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Abstract 
       Accurate identification of direct causal(parental) variables for a target is of primary interest in many 

applications, especially in biomedicine. It could promote our understanding of the underlying pathophysiological 

mechanism and facilitate the discovery of new biomarkers and therapeutic targets for studied clinical outcomes. 

However, many researchers are inclined to resort to association-based machine learning methods to identify 

outcome-associated variables. And many of the identified variables may prove to be irrelevant. On the other hand, 

there is a lack of an efficient method for reliable parental set identification, especially in high-dimensional settings 

(e.g., biomedicine).  

        Here, we proposed a novel and efficient two-stage approach (I-GCM) to discover the direct causal variables 

(including genetic and clinical variables) for various outcomes. Variable selection was first performed by the PC-

simple algorithm. Then it exploited the invariance of causal relations in different (experimental) settings, which 

was represented by generalized covariance measure calculated from gradient-boosted trees, for efficient and 

reliable causal variable discovery.  

        We first verified the proposed method through extensive simulations. This approach constantly yielded high 

precision (a.k.a., positive predictive value) and specificity while maintaining satisfactory sensitivity in general, 

and consistently outperformed a standard Notably, the precision was larger than 90% in our simulated scenarios, 

even in high-dimensional settings. We then applied the proposed method to 4 clinical traits to uncover the 

corresponding direct causal variables. Encouragingly, many identified clinical variables, genes and pathways were 

supported by the literature. Our proposed method constantly achieved superior performance in identifying actual 

direct causal variables, making it particularly useful in selecting what (genetic/clinical) risk factors to follow up. 

Importantly, our work represents one of the first applications of the invariance principle for causal inference in 

biomedical or clinical studies, and suggests a new avenue for causal discovery in these settings.   

 

 

Introduction 

Accurate identification of direct causal(parental) variables for a target variable is crucial in many 

applications. It could enhance our understanding of the biological and pathophysiological mechanisms underlying 

various diseases/traits. More importantly, it may lead to the discovery of new biomarkers and therapeutic targets 

for studied clinical outcomes. In recent years, causal inference has gained increasing attention in different areas1-

5., e.g., economics, social science, biomedicine, etc.  Despite this trend, many researchers still rely on machine 

learning methods, e.g., linear regression, random forest, and deep neural networks, to decipher outcome-associated 
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variables. However, these methods are association-based, and association does not necessarily imply causation. 

Many identified variables may be subject to the influence of confounders and prove to be irrelevant to the target.  

 

Causal inference could serve as a valuable tool to eliminate spuriously associated variables. However, 

fewer studies have investigated how to identify the direct(parental) causal variables for the target variable. In 

earlier work, Buhlmann et al.6 presented a method (PC-simple), which utilized partial correlation screening, to 

infer the linear causal relations between covariates and the target from observational data. It’s an efficient method 

in high-dimensional settings but tended to have a high false discovery rate. Besides, it was not designed to 

incorporate multiple data sources for causal inference. Also, a prior assumption of a linear model was required. A 

previous work by Peters et al.7 proposed to exploit the invariance property of a causal linear model (ICP) from 

different experimental settings/environments (i.e., observational and interventional data) to uncover the direct 

causal variables for a target. This method first enumerated all variable sets and then examined whether each set is 

a candidate parental set. This is done by testing whether the residuals derived from the linear model fitted on the 

current variable set are equally distributed across different environments. The ultimate causal variable set is the 

intersection of all candidates. Heinze-Deml et al.8 extended the work by Peters et al to accommodate nonlinear 

causal relations (nonlinear ICP). However, the computational complexity of the above grows super-exponentially 

with variable dimension (2𝑞). Moreover, it may be challenging to achieve high power if the actual parental set 

size is >2. Consequently, these methods may not be practical or suitable for high-dimensional settings. 

 

In this study, we introduced a novel approach, invariant generalized covariance measure (I-GCM), 

designed to accurately identify direct causal variables for a given variable of interest. The method operates in two 

stages. The first stage involves variable selection using the PC-simple method. The second stage exploits the 

invariant property of causal relations indicated by the generalized covariance measure (GCM) to reliably discover 

causal variables from multiple data sources. We proposed to use gradient-boosted trees to compute the generalized 

covariances between variables, boosting the capability to discern both linear and non-linear relations between 

variables. The initial face of variable selection substantially reduces the feature dimension, leading to improved 

computational efficiency. We hypothesized that leveraging the heterogeneity inherent across varied data sources 

can substantially reduce the false positive rate in causal variable discovery. This reduction in false discovery rate 

is particularly desirable in many applications, especially in the field of biomedicine and medicine, where precision 

is paramount given that experimental validation often entails considerable time and resources. To assess the 

feasibility and validity of the proposed I-GCM approach, we conducted extensive simulations and applied the 

method to uncover direct causal variables for various traits/diseases with clinical significance.  

