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Abstract

Background: The routine diagnostic process increasingly entails the processing
of high-volume and high-dimensional data. This processing may provide scaling
issues that limit the implementation of these types of data into research as well
as integrated diagnostics in routine care. Here, we investigate whether we can
use existing dimension reduction techniques to provide visualisations and anal-
yses for a complete bloodcount (CBC) while maintaining representativeness of
the original data. We considered over 3 million CBC measurements encompass-
ing over 70 parameters of cell frequency, size and complexity from the UMC
Utrecht UPOD database. We evaluated PCA as an example of a linear dimension
reduction techniques and UMAP, TriMap and PaCMAP as non-linear dimen-
sion reduction techniques. We assessed their technical performance using quality
metrics for dimension reduction as well as biological representation by evaluat-
ing preservation of diurnal, age and sex patterns, cluster preservation and the
identification of leukemia patients.
Results: We found that PCA performs systematically better than the UMAP,
TriMap and PaCMAP in representing the underlying data. Biological relevance
was retained for periodicity in the data. However, we also observed a decrease
in predictive performance of the reduced data for both age and sex, as well as
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an overestimation of clusters within the reduced data. Finally, we were able to
identify the diverging patterns for leukemia patients after use of dimensionality
reduction methods.
Conclusions: We conclude that for hematology data, the use of unsupervised
dimension reduction techniques should be limited to data visualization applica-
tions, as implementing them in diagnostic pipelines may lead to decreased quality
of integrated diagnostics in routine care.

Keywords: Dimension Reduction, Haematology, Data Preservation, Clustering,
Routine Care Data

1 Introduction

The diagnostic process in a routine healthcare setting increasingly produces data in

high volume, dimensionality and in multiple modalities, both structured and unstruc-

tured. Examples of these diagnostic data are ‘omics’ data such as transcriptomics,

proteomics and metabolomics as well as imaging data, yet routine haemocytometer

data of a complete blood count (CBC) can also be considered high-dimensional data.

Visualisation of the data in a comprehensive way can be a challenge due to the high

dimensionality. More importantly, to help healthcare professionals interpret these data

for the benefit of individual patients, integration of the different types of data into

integrated diagnostics models is warranted. One of the modelling challenges in the

development and deployment of these models is the combination of vast data volumes

and their high dimensionality, which may lead to computational performance issues.

There is thus a need to ensure feasibility of integrated diagnostics models. One of

the ways to achieve this is by using a low-dimensional representation of these data

rather than the full dataset. Such a representation can be generated using dimension

reduction techniques.

Dimension reduction has historically been performed by the use of principal

component analysis (PCA). This linear transformation technique assumes normally

distributed variables, and is primarily focused on establishing a dimension reduction
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that is preserving the global structure. Global structure preservation aims at pre-

serving the global patterns in the data, such as obvious clusters that are present in

the data, whereas the local structure preservation aims at preserving more intrinsic

patterns in the data, i.e. preserving the neighbourhood for each point. Several more

recent dimension reduction approaches aim to also preserve local structure. One way

to do this is through (non-linear) manifold approximation, which is based on learn-

ing the underlying structure of the data, mostly based on nearest neighbours. Some

examples for these type of methods are Uniform Manifold Approximation and Pro-

jection (UMAP)[1], Pairwise Controlled Manifold Approximation (PaCMAP)[2], and

TriMap, a triplet-based approach [3].

Applying these methods to high-dimensional biological data has been performed

before, including flow cytometry workflows, transcriptomics data, RNA sequencing

data, and protein structure analysis among others [4, 5, 6, 7, 8, 9]. However, to the

best of our knowledge, comparative work on robustness of dimension reduction on

large haematological data has not been performed before.

A complete blood count (CBC) assessing red and white blood cells and platelets,

is one of the most frequently performed diagnostic procedures. Haemocytometers, on

the basis of flow-cytometry, use proprietary algorithms to combine cell characteristics

such as size, granularity, lobularity and viability into clinically relevant parameters like

hemoglobin levels or white blood cell differentiation patterns. However, next to these

parameters currently reported to the clinic, each routine haematology measurement

actually encompasses research-only values and raw cell characteristics of red and white

blood cells and platelets that are currently not used in clinical care. In the University

Medical Center Utrecht (UMCU), Utrecht, the Netherlands, the raw hematology data

of over 3 million samples that were measured on Abbott CELL-DYN Sapphire hema-

tology analyzers were stored in the Utrecht Patient Oriented Database (UPOD) since

2005. The full content and extent of the database is described elsewhere [10]. Previous
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UPOD research shows there is biologically and clinically relevant information hidden

in the unreported hematology measurements of these samples [11, 12, 13, 14, 15, 16].

Using dimension reduction methods to enable processing of raw CBC and visualising

or combining it into integrated diagnostics models may therefore eventually improve

clinical practice.

Considering this vast amount of haematological data, and its high number of

dimensions, we set out to find a robust approach in reducing the dimensions of the

data, so that it can be better processed but also better visualized. By investigating

the performance of the dimension reduction methods, we aim to ensure their usabil-

ity in routine haematological data to improve clinical care, for example in diagnostic

pipelines. As a dimension reduction should be a good representation of the original

data, we not only compared several current dimension reduction techniques (PCA,

UMAP, TriMap, and PaCMAP) in their ability to both capture global and local

structure, but also assessed their ability of preserving biological relevancy of the data.

2 Results

2.1 Descriptives

In total, we extracted 3, 093, 792 samples from 358, 614 unique patients. 52.8% of the

samples were from male patients, the median age at measurement was 51 (IQR: 27-

66). After preprocessing the haematological data, we applied imputation to 1, 107, 049

samples for haematological parameters that were missing as a result of laboratory

protocols (e.g., not using reticulocyte mode). Preprocessing of the data included the

clipping of haematological parameters, to mitigate distorting the dimension reduction

due to extreme outliers. The clippings of the parameters are given in supplemental

table S1.
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2.2 Dimension Reductions

2.2.1 Parameter Tuning Results

Number of Neighbours

First, we compared the amount of nearest neighbours used for dimension reduction

for both UMAP, TriMap, and PaCMAP. The results are shown in figure 1 for UMAP,

and in figure S1 for PacMAP. For an increasing sample size and number of neighbours,

we observed an initial improvement with a rapid stagnation (1, figure S1).

The neighbourhood kept ratio ranged from 0.29 at 5000 samples and 5 nearest

neighbours to 0.33 at 160,000 samples and 100 nearest neighbours for UMAP. However,

the scores for any number of neighbours from 15 and above were similar with increasing

sample size. For trustworthiness, using 5 nearest neighbours yielded worse results than

using 15 or more neighbours (0.89-0.91). For the other number of neighbours, the

performance was limited to 0.92. For global distance preservation methods, UMAP

was stable for random triplet score ranging from 0.72 for 5 nearest neighbours at 5000

samples to 0.74 for all number of neighbours at 40,000 to 160,000 samples. Distance

correlation increased from 0.64 at 5000 samples to 0.69 at 40,000 to 160,000 samples

(figure S2).

