface which facilitates customization of the pipeline through user defined functions. 

Each function takes 4 vectors of entry and have a `α` option corresponding to the α-value of the 

confidence intervals. The `mr_output` type structures the outputs with a common interface. This 

output includes summary data of association as well as sensitivity tests such as the Cochran's Q 

test for heterogeneity and the Egger intercept. These tests are commonly used to control non-

measured horizontal pleiotropic effects. 

 

Multi-threading 

The multi-threading in the pipeline section 1 is provided entirely by parsing, filtering and grouping 

functions of InMemoryDatasets and DLMReader. In the section 2, the clumping function is 

threaded using the `@threads` macro (Algorithm 1) Julia macros offer a high-level interface to 

multi-threading with similar capabilities and performance to the OpenMP compilation instructions 

in C/C++16. 
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Results 

Large scale benchmark 

We ran the full pipeline using Coronary Artery Disease (CAD) GWAS17 (GCST90132314) as 

outcome and GTEx V8 eQTL data from all 49 tissues as exposure18. Files were not previously 

filtered. Analysis for each tissue took an average time of 20 minutes and 13 seconds with 10 threads 

on an Ubuntu 20.04 server with 160 Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz processors and 

754G of DDR4 ram at 2933 MT/s (Supplementary Table 1). A total of 238528 (gene, tissue) pairs 

were investigated, 22417 of which had at least 3 IVs (Supplementary Table 2). The analysis 

identified 2342 candidate (gene, tissue) pairs after FDR 5% adjustment and further removing 

targets which had non-zero Egger intercept or showed heterogeneity (Supplementary Table 3). 

These associations target 811 different genes, thus highlighting the polygenic character of the 

disease. We also ran a simplified analysis using only Coronary Artery tissue cis-eQTLs using 10 

threads on an Ubuntu 22.04 desktop with 16 Intel(R) Core(TM) i7-10700K CPU at 3.80GHz 

processors and 84GB of DDR4 RAM at 3200MHz. This analysis took about 14 minutes and peaked 

at around 45 GB of memory usage. Of note: using the `mrStudyNFolds` function can help reduce 

the memory load. 

 

Comparing Naive results to MiLoP results 

We performed a Proteome-wide MR study using blood protein levels from the Fenland study19 

(https://www.synapse.org/Synapse:syn51761394/wiki/622766) as exposures and CAD17 as 

outcome. Among many hits with the naive approach, some proteins belong to genes in the same 

locus, such as ITIH1/ITIH3 and ERAP1/ERAP2. These effects are driven by locally pleiotropic 

variants. Using the MiLoP approach allows to restrict the findings to genetically independent 

associations. In both locus, variants associated to both proteins at p<0.05 level were discarded. 

Nominal significance was lost for all proteins except ITIH3 (Supplementary Table 4, 

Supplementary Figure 1). 
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Clumping function benchmark 

As the complexity of the clumping algorithm is quadratic with respect to the number of variants 

and linear with the number of individuals in the reference panel (𝑂(𝑚2𝑛) in worse case), the scaling 

of this component of the pipeline is a challenge. We built a lightweight implementation by using 

powerful Julia macros such as `@simd` and `@unbound` backed with multi-threading. Most 

pipelines use Plink 1.920 for variant clumping5,6. This solution does not scale well to OWMR as 

reference genotype files are parsed at every query. It also involves multiple file writings and 

readings. Our implementation replicates Plink results while avoiding this burden. We benchmarked 

the function using real data from Fenland. Clumping 2797 variants with Plink using 10 threads 

took 2.27 seconds (not accounting for the time to read clumped file) while LaScaMolMR's clump 

took 1.05 seconds when considering bimbedfam file parsing and 0.02 seconds otherwise. In 

practice, compute time is found to scale linearly with the number of variants. Also, optimal 

performance is achieved with 10 to 16 processor cores (Supplementary Table 5, Supplementary 

Figure 2). Efficient parallelization of this algorithm when more resources are available remains a 

challenge. 

 

Conclusion 

In short, LaScaMolMR.jl takes care of every part of a Mendelian Randomization molecular screen 

pipeline. The threaded Julia implementation and the internalization of linkage disequilibrium 

calculations enable a minimal compute time while addressing the two-language problem and 

offering the user a high-level flexible interface. Such a tool can serve as a baseline in the future for 

more complex study settings such as those involving mediation analysis or a better local horizontal 

pleiotropy assessment. 
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Figure 1 legend. A) Process chart of the implemented pipeline and call diagram of the 

implemented and exported functions. Functions overlapping a step of the process are responsible 

of that step. * SnpData is provided by the SnpArrays.jl package. B) Directed acyclic graph 

schematizing MR assumptions. G is the instrument variable variant, X is the exposure phenotype, 

Y is the outcome phenotype and U is a confounding factor. C) Locus showing local pleiotropy in 

transcriptome-wide MR. In such setting, SNV3 would be discarded in the MiLoP approach. A 

multivariable MR estimator can account for measured pleiotropic effects by including SNVs 1 to 

4. 

 

Supplementary Figure 1 legend. Forestplot showing effect estimes of ERAP1, ERAP2, ITIH1, 

ITIH3 in when all instrument variables associated to exposure protein (at 5e-8 level) are included 

and when IVs associated to a second protein (at 0.05) level are excluded (MiLoP). 

 

Supplementary Figure 2 legend. A) Line plot showing the scaling behaviour of the clump 

function depending on the number of variants. Dots represent different random variant subsampling 

and lines pass at mean point for each number of variants tested. B) Line plot showing the scaling 

behaviour of the runtime of `clump` function depending on the number of threads. Each point 

represents a different trial clumping the same variants. Line passes through mean points for each 

number of threads. 
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