 

        Our contributions can be summarized as follows:  

(1) We combined machine learning approaches and the principles of ICP to identify (direct) causal variables in 

the presence of a large number of covariates. Previous ICP applications or method primarily focus on the case 

when only a limited of covariates are present; however, in many applications including biomedical studies, 

high-dimensional data (such as omics data) is very common and the conventional ICP approach may be 

difficult to be applied.  

(2) While the ICP principle is a very useful, theoretically sound, and novel approach for causal inference, it has 

observed very limited use in biomedical or clinical studies, especially more substantive applications in large 

datasets. We are also unaware of ICP being applied to genetic epidemiology studies. Here we applied the 

proposed approach to the UK-Biobank and identified potential (direct) causal genes leading to various clinical 

traits/disorders.  

(3) Related to the above, the finding of specific genes that may be directly causal to diseases such as COVID-19 

and traits such as lipid levels are of scientific and clinical importance. The findings may potentially inform 

drug development and genetic risk prediction, for example.  

 

To the best of our knowledge, our study pioneers the exploration of invariant causal prediction within 

the realm of genetic epidemiology and human genomics studies. It demonstrates the potential of this innovative 

method in reliably identifying causal variable set under high dimensional data settings. It is also the first to 
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discover both genetic and clinical causal risk factors for several important clinical outcomes, including COVID 

infection, severe COVID, and lipid traits such as high-density lipoprotein (HDL) and triglycerides (TG). 

         

Method 

In this study, we proposed the invariant generalized covariance measure(I-GCM), a novel two-stage 

framework designed to accurately identify causal variables for target variables. This framework comprises two 

steps, i.e., variable selection, and direct causal variable set identification. For variable selection, we proposed to 

employ the PC-simple6 algorithm, which utilizes ordered independence test to screen potential causal variables 

for the outcome under study. Following this, we employ our newly proposed metric, i.e., invariant generalized 

covariance measure, to infer the ultimate causal variable set for our studied trait from the preselected variables. 

This metric leverages the invariance property of causal relations across different experimental settings (e.g., 

observational and interventional) to identify direct causal variables. In the following sections, we will delve into 

the details of this method. 

 

Variable selection via PC-simple 

As mentioned earlier, we utilized the PC-simple algorithm to first perform variable selection. It employs 

partial correlation screening to eliminate irrelevant variables for the target variable. We first review the original 

PC-simple algorithm. Let 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑝]  be a 𝑛 × 𝑝  matrix for 𝑛  observations with 𝑝  variables, 𝑌  be a 

vector for 𝑛 observations. Suppose 𝑌 is defined by the following generative model: 

𝑌 =  ∑ 𝛽𝑗𝑋𝑗

𝑝

𝑗=1

+ 𝜀 (1) 

Here, 𝜀  indicates the noise item that is independent of 𝑋𝑗  and follows a multivariate normal distribution 

(𝜖 ~𝛮(0, ∑)). Variable with a non-zero 𝛽𝑗 is the true direct causal variable for  𝑌. If 𝑋𝑗 is independent of 𝑌, i.e., 

𝛽𝑗 = 0, then we have: 

∃𝑠 ⊆ 𝑆, 𝜌(𝑌, 𝑋𝑗|𝑋𝑠) = 0  (2) 

Here, 𝑆 = {1,2, … , 𝑗 − 1, 𝑗 + 1, … , 𝑝}  defines the set including variables excluding 𝑋𝑗 , 𝑠  is a subset of 𝑆 ,  

𝜌(𝑌, 𝑋𝑗|𝑋𝑆) denotes the partial correlation between 𝑋𝑗 and 𝑌. Since the distribution for the correlation coefficient 

is highly skewed, it’s difficult to directly test whether the partial correlation is zero. We could address this issue 

by employing the Fisher’s Z-transform: 

𝑍(𝑌, 𝑋𝑗|𝑋𝑠) =  
1

2
{
1 + 𝜌̂(𝑌, 𝑋𝑗|𝑋𝑠)

1 − 𝜌̂(𝑌, 𝑋𝑗|𝑋𝑠)
} (3) 

𝜌̂(𝑌, 𝑋𝑗|𝑋𝑠) indicates the estimated partial correlation from data. The null hypothesis of independence would be 

rejected if 

(𝑛 − |𝑠| − 3)1/2|𝑍(𝑌, 𝑋𝑗|𝑋𝑆)| > 𝜙−1(1 − 𝛼/2) (4) 

𝑛 denotes the sample size, |𝑠| is the cardinality of the set, 𝜙 indicates the inverse cumulative function for normal 

distribution. Recursively performing partial correlation screening with increased order could exclude irrelevant 

variables from previous candidate variables set until they do not vary anymore. The original candidate variable 

set is 𝑆. 

In this study, we set the maximum order of |𝑠| to 3 and 𝛼 to 0.05 for the feature screening process. This 

implies that variables which survive the 3-order partial correlation screening will be retained for further analysis. 

For more details about this method, please refer to 6. The feature dimension 𝑞 will be dramatically reduced after 

employing the PC-simple algorithm for feature selection. 