For PaCMAP, a similar pattern was observed (figure S1). Local distance preser-

vation as measured through the neighbourhood kept ratio ranged from 0.33 at 5000

samples and 5 nearest neighbours to 0.36 at 160,000 samples with 30, 50, or 100

nearest neighbours. Trustworthiness ranged from 0.88 at 5000 samples for 5 nearest

neighbours to 0.90 at 160,000 samples for all number of nearest neighbours. However,

this performance was already reached at 10,000 samples by using 30, 50, or 100 near-

est neighbours. Global distance preservation as measured by the random triplets score

ranged from 0.73 to 0.74 for all number of neighbours. Distance correlation remained

relatively stable, with scores ranging from 0.66 to 0.67.
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Considering the results, we decided to limit the sample sizes to 40,000 for TriMap

to find the number of in- and outlying neighbours, because increasing the sample

beyond this point yielded similar result, yet dramatically increased computational

costs (data not shown). The result of this tuning are found in figure S2. We observed

no large differences for the number of outliers used for TriMap. However, we did

observe substantial increased for global distance preservation metrics when increasing

the number of inliers. Random triplets score increased from 0.75 (5 inliers) to 0.78

(100 inliers). Distance Correlation increased from 0.75 (5 inliers) to 0.81 (100 inliers).

However, we decided to move forward with 50 inliers and 15 outliers for TriMap, since

increasing the number of neighbours was computationally not feasible for the entire

data set of over 3 million samples (data not shown).
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Fig. 1: Evaluating UMAP with quality metrics across different numbers of neighbours
and sample size along with the 95% Standard Error (SE) for each sample size and
number of nearest neighbours
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Number of Components

As we used 50 nearest neighbours for the dimension reductions, we also used 50 nearest

neighbours for calculating the dimension reduction quality metrics. We then increased

the number of components for the final dimension reduction. We used 40,000 random

samples, which were matched across the dimension reduction methods.

We compared 2, 4, 6, 8, 10, 20 and 30 components to get a rough estimation

of the increase in performance for each of these models. Figure 2 shows the results

for the neighbourhood kept ratio, trustworthiness, random triplet score and distance

correlation. For all scores, PCA performed best across all number of component (p<

0.001) (figure 2). Additionally, performances for UMAP, TriMap, and PaCMAP barely

increased by increasing the number of components.

Focussing on local distances, the neighbourhood kept ratio increased from 0.27

(2 dimensions) to 0.89 (30 dimensions) for PCA, whereas it stagnated for UMAP

around 0.32, TriMap around 0.36, and PaCMAP around 0.35. GRP increased from

0.13 (2 dimensions) to 0.55 (30 dimensions). Trustworthiness was high for all dimension

reduction methods, except for GRP at lower dimensions. PCA (0.92-0.97) had the

highest scores, UMAP and PaCMAP performed similarly (0.90-0.92 for UMAP; 0.91-

0.93 for PaCMAP). TriMap performed better than the other manifold approaches

(0.92–0.94). GRP performed worse at lower dimensions (ranging from 0.73 to 0.94).

When it comes to global distances, PCA outperformed all other dimension reduc-

tion methods on both random triplets score (0.78 to 0.98) and distance correlation

(0.81 to 0.91, max = 0.93 at 8 dimensions). The random triplets score remained sta-

ble for the three manifold approaches, scoring 0.74 for UMAP, 0.78 for TriMap, and

0.73 for PaCMAP. GRP increased from 0.66 at 2 dimensions to 0.86 at 30 dimen-

sions. Distance correlation for the manifold approaches increased primarily with lower

dimensions, scoring 0.90 for UMAP, 0.91 for PaCMAP and 0.92 for Trimap to 0.92 for
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UMAP, 0.93 for PaCMAP and 0.94 for TriMap at 4 components, which then remained

stable with increasing dimensions.

Although we observed an increase of performance for PCA and GRP with

increasing components, we also observed a stagnation for manifold approaches at 4

components. Considering the increasing computational complexity of the manifold

approaches with increasing components, we decided to limit the number of components

to 6 for all methods, in order to reduce the entire data set of over 3 million samples.
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Fig. 2: Dimension reduction metrics across a different number of dimensions along
with the 95% SE for each number of components

2.3 Preservation of Biological Representation

2.3.1 Explorative analysis

One of the broad epistemic features of, at least part of, the hematology parameters

is the presence of a diurnal pattern[17, 18]. We should expect that dimension reduc-

tion algorithms preserve such broad qualitative features. Here we consider the diurnal

patterns of the reduced dimensions, including a cosine-fit.
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Figure 3 shows the 6 UMAP dimensions. We observed a diurnal pattern for each

of the components, primarily split between daycare (6:00–18:00) and care during the

night, with clear progression within the daycare time-period. The clearest diurnal

patterns in the non-reduced data are obtained for the neutrophil and the eosinophil

fractions. For these fractions, and all components for the dimension reduction tech-

niques, we observed significant results for the cosine-fit (table 1). Additionally, figure

4 shows the retention of periodicity in the dimension reductions compared to the peri-

odicity of the neutrophil fraction. We chose neutrophil fraction as this parameter has

a clear diurnal evolution.
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Fig. 3: Intraday variation of UMAP dimensions showing a clear diurnal pattern, as
expected from prior work showing diurnality of hematology parameters, as well an
offset between men/women in the 3rd and 4th dimensions

2.3.2 Prediction performance

To assess preservation of biological relevance, we compared age (≤ 20 versus ≥ 60) and

sex prediction performance of original data to the prediction performance of reduced

data. Results of age at sampling predictions can be found in figure 5. We used data

from 170,000 random samples and matching the samples to their reduced data, and

used 30,000 random samples for validation. We observed a significant (p < 0.001)
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Reduction technique component amplitude offset bias p-value
PCA 0 3.26± 0.051 0.80± 1.44 0.67± 1.55 1e− 16

1 1.00± 0.016 −1.85± 0.033 −0.43± 0.012 1e− 16
2 1.07± 0.041 −0.80± 0.021 0.20± 0.019 1e− 16
3 1.57± 0.037 −0.26± 0.017 0.73± 0.018 1e− 16
4 0.40± 0.009 −1.61± 0.040 −0.12± 0.009 1e− 16
5 0.82± 0.011 0.56± 0.019 0.52± 0.006 1e− 16

GRP 0 2.01± 1.15 −1.08± 1.94 0.11± 1.31 1e− 16
1 1.44± 1.23 −0.35± 1.52 0.21± 0.82 1e− 16
2 1.70± 0.84 0.27± 1.61 0.38± 0.96 1e− 16
3 1.51± 0.78 1.33± 1.75 0.0046± 0.90 1e− 16
4 1.02± 0.54 0.81± 1.76 −0.058± 0.55 1e− 16
5 1.44± 0.10 1.28± 1.88 −0.37± 0.73 1.5e− 3

UMAP 0 0.13± 0.096 0.48± 2.04 2.24± 3.67 1e− 16
1 0.15± 0.043 −1.14± 2.18 1.24± 1.50 1e− 16
2 0.19± 0.070 1.69± 1.92 9.31± 1.86 1e− 16
3 0.87± 0.510 −0.95± 0.85 5.20± 1.45 1e− 16
4 0.70± 0.509 1.31± 1.42 4.82± 1.54 1e− 16
5 0.11± 0.059 −1.20± 1.30 1.17± 2.05 1e− 13

TriMap 0 15.82± 0.24 0.74± 1.44 3.55± 8.1 1e− 16
1 5.10± 0.06 −1.21± 0.024 2.26± 0.125 1e− 16
2 5.05± 0.20 −0.61± 0.014 2.86± 0.133 1e− 16
3 7.94± 0.19 −0.38± 0.010 5.42± 0.147 1e− 16
4 1.40± 0.08 −0.98± 0.059 0.52± 0.069 1e− 16
5 0.73± 0.053 0.32± 0.060 0.54± 0.029 1e− 16

PaCMAP 0 2.15± 0.033 0.71± 1.440 0.43± 0.99 1e− 16
1 0.54± 0.018 −1.19± 0.040 −0.069± 0.015 1e− 16
2 0.82± 0.024 2.65± 0.025 −0.35± 0.01 1e− 16
3 0.99± 0.020 2.85± 0.017 −0.50± 0.015 1e− 16
4 0.38± 0.030 2.26± 0.075 −0.081± 0.020 1e− 16
5 0.19± 0.041 −1.72± 0.090 −0.047± 0.016 1e− 16

Neutrophil fraction n/a 7.3± 0.1 0.1± 0.01 68.9± 0.08 1e− 16
Eosinophil fraction n/a 0.24± 0.002 −2.8± 0.01 0.85± 0.002 1e− 16

Table 1: Results of a Cosine-fit. The dimension reductions for this result were
extracted from a sample of 100.000 measurements, repeated 10 times.