 

Causal variable set identification 

While the PC-simple algorithm outperforms commonly used feature selection methods (e.g., Lasso, 

elastic net, etc.) in selecting causally relevant variables for biomedical data, it still struggles with high false 
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positive rates in high-dimensional data and non-linear relations. To address these challenges, we proposed a novel 

framework that leverages the invariance property of causal models to identify a direct causal variable set. Causal 

relations are universal and robust across different experimental settings. The key idea underlying ICP is that the 

conditional distribution of the target variable Y given its direct causes (Xs) remains invariant, if we intervene on 

other variables in the model, except the target itself. Put it in another way, given the complete causal set, the 

conditional distributions for the target variable across various experimental settings should be identical. This also 

implies predictions from a causal model will remain consistent across different environments.  

 

In biomedical studies, ‘omics’ measurements are often made under a combination of interventional and 

observational settings, or under different interventions, for example knockout of different genes, different drug 

treatments etc. The ICP approach is a natural choice for causal inference in such scenarios, but it is also useful in 

observational settings with distinct ‘environments’. Intuitively, the causal structure or components should be 

consistent across different sub-populations, while non-causal components may vary. 

 

In a previous work, Rajen et al.9 proposed to use generalized covariance measure (GCM) to detect the 

causal relationships between variables. Notably, GCM We will extend this concept to reliably identify causal 

variable set in high-dimensional data settings.  

    

Generalized covariance measure (GCM) based causal variable identification 

For a given distribution of random variables (𝑋, 𝑌, 𝑍), we can always decompose the distribution into the 

following equations: 

𝑋 = 𝑓(𝑍) +  𝜀𝑋  

𝑌 = 𝑔(𝑍) + 𝜀𝑌 
(5) 

Notably, 𝑍 can either be a single variable or a set of variables. We employed the XGBoost (gradient boost trees)10 

to build the prediction models 𝑓(𝑍) and 𝑔(𝑍). Note that there is no restriction on the type of regression or machine 

learning models for 𝑓(𝑍) and 𝑔(𝑍). In brief, XGBoost is a supervised learning method attempting to predict the 

target by combining the estimates from a sequential of simpler and weaker tree models. Each new tree is trained 

based on the residuals from the previous tree using gradient descent to minimize the loss.  Given 𝑛 observations 

for the variables (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) (𝑖 = 1,2, … 𝑛), we could calculate the product between residuals(R) from the prediction 

functions for each observation, i.e., 

𝑅𝑖 = (𝑥𝑖 − 𝑓(𝑧𝑖))(𝑦𝑖 − 𝑔(𝑧𝑖)) (6) 

The normalized sum of 𝑅𝑖  (𝑇
𝑛)(a.k.a., generalized covariance measure (GCM)) could be represented as follows: 

𝑇𝑛 =
√𝑛.

1
𝑛

∑ 𝑅𝑖
𝑛
𝑖=1

(
1
𝑛

∑ 𝑅𝑖
2𝑛

𝑖=1 − (
1
𝑛

∑ 𝑅𝑟
𝑛
𝑟=1 )2)

1
2⁄

=

1
𝑛

∑ 𝑅𝑖
𝑛
𝑖=1

[(
1
𝑛

∑ 𝑅𝑖
2𝑛

𝑖=1 − (
1
𝑛

∑ 𝑅𝑟
𝑛
𝑟=1 )2)

1
2⁄ ]/√𝑛

 

 

(7) 

𝑇𝑛 could be utilized to test the null hypothesis that X and Y are conditional independent given variable(s) Z. Rajen 

et al.9 proved that  𝑇𝑛 is asymptotically standard normal. The null hypothesis would be rejected if |𝑇𝑛| has a larger 

value, i.e., 

 |𝑇𝑋𝑗
𝑒

𝑛 | > 𝜙−1(1 − 𝛼/2) (8) 

The parameter 𝛼 is set to a default value of 0.05. 

This method can be used to detect whether a single variable is causally relevant to the target variable. If the 

conditional set 𝑍 encompasses all direct cause for the target variable, then X and Y are conditionally independent 

given variable Z. In our case, X will be replaced by the environmental variable E, i.e., we will test if the target Y 

is independent of the environment E, given a set of covariates Z8.  

If Z contains all direct causal variables, Y should be invariant across or independent of E. It’s worth 

noting that even if Z includes some irrelevant variables, the above-mentioned null hypothesis remains valid. Direct 

application of this method for detecting reliable causal variable set may result in the identification of a set with 

superfluous irrelevant variables.  To mitigate this, we proposed to extend this concept and combine it with the 

invariance property of causal relations to identify reliable causal variable set for the target.  
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As discussed above, for a given environment variable 𝛦, the computed GCM between E and the target 

should be constant or similarly close to zero when conditioned on the full set of direct causes, even if some other 

(non-directly causal) variables are included. However, if we exclude some direct causes from the conditional set, 

the calculated GCM is expected to divert away from the center of the normal distribution. In other words, 

significant change on the calculated GCM would be observed between the reduced conditional set and full 

conditional set. If we exclude some irrelevant variables in the conditional set, the calculated GCM should remain 

stable. Notably, a direct causal variable for the target can also act as an environment variable7.  If this is the case, 

the aforementioned statements still hold; under this scenario, the computed GCM between E and the target will 

be non-zero, but the relationship should be constant, if conditioned on other direct causes. The “full set of direct 

causes” does not include the environment variable in this case. 