Fig. 4: Time evolution of (left) first component for different reducers with 95% SE,
(right) the neutrophil fraction.
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drop in performance when data from any dimension reduction method was used. We

observed very stable performances across the 10-fold cross validation, resulting in

small variation for the accuracy and MCC. While the original data showed higher

performance (accuracy = 0.88, MCC= 0.74) for age-classification, we observed a lower

accuracy, ranging from 0.76 for GRP to 0.80 for the manifold methods (PCA = 0.79,

and a lower MCC, ranging from 0.47 for GRP to 0.56 for TriMap (PCA = 0.55; UMAP

= 0.55; PaCMAP = 0.56). This meant that applying dimension reduction negatively

impacted classification tasks. The same pattern was observed in sex prediction (figure

S5). The original data showed an accurary of 0.76 and a MCC of 0.51. For the data in

reduced space, the accuracy ranged from 0.61 for GRP to 0.7 for UMAP and TriMap

(PCA = 0.68; PaCMAP = 0.69. The MCC ranged from 0.18 for GRP to 0.39 for

UMAP (PCA = 0.34; TriMap = 0.38; PaCMAP = 0.36).

2.3.3 Cluster Preservation

Table 2 shows the performances of clustering methods using the reduced data. We

observed an excess of clusters with subsequent low values for the Normalised Mutual

Information (NMI) score and Adjusted Rand Index (ARI), showing that the dimension

reduction methods have a tendency to generate an excess of clusters in comparison

with the real data. We identified 12 clusters in the original data, whereas we found

32, 31 and 12 for PCA at 3, 6 and 12 components respectively. For the manifold

approaches, we found a large inflation of clusters. For UMAP we identified 115, 84,

and 81 clusters; for TriMap we identified 45, 44 and 53 clusters; for PaCMAP we

identified 42, 43 and 54 clusters, all with 3, 6 and 12 components respectively. Finally,

for GRP we identified 30, 22 and 5 clusters for 3,6 and 12 components respectively.

Comparing the NMI score and ARI we found that, overall, scores were low (≤ 0.10

for NMI and ARI, and did not improve when increasing the number of components,

except for GRP with a NMI of 0.01 at 3 components and 0.12 at 12 components, and

an ARI of -0.0003 at 3 components to 0.19 (table 2).
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Fig. 5: Predictive performance for patients < 20 (’young’) versus patients > 60 (’old’)
in the dedicated validation set. The prediction performances dropped significantly (p
< 0.001) after applying dimension reduction techniques. n = 170,000 for training; n
= 30,000 for validation; n folds = 10.
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Furthermore, we found that, in terms of cluster quality, UMAP stagnates to a

value well under the optimum for increasing number of components being on par with

PCA for smaller number of components (figure S6). Additionally, we observed that all

manifold approaches maintain a high level of cluster-inflation for increasing number of

reduced dimensions. Finally, we observed that for a low number of reduced dimensions,

all tested dimension reduction techniques produced a considerable inflated number of

clusters as detected by HDBSCAN compared to the baseline cluster detection on the

original data (fig 6).
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Fig. 6: Number of clusters extracted using HDBSCAN. Here, dimension reduction
was performed with PCA, UMAP, TriMap, PaCMAP, or GRP on 10.000 samples.

2.3.4 Identification of Leukemia-Like Patients

In the original data (figure 7) we found significant differences between patients that

were identified as having chronic lymphatic leukemia (CLL) with respect to our overall

population for both white blood cell count as lymphocyte count. In total, we identified
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Dimension Reduction Components # of clusters NMI ARI
n/a n/a 12 n/a n/a
PCA 3 32 0.06 0.06

UMAP 3 115 0.04 0.03
TriMap 3 45 0.07 0.05

PaCMAP 3 42 0.10 0.11
GRP 3 30 0.01 -0.0003
PCA 6 31 0.04 0.03

UMAP 6 84 0.09 0.10
TriMap 6 44 0.05 0.01

PaCMAP 6 43 0.05 0.02
GRP 6 22 0.03 0.02
PCA 12 12 0.07 0.09

UMAP 12 81 0.08 0.09
TriMap 12 53 0.08 0.08

PaCMAP 12 54 0.06 0.05
GRP 12 5 0.12 0.19

Table 2: Comparison of cluster alignments, using a pipeline
with a standard scaler, a dimension reduction method and a
clustering model. As a default we used the Manhattan distance,
with 50 neighbours and a random selection of 100.000 samples
from the haematology set. Relevant hardware information: Xeon
W-2125 at 4GHz and 8 logic cores with 64GB memory

3205 samples from patients with CLL, and compared these samples to all other sam-

ples in the data (n = 3,090,580). For all dimension reductions, we found similar results,

where the CLL patients’ data had significantly different distributions (p< 0.001) com-

pared to the general population for a large portion of the dimensions (figures S7 to

S11).
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Fig. 7: Boxplots showing the median and interquartile range of lymphocyte and leuko-
cyte counts (x109) of patients with CLL (n = 3, 205) versus patients without leukaemia
(n = 3, 090, 580) in the original data
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3 Discussion

In this study, we investigated the use of dimension reduction methods in a large set

of routine CBC data from the Abbott CELL-DYN Sapphire haemocytometer. We

compared PCA, UMAP, TriMap, and PaCMAP with multiple performance metrics

(neighbourhood kept ratio, trustworthiness, random triplet score, and distance correla-

tion). We found that looking at dimension reduction metrics, PCA was best performing

in comparison with UMAP, TriMap and PaCMAP. As the purpose of these dimension

reductions lie in analysis and interpretation, we investigated if any biological repre-

sentation was correctly maintained. We found that diurnal patterns were maintained,

but that predictive tasks (such as age and sex) performed significantly worse com-

pared to the original data, and that clustering tasks resulted in an overestimation of

clusters compared to the original data. We conclude that using dimension reductions

will result in a loss of information compared to the original data, even in predictive

tasks where subgroups should be apparently clear.

In literature, UMAP and other (non-linear) dimensionality reduction techniques

are evaluated as superior with respect to PCA [19, 20, 2, 3]. However, the utility of

UMAP and other nearest-neighbours-based dimension reduction methods is seemingly

limited to very-low dimensional representations for the purpose of visualisation[2, 3].

In our study, we observe that for increasing dimension reduction dimensionality, the

manifold techniques converge to dimension reduction scores that are far from optimal,

whereas PCA reaches near-optimal scores well before it is able to explain 95% of the

variance (n components = 30). This is likely the case for other global methods, but

further research is needed to study this. We deem that this effect is partly because of

the large sample size, meaning that the neighbourhood for a certain sample is harder to

define, or we need a larger number of neighbours when increasing sample size. However,

increasing the number of neighbours can result in computational issues, considering

the pairwise nature of the dimension reduction techniques and performance measures.

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


When dealing with neighbourhood-based dimension reduction methods such as

UMAP, TriMap and PaCMAP there is a trade-off between the preservation of local

and global characteristics. Possible mitigations are to increase the number of com-

ponents[21] and the number of nearest neighbours. The number of dimensions and

neighbours is dependent on the amount of samples in the dataset. However, increas-

ing the number of dimensions and number of neighbours increases the complexity of

dimension reduction. Furthermore, for an increasing number of samples of multiple

modalities, the heterogeneity of the data can increase, and it then becomes more diffi-

cult to embed the data with sufficient accuracy i.e., more samples does not inherently

equate to a better dimension reduction. Finally, PCA becomes competitive in terms

of dimension reduction performance when increasing the number of dimensions since

the amount of explained variance increases, while being orders of magnitude more effi-

cient computationally, especially if one considers the availability of Incremental PCA

that has a constant memory complexity[22].

Another way to mitigate the issue with the trade-off between global and local

characteristics, is to limit the number of samples used for the dimension reduction such

that it contains enough samples per stratification, but not more. This requires enough

information for the stratifications we are interested in, which in turn requires labelling.

This is a known issue when using (routine) healthcare data, as the administrative start

of a disease that is indicated by registration of a certain diagnosis does not coincide

with the physical start of the disease. As the physical start of the disease may affect

some or all parts of the CBC, labelling of disease presence at the time of blood draw is

intrinsically difficult. Moreover, most patients that visit our tertiary care centre suffer

from complex diseases and multiple comorbidities, further complicating labelling of

our haematology data. Because of these issues, we were unable to retrieve clear labels

for our samples.
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One other mitigation of the problem with large sample sizes and neighbourhood-

based dimension reduction methods that leads to improved tractability is the use

of dimension reduction alignment, where we partition the datasets to create many

dimension reductions that are subsequently aligned, using e.g. Procustes transforma-

tion [23]. Another benefit of dimension reduction alignment is that adding new data

to the dimension reduction is much faster.

3.1 Biological performance

We investigated patterns in the data that are known to be present within haematology

data. Indeed, we observed known diurnal patterns of white blood cells [24, 25, 18].

This pattern was also observed within the data after dimension reduction, showing

preservation of intraday variation by the dimension reduction methods.

With respect to the prediction of samples belonging to subgroups in the data,

we observed a significant decreased performance in the reduced data. We deem that

dimension reduction before prediction tasks in these data is not a preferable approach,

since the loss of information or quality of data representation is an apparent issue.

Increasing the number of dimensions might mitigate this[21], but can lead to more

complex dimension reduction processes, and we observed that the manifold approaches

did not convergence to an optimal data representation of increasing dimensionality

(figure 2). Rather than using dimension reduction, more emphasis should be given

towards proper feature selection for analysis when the amount of parameters is too high

for the amount of samples. This can, of course, be combined with dimension reduction

[26]. In literature, we found some beneficial results of using dimension reduction before

prediction in different settings, since it can offer similar or better model performance

to using original data at least in experimental circumstances [27, 28, 29], or that

dimension reduction can be used for feature selection [30]. However, this requires a

robust dimension reduction method, which also preserves the distances when applying
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this method. Considering our findings, the use of unsupervised dimension reduction

techniques before modelling should be approached with caution or even refrained from.

Finally, we applied clustering to assess the cluster preservation in the reduced data.

We find that using dimension reduction will result in an overestimation of the amount

of clusters when using HDBScan. This comes together with the loss of information, or

quality. As mentioned before, this might be mitigable, but will increase computational

costs and complexity. We do, however, observe that leukemia-like patients are indeed

outliers after applying dimension reduction methods.

3.2 Further Research

Considering we have limited towards unsupervised non-parametric dimension reduc-

tion methods, a logical next step is to use supervised and/or parametric dimension

reduction. An improvement of non-parametric UMAP is parametric UMAP where a

learnable parameterised model sits between the dimension reductions and the final

loss, enabling the addition of e.g. a global loss contribution [31]. Additionally, when

we are dealing with large volume data, benefit might be gained from using a fully

parameterised dimension reduction methods such as Differentiating dimension reduc-

tion Networks (DEN), which is more interpretable compared to UMAP and t-SNE

because of the parametric nature [32]. Finally, when it comes to generalizability of

dimension reduction results, and working towards a more holistic integrative approach

of data analysis within healthcare, fully parameterised models such as variational

autoencoders with contrastive-loss optimization are interesting from the perspective

of transfer learning, as it adds flexibility to continue learning with incoming data and

transferring the resulting model to other institutions to continue training on their

on-premise data, which can play a role in federated learning. In addition, research

could study the use of (semi-)supervised dimension reduction approaches. To ensure
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clinical relevance, sparsely available labels can be employed, and consequently semi-

supervised UMAP/t-SNE or Multi-Class, Multi-Label (MCML) dimension reduction

can be deployed. Possible other variables that can be of interest for this approach can

consist of demographic data (e.g., sex or age), data on time of day, or other relevant

variables such as in-/out-patient status, hospital department, or even length-of-stay.

3.3 Limitations

Finally, our study is prone to some limitations. Most importantly, we lack a clear

healthy control group, as our data is from tertiary care only. The data encompasses

some samples that come from healthy individuals (such as patients that were referred

to the UMCU, but their diagnostic work-up did not confirm any diseases), but because

labels are not available, we cannot identify these samples definitively. Moreover, there

are some limitations considering the neighbourhood-based dimension reduction meth-

ods. One main limitation of UMAP is that the negative sampling process does not take

into account the distance to the current point outside the number of nearest neigh-

bours surrounding each point. This inaccuracy becomes more expressed if the number

of samples with respect to the number of nearest neighbours is increased. The result

of this is that points that are just outside the direct neighbourhood are placed incor-

rectly, further away in the reduced data. Additionally, UMAP is a greedy algorithm,

basically requiring a copy of the original data such that incoming data can be interpo-

lated onto the low-dimensional manifold. Furthermore, at the time of writing, neither

TriMap nor PaCMAP provide a clear opportunity to embed unseen data into the space

of the existing dimension reduction. This makes it harder for example to share dimen-

sion reductions between healthcare institutions, which might be beneficial, since this

allows for easier interpretation of haematology measurements in the context of the

overall population. Another limitation in our study is that we did not use a topology
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preservation metric. Scoring based on topology metrics might result in a higher rank-

ing for the manifold approaches, as these are especially designed to preserve topology.

Furthermore, we have limited our research to PCA and three manifold approaches.

Of course, many more methods are available. For example, self-organising maps have

been used successfully in haematological data, specifically at single-cell level [33].

4 Conclusion

When applying dimension reduction to high-dimensional high-volume haematology

data, we found that a global statistics based reduction technique such as PCA performs

systematically better than much more recent non-linear minimum-distortion dimen-

sion reduction techniques in representing the underlying data. In general, the use of

dimension reduction method had limited biological performance, especially as a pre-

cursor for prediction tasks. Therefore, we advise that dimension reduction techniques

are limited to data visualisation applications, e.g. for exploratory data analysis and

research dissemination. The use of dimension reduction techniques as components in

diagnostic pipelines may lead to decreased quality of integrated diagnostics in clinical

care.