 

We employed backward feature selection to sequentially drop variables in the conditional set and 

calculate the GCM for each conditional set.  The variables were ordered by the derived Zmin value from the PC-

simple algorithm in descending order (i.e. the least likely causal variables are ranked last, and will be removed 

from the set first) before performing the backward feature selection. Here Zmin refers to the minimum z-statistic 

in the series of conditional tests from PC-simple; a higher Zmin in general reflects stronger causal relationships. 

Here we propose a backward elimination procedure as it is practically impossible to enumerate all combinations 

of all covariates as direct causal variables. This may be considered a ‘greedy’ approach, but it can greatly reduce 

computational burden to make modeling of high-dimensional data possible. 

 

The change in the distance of GCM from zero between two consecutive conditional sets (∆𝑇𝑛) could be 

represented as follows: 

∆𝑇𝑆𝑗−1,𝑆𝑗

𝑛 = |𝑇𝑆𝑗−1

𝑛 | − |𝑇𝑆𝑗

𝑛 | (9) 

Here we used the absolute value as we are mainly concerned about the distance of GCM from zero, which reflects 

the degree of independence of E and Y (GCM=0 indicates complete independence), conditioned on other estimated 

direct causes. The variance of the distance change of GCM (Var(∆𝑇𝑆𝑗−1,𝑆𝑗

𝑛 )) under the null can be estimated from 

the following: 

Var(∆𝑇𝑆𝑗−1,𝑆𝑗

𝑛 ) = 𝑉𝑎𝑟 (||𝑇𝑆𝑗−1

𝑛
||) + 𝑉𝑎𝑟 (|𝑇𝑆𝑗

𝑛
|) − 2 [𝐸 (|𝑇𝑆𝑗−1

𝑛
∗ 𝑇𝑆𝑗

𝑛
|) − 𝐸 (|𝑇𝑆𝑗−1

𝑛
|) ∗ 𝐸 (|𝑇𝑆𝑗

𝑛
|)] 

                             = 2 −
4

𝜋
(𝜌 ∗ 𝑎𝑟𝑐𝑠𝑖𝑛𝜌 +  √1 − 𝜌2) 11,12 

(10) 

where 𝜌 = 𝐶𝑜𝑟(𝑇𝑆𝑗−1

𝑛 , 𝑇𝑆𝑗

𝑛 ) indicates the correlation between product of residuals calculated from conditional set  

𝑆𝑗−1 and 𝑆𝑗, 𝑆𝑗−1 and 𝑆𝑗 respectively denote two consecutive conditional set with 𝑗 − 1 and 𝑗 variables. Since both 

𝑇𝑆𝑗−1

𝑛   and 𝑇𝑆𝑗

𝑛  follow standard normal distribution under the null, 𝐶𝑜𝑟 (𝑇𝑆𝑗−1

𝑛 , 𝑇𝑆𝑗

𝑛 ) = 𝐶𝑜𝑣 (𝑇𝑆𝑗−1

𝑛 , 𝑇𝑆𝑗

𝑛 ) holds. After 

replacing both 𝑇𝑆𝑗−1

𝑛  and 𝑇𝑆𝑗

𝑛  with equation 7, we have: 

𝐶𝑜𝑟 (𝑇𝑆𝑗−1

𝑛 , 𝑇𝑆𝑗

𝑛 ) = 𝐶𝑜𝑣 (𝑇𝑆𝑗−1

𝑛 , 𝑇𝑆𝑗

𝑛 ) =
𝐶𝑜𝑣(𝑅𝑆𝑗−1

𝑛 , 𝑅𝑆𝑗

𝑛 )/𝑁

𝑠𝑒 (𝑅𝑆𝑗−1

𝑛 ) ∗ 𝑠𝑒 (𝑅𝑆𝑗

𝑛 )
 (11) 

𝐶𝑜𝑣(𝑅𝑆𝑗−1

𝑛 , 𝑅𝑆𝑗

𝑛 ) indicates the covariance between product of residuals calculated from conditional set  𝑆𝑗−1 and 

𝑆𝑗 , 𝑠𝑒 (𝑅𝑆𝑗−1

𝑛 )  and 𝑠𝑒(𝑅𝑆𝑗

𝑛 )  respectively indicate the standard error for product of residuals calculated from 

conditional set  𝑆𝑗−1 and 𝑆𝑗 , 𝑁 is the sample size of the target dataset. For more details, please refer to the 

supplementary text. The null hypothesis of no significant distance change of GCM between two consecutive 

conditional set would be rejected if: 

∆𝑇𝑛

𝑠𝑞𝑟𝑡(Var(∆𝑇𝑛))
> 𝜙−1(1 − 𝛼) (12) 

Here 𝜙−1 denotes the cumulative function for normal distribution. We could identify a reliable direct causal 

variable set by Algorithm 1. Notably, 𝛼 and 𝑇 may vary between different data settings, where T refers to the 

threshold for ∆𝑇𝑛 . For low-dimensional setting, we could simply set 𝛼 to 0.05 and 𝑇 to 0. A more stringent 

criteria is recommended for high-dimensional settings. We recommended adopting a flexible detection rule based 
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on the number of remaining variables after feature selection. For example, the investigator may wish to 

experimentally follow up a limited number of genes, the thresholds may be adjusted such that the number of genes 

left matches with the number planned for further follow-up studies.  