5 Methods

5.1 Descriptives

We extracted all available CBC measurements from the Abbott CELL-DYN Sapphire

from 2005 to 2020 from the UPOD. We then applied rigorous quality control based

on metadata retrieved from the CELL-DYN Sapphire machines, based on in-house

knowledge, gained from clinical chemists and data managers. As some of the CBC

measurements are only available if the sample was measured in reticulocyte mode,

we imputed these missing variables using the miceforest package in Python, based on
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the Multiple Imputation with Chain Equations (MICE)[34] approach using a Random

Forest approach [35]. In our data, samples were measured in reticulocyte mode by

default from 2013 onwards, providing the opportunity to impute missing data before

2013, since these data could be considered Missing At Random (MAR).

Considering the possibility that extreme outliers would distort the overall quality

of any dimension reduction model, we transformed white blood cell count parameters

to log scale. Additionally, we decided to clip the bounds of each parameter to limit

the effect of outliers, while preserving the clinical relevance of the samples. A list of

the analysed variables that required clipping thresholds can be found in table S1.

5.2 Dimension Reduction

5.2.1 Dimension Reduction Methods

One of the most frequently used dimension reduction models historically is PCA,

which tries to capture data in linear combinations, using vector decomposition. It

creates perpendicular components, meaning that components are not correlated to

each other, and using this principle, PCA can reduce the original data into a reduced

space by explaining the variance in the original data. This method is very useful

when working with collinear features, as these features will be captured in the same

components, since they explain the same variance in the original data. For assessing

the performance of a PCA, the cumulative explained variance is often used, and this

will naturally increase when the number of components are increased. PCA assumes

linear relationships between variables, and assumes normally distributed variables.

Yet, as the probability exists that the original data might contain non-linear rela-

tionships, we decided to use manifold dimension reduction techniques, which are based

on the theory that any space can be reduced to lower dimensions based on the shape

of the data. In order to achieve this, each data point should be placed in a similar

neighbourhood compared to the original space. This makes sure that local structure of
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the data is better preserved, i.e., that data that is similar in the original space is also

similar in the reduced space. Examples of non-linear dimension reduction techniques

include Uniform manifold approximation (UMAP), Triplets Manifold Approximation

(TriMap), and Pairwise Controlled Manifold Approximation (PaCMAP). In addition

to PCA, these methods were used in the current study to capture the large and

complex CELL-DYN Sapphire dataset in lower dimension. Finally, we used Gaussian

Random Projection (GRP) as a negative control. We will provide a brief overview of

these techniques in this section.

Although UMAP, PacMAP and TriMap are initialised with PCA by default, the

individual components of UMAP, TriMap and PaCMAP have no specific meaning,

unlike PCA. For PCA, the additional explained variance diminishes when a higher

number of components are used.

UMAP

UMAP estimates the shape of the data in the higher dimensionality using a weighted

graph and then projects the graph onto the lower dimension for dimensionality reduc-

tion [1] (see figure 8). UMAP constructs a high-dimensional graph by extending

branches from individual points with a radius r to connect the points to their neigh-

bourhood in high-dimension. These branches then become a graph of various shapes

to be projected onto the lower dimension, irrespective of distance between points.

The k-nearest neighbours in r can be set, where a low k preserves the local structure,

and a higher k preserves the global structure of the original data. Finally, the high-

dimensional graph is projected onto a lower dimension using a force-directed graph

approach, pulling together points that are close and pushing apart points are fur-

ther away. This is done base on the weighted connectivity, meaning that points are

drawn towards groups of points with which it has multiple connections, rather than

points/clusters with singular connections. Clusters are formed based on some thresh-

old, which also depends on the number of nearest neighbours. Increasing the k-nearest

22

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


neighbours will result in larger groups of interconnected points, at the cost of increased

computational complexity.

;

D

r

D D

D' D'

Fig. 8: Explanation of UMAP

TriMap

TriMap is another manifold approach, and is primarily built around triplets constraints

[3]. TriMap constructs triplets per point (i) and pairs this to n inliers (j) according

to the distance metric used. For each of these pairings, n outliers are sampled (k)

resulting in n inliers ∗ n outliers triplets per point (i, j, k). Additionally, n random

triplets are constructed. TriMap then creates a low dimensional representation of the
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data where the ordering of the distances of these triplets is preserved (d(i, j) ≤ d(i, k)),

by weighting the triplets, according to the relative distance of j and k to i (figure 9).

DD D'

1...n

i

j

k

Triplet  :=  ( i , j , k )

di,j i,kd

i,jd i,kd≤

Loss
i, j, k

Fig. 9: Explanation of TriMap

PaCMAP

Similarly to TriMap, PaCMAP samples both neighbours and non-neighbours (Near

Pairs and Further Pairs respectively) in order to establish a low-dimensional rep-

resentation of the original data. Contrary to TriMap, it also focusses on Mid-Near

Pairs[2]. Near Pairs are the nearest neighbours based on a scaled distance metric.

Mid-near pairs are established by sampling 6 points per observation and then select-

ing the second-closest point based on distance. The amount of Mid-Near Pairs is set

by the MN ratio. Finally, Further Pairs are non-neighbours, and the amount of pairs

is set using the FP ratio. After initializing with PCA, PaCMAP uses a weighted loss

function to optimize the low dimensional representation. The loss function is primarily

driven by the Near Pairs and Mid-Near Pairs, but gradually is mostly influenced by

the Near Pairs. This means that the loss is highly increased if close points in original

space are set further away in the reduced space.
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Gaussian Random Projection

Gaussian Random Projection (GRP) is a dimension reduction technique that is

based on the Johnson-Lindenstrauss lemma, which states that any high-dimensional

Euclidean space can be reduced onto a lower-dimensional Euclidean space with

minimal distortion (at most 1+ ϵ) of the pairwise distance [36], and a result by Hecht-

Nielsen[37] who showed that a random selection of vectors in a high-dimensional space

can be considered an orthogonal projection. Gaussian Random Projection does this by

projecting original data on a randomly generated matrix with Gaussian distributions.

However, the accuracy of the projection and the amount of required components for

dimension reduction is highly dependent on the amount of samples and the permitted

error (ϵ), specifically n components ≥ 4ln(n samples)/(ϵ2/2− ϵ2/3) [38]. This means

that GRP can require more components than available dimensions when the num-

ber of dimensions is sufficiently low and the number of observations is high. To that

end, we included GRP as a negative control for the dimension reduction quality met-

rics, because we would expect that this method would perform worst when dimension

reduction the data to a low number of dimensions (≤10) because of this constraint,

since our data consists of over 3 million samples.

5.2.2 Parameter Tuning

We tuned the amount of neighbours used for UMAP, TriMap, PaCMAP

(n neighbours). For UMAP and PaCMAP we were interested in the number of neigh-

bours, but for TriMap we were interested in the number of outliers and inliers, since

this is important for the construction of triplets in TriMap. Both PCA and GRP do

not require any tuning on nearest neighbours, since they are not neighbours-based.

Additionally, we also investigated the number of dimensions (n components) that were

generated by all the dimension reduction methods, as this might increase the amount

of information stored in the dimension reduction. For example, in PCA, the amount
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of total variation explained increases when the amount of components is increased.

As computing numerous distinct dimension reductions and their performance is com-

putationally expensive using a nearest-neighbours approach, we also investigated the

number of samples we could use for dimension reduction purposes.

5.2.3 Distance Metrics

One important step in the assessment of dimension reduction techniques is the distance

metric with which we assess the distances between data points and with which we

perform the dimension reduction for the manifold approaches. As mentioned above,

the number of dimensions of the reduced data with Euclidean distance is dependent

on the number of samples and the permitted distortion (ϵ). For a dataset with roughly

three million samples, and roughly one hundred dimensions, this means that we are

not able to project the data to a lower-dimensional Euclidean space while preserving

the distortion 0 < ϵ < 1. This practically excludes using the Euclidean distance metric

from the perspective of distance preservation, and a fractional distance metric is best

suited for the description of distances in high dimensionality (d > 30) [39]. We decided

to pursue the Manhattan distance as the simplest expression of the fractional distance.

5.2.4 Dimension Reduction Quality Metrics

Two main ways that are used for dimension reduction quality metrics are evaluating

the global and local structure [2]. Local structure metrics evaluate neighbourhoods of

points and how well these are preserved in the reduced data, while global structure

metrics evaluate how well the reduced data preserved the relationships between groups

of points. In this study, both global and local distance metrics were used to find a

balanced representation of the CELL-DYN Sapphire data in lower dimension. The

metrics are generally rank-based, since these are insensitive to scaling. One unifying

framework for rank-based metrics is the co-ranking matrix (Q-matrix) [40]. The Q-

matrix compares the pairwise ranks of the original data versus the reduced data,
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showing the preservation of local and global distances. Calculating a Q-matrix consists

of two steps. Firstly, a ranking of distances between points in both original and reduced

data is calculated. Thereafter, a single matrix is constructed combining both rankings,

explaining rank preservation in the low-dimensional data.

For local preservation measures, we further used the proportion of neighbouring

points being preserved (the neighbourhood-kept-ratio), and the trustworthiness score.

The neighbourhood-kept-ratio [6] is computed using the number of nearest neighbours

N(i) for all i in high-dimensional space and the k-nearest neighbours N′(i) for all i

in low-dimensional space, where i is each data point. Consequently, N(i) and N′(i)

are compared to see the intersection between their neighbourhoods. The degree of

overlap is calculated, and divided by the number of k to calculate a ratio for each

i. Subsequently, this ratio is divided by the number of samples to get the average

neighbourhood preservation. The trustworthiness score ranks neighbourhood points

in accordance with how close they are to the observations i in low- and high- dimen-

sional spaces [41]. If the ranks of neighbourhood points are misaligned in the reduced

space, the metric will penalise these shifts, resulting in a lower score. A version of the

trustworthiness score [41] was used in this study with help of the Q-matrix framework

[42].

For global preservation measures, we used random triplet score and spearman rank

correlation. The random triplet score is calculated by retrieving sets of two points (j, k)

at random per i in the original data to form triplets (i, j, k) [2]. After this, it finds the

same set of triplets in the reduced space and calculates the distance from i to j (dij)

and k (dik) for both the original and the reduced data. It then orders dij and dik based

on their distance in both datasets. The degree of order preservation indicates global

structure preservation by the dimension reduction method. Five triplets per i were

used in this study. Finally, pairwise distances can be measured using the Spearman

rank correlation to assess distance preservation in the reduced data. Another strength
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of this method is that distance correlation is easily visualized in a graph (e.g., figure

S3 and 4) to assess the correlation of distances between low- and high-dimensional

spaces. To compare the different dimension reduction methods with regards to their

quality metrics, we performed a the quality assessments in 10-fold, and used a T-test

for comparison.

5.3 Preservation of biological representation

5.3.1 Diurnal patterns

Because biological relevance and meaning of the data should be maintained in the

dimension reduction, we assessed preservation of biological relevance from four differ-

ent angles. The first and descriptive angle was by studying diurnal patterns in the

reduced dataset, as the size of the original dataset allowed us to investigate large pat-

terns within the data. We assessed the diurnal patterns in the reduced data with the

use of a cosine fit, as implemented in the CosinorPy library[43].

5.3.2 Age and sex

The second angle was to assess biological relevance by two classification tasks that

should be identifiable in the data: firstly, sex prediction in samples of patients between

the age of 20 to 50, as during this age-range a clear distinct difference of hemoglobin

between men and women exists [44]. Secondly, prediction of samples of patients below

20 versus patients above 60 years old, as the haematological characteristics of young

people are known to be distinct from older people [45]. For this purpose, we used

Gradient Boosting (GB) model to capture any non-linear associations. To assess the

performance of the resulting models, we decided to focus on the accuracy and the

Matthews Correlation Coefficient (MCC) metric. The accuracy is the correct pre-

diction of positive and negative cases, divided by the total amount of positives and

negatives, i.e. TP+TN
TP+FP+TN+FN , where TP, FP, TN and FN are true and false positives,
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and true and false negatives respectively. The MCC, or the ϕ coefficient, is a measure of

the quality of a binary classification model that takes into account true and false posi-

tives and negatives, i.e., is a summary measure for the confusion matrix, comparable to

the F1 metric. MCC is calculated as follows: TP×TN−FP×FN√
(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

.

The data were analysed using 10-fold cross validation with an inner validation set (as

a result of the folds) and a dedicated outer validation set. 170,000 random samples

were used for training, 30,000 random samples were used for the dedicated validation

set. We assessed the significance of performance change using a T-test.

5.3.3 Cluster preservation

The third angle was to study the preservation of clusters of similar patients in the

reduced data. We thus analyzed both the raw and the reduced data using HDBSCAN

[46] and k-means clustering[47] and retrieved information on computational and ana-

lytical performances. K-means clustering retrieves a predefined number of clusters (k)

based on the Euclidean distance towards a cluster centre, and tries to minimize the

sum of distances over these k clusters. In practice, this can result in clusters that are

of equal size and density, but are unintuitive for interpretation. HDBScan is assigning

clusters based on the density of the data, and is therefore more suitable to retrieve

clusters with varying densities. This increases the possibility of retrieving meaningful

clusters. For this approach, we were interested in the number of clusters extracted,

the Normalised Mutual Information (NMI) and Adjusted Rand Index (ARI) scores.

The NMI and ARI scores are ways to report the extent of cluster preservation in the

reduced data, by taking the clusters in the original data as ground truth.

5.3.4 Identification of leukemia-like patients

As a final angle to assess performance of preservation of biological relevance, we inves-

tigated a specific population that is completely divergent from the general population

in terms of CBC. To this end, we used samples from patients with chronic lymphatic
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leukemia that were diagnosed based on CBC characteristics, more specifically: very

high lymphocyte counts. These samples should be clearly distinguishable in the lower

dimension representation. Failure to detect these patients would significantly impact

the use of the dimension reduction methods in clinical practice. To detect poten-

tially significant differences between the populations, we used an unpaired T-test, and

considered a p-value below 0.001 to be significant.

6 Declarations

Ethics approval and consent to participate: The institutional review board

(Medical Research Ethics Comittee NedMec) waived the need for informed con-

sent, as only pseudonymized data were used for a large patient sample. The study

was in concordance with the declaration of Helsinki. This study was not subject to

the Human Subjects Act (in Dutch: Wet Medisch-Wetenschappelijk onderzoek met

mensen, WMO) and we therefore obtained a waiver for study approval from the

institutional review board (Medical Research Ethics Comittee NedMec).

Consent for publication: Not Applicable

Availability of data and materials: The datasets generated and/or analysed

during the current study are not publicly available due to privacy regulations but are

available from the corresponding author on reasonable request.

Competing interests Institutional grants by Abbott Hematology, Abbott

Global, Siemens Healthineers and Beckman Coulter were received by the authors’

department. None of these organizations had a role in conceptualization, design, data

collection, analysis, decision to publish, or preparation of the manuscript. The authors

declare that they have no further competing interest.

Funding No funding was received for this research.