     

Algorithm 1: I-GCM for causal variable set identification 

Input: 𝑿 ∈ 𝑹𝒏×𝒒, 𝒀 ∈ 𝑹𝒏, E ∈ 𝑹𝒏, 𝜶, T 

For j = q: 𝟐, set 𝑺𝒋 = {𝟏, 𝟐, … 𝒋}, 𝑺𝒋−𝟏 = {𝟏, 𝟐, … 𝒋 − 𝟏} 

1. Calculate the GCM between 𝑬 and Y by conditioning on 𝑺𝒋 (𝑻𝑺𝒋

𝒏 ) and 𝑺𝒋−𝟏(𝑻𝑺𝒋−𝟏

𝒏 ) respectively based on equations 6-7 

2. Compute the distance change between 𝑻𝑺𝒋−𝟏

𝒏  𝒂𝒏𝒅 𝑻𝑺𝒋

𝒏 , and the corresponding variance based on equations 9-10 

3. Test the null hypothesis of no significant distance change. If inequality 12 holds and ∆𝑻𝒏 > 𝑻 stop the testing 

end 

Output: causal variable set 𝑺𝒋  

Note: 𝒏 indicates number of all observations in environments set  𝐸, T denotes the predefined test statistic change 

 

Simulation 

To verify the validity of our proposed framework, we simulate different scenarios with varying total 

variable number (𝑝), sample sizes (𝑛), environment variable types (𝑡𝑒 ). Specifically, for each scenario, we 

randomly generated a directed acyclic graph (DAG) with the nodes representing the variables and the causal 

effects randomly generated from a given range following a uniform distribution. We employed the function 

“rmvDAG” in the R package “pcalg” 13 to realize this. The original function is designed to generate multivariate 

data with dependency structures specified by a given DAG. To make it adaptive to binary variables, we employed 

a predefined liability threshold(i.e.,0.3) to convert the simulated continuous variable into a binary one. As the 

threshold was solely used for variable type transformation, it does not affect the validity of our proposed method. 

The number of direct causes (𝑝𝑐) in each scenario was determined by graph density. To align with real-world 

application scenarios, we set the graph density to 0.05. We considered the following combination of settings: 

𝑝 ∈ {200,400,800,1000,2000,3000} 

𝑛 ∈ {30000,50000} 

𝑡𝑒 ∈ { direct cause, ancestor} 

We generated data from randomly chosen DAG following linear Gaussian structural equation models. Also, we 

generated scenarios with a mixture of linear and non-linear relations with 𝑝 ∈ {2000, 3000}. The simulated 

datasets were then utilized to identify the reliable causal variable set for the chosen target utilizing our proposed 

method. For all simulated scenarios, the last variable was chosen as the target variable. The environment variable 

was randomly selected from the direct causes or ancestors of the target.  

We evaluated the efficacy of our proposed method in identifying the direct causal variables for the target 

variable. Specifically, we utilized 4 different metrics to evaluate the performance, i.e., positive predictive value 

(PPV, a.k.a., precision), negative predictive value (NPV), sensitivity, specificity. PPV represents the proportion 

of identified direct causal variables that are true ones while NPV denoted the same for non-direct causal variables. 

Sensitivity measures the ability in detecting the true direct causal variables while specificity gauges the ability to 

identify actual non-direct causal variables.  

In addition, we compared the performance of our proposed method with the PC-simple algorithm in 

terms of recovering the direct causes for the target. For our proposed method, we divided the simulated dataset 

into different subsets based on the selected environment variable. For continuous environment variable, we firstly 

rank the samples based on the environment variable in ascending order, then split the original simulated dataset 

into 2 subsets based on the predefined subset size. If the environment variable is discrete, we divide the dataset 

according to the defined categories. 