30

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


Authors’ contributions: Conceptualization: HJJ, SH, BvE; Methodology: HJJ,

CC, BvE; Software: HJJ, CC, BvE; Validation: HJJ, AH, WWvS, SH; Formal Analy-

sis: HJJ, CC, BvE; Investigation: HJJ, CC, BvE; Resources: SH; Data Curation: HJJ,

CC, SH, BvE; Writing -original draft preparation: HJJ; Writing -review and editing:

All Authors; Visualization: HJJ, CC, BvE; Supervision: AH, IEH, WWvS, SH.

Acknowledgements: Not Applicable

31

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


Bibliography

[1] Leland McInnes et al. “UMAP: Uniform Manifold Approximation and Projec-

tion”. In: Journal of Open Source Software 3.29 (2018), p. 861.

[2] Yingfan Wang et al. “Understanding How Dimension Reduction Tools Work:

An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP

for Data Visualization”. In: CoRR abs/2012.04456 (2020). arXiv: 2012.04456.

url: https://arxiv.org/abs/2012.04456.

[3] Ehsan Amid and Manfred K. Warmuth. “TriMap: Large-scale Dimensionality

Reduction Using Triplets”. In: CoRR abs/1910.00204 (2019). arXiv: 1910.00204.

url: http://arxiv.org/abs/1910.00204.

[4] Paulina Rybakowska et al. “Data processing workflow for large-scale immune

monitoring studies by mass cytometry”. In: Computational and Structural

Biotechnology Journal 19 (2021), pp. 3160–3175. issn: 2001-0370. doi: https:

//doi.org/10.1016/j.csbj.2021.05.032. url: https://www.sciencedirect.com/

science/article/pii/S2001037021002130.

[5] Ireneusz Stolarek et al. “Dimensionality reduction by UMAP for visualizing

and aiding in classification of imaging flow cytometry data”. In: iScience 25.10

(2022), p. 105142. issn: 2589-0042. doi: https : / / doi . org / 10 . 1016 / j . isci .

2022 . 105142. url: https : / / www . sciencedirect . com / science / article / pii /

S2589004222014146.

[6] Haiyang Huang et al. “Towards a comprehensive evaluation of dimension

reduction methods for transcriptomic data visualization”. In: Communications

Biology 5 (1 Dec. 2022). issn: 23993642. doi: 10.1038/s42003-022-03628-x.

[7] Kevin Moon et al. “Visualizing structure and transitions in high-dimensional

biological data”. In: Nature Biotechnology 37 (Dec. 2019), pp. 1482–1492. doi:

10.1038/s41587-019-0336-3.

32

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://arxiv.org/abs/2012.04456
https://arxiv.org/abs/2012.04456
https://arxiv.org/abs/1910.00204
http://arxiv.org/abs/1910.00204
https://doi.org/https://doi.org/10.1016/j.csbj.2021.05.032
https://doi.org/https://doi.org/10.1016/j.csbj.2021.05.032
https://www.sciencedirect.com/science/article/pii/S2001037021002130
https://www.sciencedirect.com/science/article/pii/S2001037021002130
https://doi.org/https://doi.org/10.1016/j.isci.2022.105142
https://doi.org/https://doi.org/10.1016/j.isci.2022.105142
https://www.sciencedirect.com/science/article/pii/S2589004222014146
https://www.sciencedirect.com/science/article/pii/S2589004222014146
https://doi.org/10.1038/s42003-022-03628-x
https://doi.org/10.1038/s41587-019-0336-3
https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


[8] Jingbo Pang, Mark Maienschein-Cline, and Timothy J. Koh. “Mono-

cyte/Macrophage Heterogeneity during Skin Wound Healing in Mice”. In: The

Journal of Immunology 209.10 (Nov. 2022), pp. 1999–2011. issn: 0022-1767. doi:

10.4049/jimmunol.2200365. eprint: https://journals.aai.org/jimmunol/article-

pdf/209/10/1999/1533499/ ji2200365 .pdf. url: https ://doi .org/10 .4049/

jimmunol.2200365.

[9] Francesco Trozzi, Xinlei Wang, and Peng Tao. “UMAP as a Dimensionality

Reduction Tool for Molecular Dynamics Simulations of Biomacromolecules: A

Comparison Study”. In: The Journal of Physical Chemistry B 125.19 (2021).

PMID: 33973773, pp. 5022–5034. doi: 10.1021/acs.jpcb.1c02081. eprint: https:

//doi.org/10.1021/acs.jpcb.1c02081. url: https://doi.org/10.1021/acs.jpcb.

1c02081.

[10] Maarten J. ten Berg et al. “Linking laboratory and medication data: new

opportunities for pharmacoepidemiological research”. en. In: Clinical Chemical

Laboratory Medicine 45.1 (Jan. 2007). issn: 1434-6621, 1437-4331. doi: 10.1515/

CCLM.2007.009.

[11] Michael SA Niemantsverdriet et al. “Added diagnostic value of routinely mea-

sured hematology variables in diagnosing immune checkpoint inhibitor mediated

toxicity in the emergency department”. In: Cancer Medicine (2023).

[12] Michael SA Niemantsverdriet et al. “A machine learning approach using end-

point adjudication committee labels for the identification of sepsis predictors at

the emergency department”. In: BMC Emergency Medicine 22.1 (2022), p. 208.

[13] Huibert-Jan Joosse et al. “In-vitro and in-silico evidence for oxidative stress as

drivers for RDW”. In: Scientific Reports 13.1 (2023), p. 9223.

[14] L Malin Overmars et al. “Characteristics of peripheral blood cells are indepen-

dently related to major adverse cardiovascular events after carotid endarterec-

tomy”. In: Atherosclerosis Plus (2023).

33

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.4049/jimmunol.2200365
https://journals.aai.org/jimmunol/article-pdf/209/10/1999/1533499/ji2200365.pdf
https://journals.aai.org/jimmunol/article-pdf/209/10/1999/1533499/ji2200365.pdf
https://doi.org/10.4049/jimmunol.2200365
https://doi.org/10.4049/jimmunol.2200365
https://doi.org/10.1021/acs.jpcb.1c02081
https://doi.org/10.1021/acs.jpcb.1c02081
https://doi.org/10.1021/acs.jpcb.1c02081
https://doi.org/10.1021/acs.jpcb.1c02081
https://doi.org/10.1021/acs.jpcb.1c02081
https://doi.org/10.1515/CCLM.2007.009
https://doi.org/10.1515/CCLM.2007.009
https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


[15] L Malin Overmars et al. “Sexual dimorphism in peripheral blood cell charac-

teristics linked to recanalization success of endovascular thrombectomy in acute

ischemic stroke”. In: Journal of Thrombosis and Thrombolysis (2023), pp. 1–12.

[16] Huibert-Jan Joosse et al. “Describing characteristics and differences of neu-

trophils in sepsis, trauma, and control patients in routinely measured hematology

data”. In: Biomedicines 10.3 (2022), p. 633.

[17] SJ Pocock et al. “Diurnal variations in serum biochemical and haematological

measurements.” In: Journal of clinical pathology 42.2 (1989), pp. 172–179.

[18] Henriette P Sennels et al. “Diurnal variation of hematology parameters in

healthy young males: the Bispebjerg study of diurnal variations”. In: Scandi-

navian journal of clinical and laboratory investigation 71.7 (2011), pp. 532–

541.

[19] Etienne Becht et al. “Dimensionality reduction for visualizing single-cell data

using UMAP”. In: Nature Biotechnology 37.1 (Jan. 2019), pp. 38–44. issn: 1546-

1696. doi: 10.1038/nbt.4314. url: https://doi.org/10.1038/nbt.4314.

[20] Yang Yang et al. “Dimensionality reduction by UMAP reinforces sample het-

erogeneity analysis in bulk transcriptomic data”. In: Cell reports 36.4 (2021),

p. 109442.

[21] Antonio Gracia et al. “A methodology to compare Dimensionality Reduction

algorithms in terms of loss of quality”. In: Information Sciences 270 (2014),

pp. 1–27. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.2014.02.068. url:

https://www.sciencedirect.com/science/article/pii/S0020025514001741.

[22] David A Ross et al. “Incremental learning for robust visual tracking”. In:

International journal of computer vision 77 (2008), pp. 125–141.

[23] Stephen G. Sireci. In: Journal of Educational Measurement 40.3 (2003), pp. 277–

280. issn: 00220655, 17453984. url: http ://www. jstor . org/ stable/1435131

(visited on 07/12/2023).

34

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/https://doi.org/10.1016/j.ins.2014.02.068
https://www.sciencedirect.com/science/article/pii/S0020025514001741
http://www.jstor.org/stable/1435131
https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


[24] Antje Torge et al. “Diurnal variation of leukocyte counts affects the indirect esti-

mation of reference intervals”. In: Journal of Laboratory Medicine 45.2 (2021),

pp. 121–124.

[25] Katrin Ackermann et al. “Diurnal rhythms in blood cell populations and the

effect of acute sleep deprivation in healthy young men”. In: Sleep 35.7 (2012),

pp. 933–940.

[26] Haozhe Xie et al. “Comparison among dimensionality reduction techniques based

on Random Projection for cancer classification”. In: Computational Biology and

Chemistry 65 (2016), pp. 165–172. issn: 1476-9271. doi: https://doi.org/10.

1016/ j . compbiolchem .2016 . 09 . 010. url: https : / /www. sciencedirect . com/

science/article/pii/S1476927116304108.

[27] Yun Bai et al. “A comparison of dimension reduction techniques for support

vector machine modeling of multi-parameter manufacturing quality prediction”.

In: Journal of Intelligent Manufacturing 30.5 (June 2019), pp. 2245–2256. issn:

1572-8145. doi: 10.1007/s10845-017-1388-1. url: https://doi.org/10.1007/

s10845-017-1388-1.

[28] G. Thippa Reddy et al. “Analysis of Dimensionality Reduction Techniques on

Big Data”. In: IEEE Access 8 (2020), pp. 54776–54788. doi: 10.1109/ACCESS.

2020.2980942.

[29] Timothy I. Cannings and Richard J. Samworth. “Random-projection Ensemble

Classification”. In: Journal of the Royal Statistical Society Series B: Statistical

Methodology 79.4 (June 2017), pp. 959–1035. issn: 1369-7412. doi: 10 .1111/

rssb.12228. eprint: https://academic.oup.com/jrsssb/article-pdf/79/4/959/

49214760/rssb12228-sup-0001-supinfo.pdf. url: https://doi.org/10.1111/rssb.

12228.

[30] Yang Zhang and Zhidong Zhao. “Fetal state assessment based on cardiotocog-

raphy parameters using PCA and AdaBoost”. In: 2017 10th International

35

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/https://doi.org/10.1016/j.compbiolchem.2016.09.010
https://doi.org/https://doi.org/10.1016/j.compbiolchem.2016.09.010
https://www.sciencedirect.com/science/article/pii/S1476927116304108
https://www.sciencedirect.com/science/article/pii/S1476927116304108
https://doi.org/10.1007/s10845-017-1388-1
https://doi.org/10.1007/s10845-017-1388-1
https://doi.org/10.1007/s10845-017-1388-1
https://doi.org/10.1109/ACCESS.2020.2980942
https://doi.org/10.1109/ACCESS.2020.2980942
https://doi.org/10.1111/rssb.12228
https://doi.org/10.1111/rssb.12228
https://academic.oup.com/jrsssb/article-pdf/79/4/959/49214760/rssb12228-sup-0001-supinfo.pdf
https://academic.oup.com/jrsssb/article-pdf/79/4/959/49214760/rssb12228-sup-0001-supinfo.pdf
https://doi.org/10.1111/rssb.12228
https://doi.org/10.1111/rssb.12228
https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


Congress on Image and Signal Processing, BioMedical Engineering and Infor-

matics (CISP-BMEI). 2017, pp. 1–6. doi: 10 . 1109 / CISP - BMEI . 2017 .

8302314.

[31] T Sainburg, L McInnes, and TQ Gentner. “Parametric UMAP Embeddings for

Representation and Semisupervised Learning.” In: Neural Computation (2021),

pp. 1–27.

[32] Isaac Robinson. “Interpretable visualizations with differentiating embedding

networks”. In: arXiv preprint arXiv:2006.06640 (2020).

[33] Sofie Van Gassen et al. “FlowSOM: Using self-organizing maps for visualiza-

tion and interpretation of cytometry data”. In: Cytometry Part A 87.7 (2015),

pp. 636–645.

[34] Stef van Buuren. “Multiple imputation of discrete and continuous data by

fully conditional specification”. In: Statistical Methods in Medical Research 16.3

(2007). PMID: 17621469, pp. 219–242. doi: 10.1177/0962280206074463. url:

https://doi.org/10.1177/0962280206074463.

[35] D. J. Stekhoven and P. Buhlmann. “MissForest–non-parametric missing value

imputation for mixed-type data”. In: Bioinformatics 28.1 (Oct. 2011), pp. 112–

118. doi: 10 . 1093 /bioinformatics / btr597. url: https : / / doi . org / 10 . 1093 \

%2Fbioinformatics\%2Fbtr597.

[36] W Johnson J Lindenstrauss. “Extensions of Lipschitz maps into a Hilbert space”.

In: Contemp. Math 26.189-206 (1984), p. 2.

[37] Robert Hecht-Nielsen et al. “Context vectors: general purpose approximate

meaning representations self-organized from raw data”. In: Computational

intelligence: Imitating life 3.11 (1994), pp. 43–56.

[38] Sanjoy Dasgupta and Anupam Gupta. “An elementary proof of a theorem of

Johnson and Lindenstrauss”. In: Random Structures & Algorithms 22.1 (2003),

pp. 60–65.

36

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.29.24312784doi: medRxiv preprint 

https://doi.org/10.1109/CISP-BMEI.2017.8302314
https://doi.org/10.1109/CISP-BMEI.2017.8302314
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093\%2Fbioinformatics\%2Fbtr597
https://doi.org/10.1093\%2Fbioinformatics\%2Fbtr597
https://doi.org/10.1101/2024.08.29.24312784
http://creativecommons.org/licenses/by/4.0/


[39] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. “On the sur-

prising behavior of distance metrics in high dimensional space”. In: Database

Theory—ICDT 2001: 8th International Conference London, UK, January 4–6,

2001 Proceedings 8. Springer. 2001, pp. 420–434.

[40] John A Lee and Michel Verleysen. “Quality assessment of dimensionality

reduction: Rank-based criteria”. In: Neurocomputing 72.7-9 (2009), pp. 1431–

1443.

[41] Samuel Kaski et al. “Trustworthiness and metrics in visualizing similarity of

gene expression”. In: BMC Bioinformatics 4.48 (2003). url: https://doi.org/

10.1186/1471-2105-4-48.

[42] Yinsheng Zhang, Qian Shang, and Guoming Zhang. “pyDRMetrics-A Python

toolkit for dimensionality reduction quality assessment”. In: Heliyon 7.2 (2021),

e06199.
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