 
Real data application 

We applied our proposed method to the UK-Biobank(UKBB) dataset, which contains GWAS data and 

clinical variables, to identify (direct) causal variable set for different phenotypes, i.e., COVID-19 infection, severe 

COVID-19, high density lipoprotein (HDL) and triglycerides (TG). Here, severe COVID-19 is defined by a 

combination of hospitalized and fatal cases. Notably, our input data comprises both clinical variables and imputed 

gene expression data.  In this study, we employed “PrediXcan”14 to impute tissue-specific gene expression levels 

from the genotypic data of the UK-Biobank subjects. In brief, PrediXcan was based on a prediction model for 
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gene expression levels using elastic-net based regression model on GTEx (a reference dataset with available 

genotype and gene expression). The genotypic data of the UK-Biobank subjects were then used to “impute” the 

tissue-specific gene expression levels. The continuous clinical covariates were directly extracted from the UK-

Biobank. The binary covariates were defined by ICD10-coded disease in the UK-Biobank. We incorporated 

imputed gene expression levels from whole blood and the lung for the analysis. Table 1 summarizes the studied 

phenotypes. For all application scenarios, we chose sex as the environment variable. 

 

Table 1 summary for studied phenotypes in UK-Biobank 

Phenotype Sample size No. of covariates Tissue 

COVID infection 154749 6366 Whole blood 

Severe COVID 154749 6366 Whole blood 

COVID infection 154749 8037 Lung 

Severe COVID 154749 8037 Lung 

HDL-C 328002 6349 Whole blood 

Triglycerides (TG) 328002 6349 Whole blood 

 

To further validate the reliability of our proposed method in identifying (direct) causal variables, we 

compared its performance with the PC-simple algorithm in identifying potential targets for COVID. Specifically, 

we assessed whether the gene sets identified by our method had an equivalent chance of being listed as targets in 

Open Targets. The targets associated with COVID were downloaded from Open Targets Platform, which provides 

measures of relevance (ranging between 0 and 1) between potential targets and COVID based on various factors 

such as associations with known drugs, hits in relevant GWAS, etc.  

 

To gain a deeper understanding of the biological mechanism underlying the identified causal genes for 

the target outcome, we performed pathway enrichment on the identified gene set. More specifically, an over-

representation analysis was conducted on the identified causal genes using the web-based tool “ConsensuspathDB” 
15,16. Furthermore, drug enrichment analyses were carried out to identify drugs related to COVID infection and 

severe COVID.  

 

 

 

 

Results 

 
Simulation results 

As mentioned above, stringent detection criteria are desired for high-dimensional data. Stability selection 

can help identify the optimal detection criteria, but this process is often time consuming, particularly with high-

dimensional data. We recommend setting 𝛼 to 5e-03 and 𝑇(change of GCM statistics) to 0.2 for high-dimensional 

data settings (remaining feature number >160 after feature selection).  Table 2 summarizes the simulation results 

for different scenarios. Our proposed method demonstrated robust performance in identifying direct causal 

variables for the target, constantly achieving high precision (a.k.a., positive predictive value (PPV)) and specificity 

(Table 3). Besides, it exhibited satisfactory power (sensitivity) in identifying actual direct causal variables (Fig. 

1). Notably, the PPVs exceeded 90% in all scenarios, making it particular useful in selecting variables for follow-

up studies. The performance remained stable even with an increase in variable numbers. The F1 and F0.5 scores, 

which consider both PPV and sensitivity, are also generally higher for the proposed I-GCM method. As expected, 

the power of our proposed method improved with larger sample sizes. Given that current dataset typically 

comprises a very large sample size, and the advent of large biobanks like the UK-Biobank has further boosted the 

availability of large-scale datasets, we believe our proposed method is highly effective in uncovering (direct) 

causal variables for the target variables in high-dimensional settings.       

 

Table 2 Simulation results for our proposed I-GCM and the PC-simple algorithm 

Overall 

sample 

size 

Environment 

variable type 

No. of 

input 

variables 

No. of 

overall 

true 

causal 

PC-simple I-GCM 

total 

no. 

true 

causal 

false 

causal 

total 

no. 

true 

causal 

false 

causal 

50000 Direct cause 200 11 13 9 4 7 7 0 

50000 Direct cause 400 21 27 17 10 15 15 0 
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50000 Direct cause 800 39 38 28 10 31 28 3 

50000 Direct cause 1000 51 57 43 14 46 42 4 

50000 Ancestor 1000 51 59 46 13 48 45 3 

30000 Direct cause 1000 51 54 36 18 33 33 0 

50000 Direct cause 2000 114 121 87 34 90 82 8 

50000 Ancestor 2000 114 110 87 23 99 86 13 

30000 Direct cause 2000 114 110 77 33 64 64 0 

50000 Direct cause 3000 163 215 122 93 111 108 3 

50000 Ancestor 3000 163 216 121 95 128 110 18 

30000 Direct cause 3000 163 168 114 54 115 97 18 

 

Table 3 Comparison on different evaluation metrics between our proposed I-GCM and the PC-simple algorithm  

Overall 

sample 

size 

Environment 

variable type 

No. of 

input 

variables 

No. of 

overall 

true 

causal 

PC-simple I-GCM 

PPV Sensitivity NPV Specificity F1-score F0.5-score PPV Sensitivity NPV Specificity F1-score F0.5-score 

50000 Direct cause 200 11 0.692 0.818 0.989 0.979 0.750 0.714 1.000 0.636 0.979 1.000 0.778 0.897 

50000 Direct cause 400 21 0.630 0.810 0.989 0.974 0.709 0.659 1.000 0.714 0.985 1.000 0.833 0.926 

50000 Direct cause 800 39 0.737 0.718 0.986 0.987 0.727 0.733 0.903 0.718 0.986 0.996 0.800 0.859 

50000 Direct cause 1000 51 0.754 0.843 0.990 0.987 0.796 0.770 0.913 0.824 0.990 0.998 0.866 0.894 

50000 Ancestor 1000 51 0.780 0.902 0.995 0.986 0.837 0.802 0.938 0.882 0.994 0.997 0.909 0.926 

30000 Direct cause 1000 51 0.667 0.706 0.984 0.981 0.686 0.674 1.000 0.647 0.981 1.000 0.786 0.902 

50000 Direct cause 2000 114 0.719 0.763 0.988 0.980 0.740 0.727 0.911 0.719 0.983 0.999 0.804 0.865 

50000 Ancestor 2000 114 0.791 0.763 0.986 0.988 0.777 0.785 0.869 0.754 0.985 0.993 0.807 0.843 

30000 Direct cause 2000 114 0.700 0.675 0.980 0.983 0.687 0.695 1.000 0.561 0.974 1.000 0.719 0.865 

50000 Direct cause 3000 163 0.567 0.748 0.985 0.967 0.645 0.596 0.973 0.663 0.981 0.999 0.789 0.890 

50000 Ancestor 3000 163 0.560 0.742 0.985 0.967 0.638 0.589 0.859 0.675 0.982 0.994 0.756 0.815 

30000 Direct cause 3000 163 0.679 0.699 0.983 0.981 0.689 0.683 0.843 0.595 0.977 0.994 0.698 0.778 

 

 
Fig.1 Comparison of performance in causal variables discovery between our proposed I-GCM and the PC-simple 

algorithm 

 

Both direct cause and ancestor variables can be selected as environment variables to identify direct causal 

variables. They demonstrated comparable performance in terms of the prediction metrics (refer to Table 3). It’s 

noteworthy that the direct cause seemed to be a more potent candidate for environment variable in eliminating 

false positives. We hypothesize that interventions on direct cause probably induced more discernable and 

detectable heterogeneity in the corresponding subsets than ancestors, aiding in distinguishing true causal variables 
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from false ones. This observation aligns with current studies on environment variable identification for causal 

inference17-19.  

We also compared our method with the commonly used PC-simple algorithm in high-dimensional 

settings. Our method outperformed PC-simple algorithm in identifying direct causal variables, yielding high PPV 

and specificity while maintaining comparable power in identifying actual direct causal variables. Most importantly, 

we observed that I-GCM substantially improve the PPV, with the difference in the PPV between the I-GCM and 

the PC-simple reaching 40% in some scenarios (refer to Fig. 2). The improvement was particularly pronounced 

in high-dimensional settings. Even though the sensitivity for our proposed method was sometimes slightly lower 

than that for the PC-simple algorithm, it achieved a substantially higher PPV, and that I-GCM consistently 

outperformed PC-simple in the F1 and F0.5 scores (which considers both the PPV and sensitivity). 

 
 

Fig.2 The differences regarding 4 evaluation metrics between the proposed I-GCM and the PC-simple algorithm 

 

We also evaluated the performance of the PC-simple between a stringent (i.e., 𝛼 = 0.01) and the default 

alpha cutoff (i.e., 𝛼 = 0.05). As anticipated, a decrease in alpha modestly improved the PPV, albeit at the expense 

of reduced power (refer to Fig. 3, Table 4). Most importantly, we discovered that the I-GCM could still 

significantly improve the PPV even with a stringent cutoff, particularly in high-dimensional settings (refer to Fig. 

4). This further proved the reliability and superiority of our proposed method. It’s also noteworthy that the 

proposed I-GCM constantly delivers satisfactory performance even in the presence of non-linear relations (Table 

S1). 

 

 
Fig. 3 Comparison of performance in causal variables discovery by the PC-simple algorithm with different 

cutoffs 
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Fig. 4 Comparison of performance in causal variables discovery between our proposed I-GCM and the PC-

simple algorithm with a more stringent alpha cutoff (i.e., 0.01) 

 

Table 4 Comparison of the performance between our proposed I-GCM and the PC-simple algorithm under 

different alpha cutoffs 

Alpha 

for 

PC-

simple 

Environment 

variable type 

No. of 

input 

variables 

No. of 

overall 

true 

causal 

PC-simple I-GCM 

PPV Sensitivity NPV Specificity F1-score F0.5-score PPV Sensitivity NPV Specificity F1-score F0.5-score 

0.01 Direct cause 2000 114 0.746 0.859 0.993 0.985 0.797 0.831 0.913 0.737 0.984 0.995 0.815 0.891 

0.05 Direct cause 2000 114 0.719 0.763 0.988 0.98 0.74 0.727 0.911 0.719 0.983 0.999 0.804 0.865 

0.01 Direct cause 3000 163 0.81 0.705 0.983 0.99 0.754 0.861 0.99 0.607 0.978 0.999 0.746 0.961 

0.05 Direct cause 3000 163 0.567 0.748 0.985 0.967 0.645 0.596 0.973 0.663 0.981 0.999 0.789 0.89 

 

 

 

Results for real data application 

We applied our method to several clinical traits to identify their corresponding causal variables. Table 5 

summarizes the number of identified causal variables using “predicted” tissue-specific gene expression levels and 

clinical variables. The included clinical variables were the same for both COVID infection and severe COVID. 

However, different clinical variables were included for HDL and triglycerides. Only target-relevant clinical 

variables were included for the causal variables set identification. All the included clinical variables were extracted 

from the UK-Biobank dataset with application no. 37268. As illustrated in Table 5, the number of direct causal 

variables identified for the same target varied when gene expression profiles from different tissues were included. 

Despite this variation, the identified causal clinical variables remained relatively stable across tissues. 

 

Table 5 Identified causal variables for different traits 

Phenotype No. of total causal variables No. of clinical variables No. of genes Tissue 

COVID infection 36 16 20 Whole blood 

Severe COVID 90 31 59 Whole blood 

COVID infection 70 17 53 Lung 

Severe COVID 156 33 123 Lung 

HDL 19 8 11 Whole blood 

Triglycerides (TG) 58 16 42 Whole blood 

 

Causal variable identification results for COVID infection 

For the blood-specific analysis, 36 (direct) causal variables were identified, while 70 were identified for 

the lung-specific analysis. Even though the overall causal variables varied between tissues, the (direct) causal 
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clinical variables were relatively stable across tissues for COVID infection. The identified clinical variables 

include age, doses of vaccine, Townsend index, BMI, LDL, ethnic group, coronary artery disease (CAD), 

dementia, atrial fibrillation (AF), and so on (for full details, please refer to Table S2). Encouragingly, all these 

clinical variables have been reported to be associated with COVID infection based on current studies. For example, 

age has been identified as the most important causal variable for COVID infection both for the analyses with the 

whole blood and the lung. Existing studies have demonstrated that older people, especially those over 70, are 

more susceptible to severe COVID infection than young adults20,21.  

The identified direct causal genes for COVID infection differed across tissues. We separately identified 

20 and 53 direct causal genes in the whole blood and the lung. More causal genes were identified based on imputed 

expression from the lung. Interestingly, we found that the ranking of identified causal genes varied between tissues. 

This aligned with our expectation, as COVID is a lung-related disease, and many disease-related genes are tissue 

specific. We compared the performance of our method with the PC-simple algorithm in identifying potential 

targets using the Fisher’s exact test. Our proposed method performed comparably with the PC-simple, although it 

tended to identify fewer variables. Many of the identified genes have been reported to be COVID-associated by 

existing studies, with some even identified as potential drug targets for COVID (Table 6, full results please refer 

to Table S2), e.g., CCR5, FYCO1, KCNN4, etc. Pattersson et al.22 reported that inhabiting CCR5 in COVID 

patients could lead to decreased inflammatory cytokines and COVID RNA in the plasma. FYCO1 has been 

identified COVID-associated gene from several GWAS23,24. More specifically, abnormal expression of this gene 

may lead to respiratory failure for COVID patients25. 

As expected, many of the enriched pathways have been reported to be relevant to COVID or related 

pathophysiology (Table S3). Here we highlighted a few interesting pathways. As one of the top enriched pathways 

for COVID infection, the N-acetylglucosamine (NAC) degradation pathway has been reported to be involved in 

chronic anti-inflammatory reactions, and a clinical study reported that NAC may lead to reduced hospital stay and 

ICU admission for COVID patients26. Acute viral myocarditis was another top-enriched pathway. Notably, acute 

myocarditis has been reported as a complication of COVID infection 27. The mitochondrial transcription initiation 

pathway, which was significantly enriched for COVID infection, has been reported to be associated with the 

mediation effects of COVID on innate immunity28. 

Table S4 demonstrates the drug enrichment results for COVID infection. Encouragingly, some of the 

enriched drugs have been tested/used to treat COVID patients in clinical practice. For example, ethinylestradiol 

was significantly enriched for COVID infection based on the gene sets identified from the whole blood. There is 

an ongoing clinical trial to evaluate whether estrogen therapy could lead to reduced hospitalization stays in non-

severe COVID patients29. Another study showed that recent hormone replacement therapy (HRT) was associated 

with reduced all-cause mortality in patients with COVID-1930 

 

 

Causal variable identification results for severe COVID  

For severe COVID, we identified 90 and 156 (direct) causal variables for the whole blood-specific and 

lung-specific analyses, respectively. Again, the identified clinical causal variables remained stable across tissues 

(i.e., whole blood and lung). The identified clinical variables include doses of vaccine, stroke, Townsend index, 

non-COVID pneumonia, type 2 diabetes mellitus (T2DM), renal failure, chronic obstructive pulmonary disease 

(COPD), renal failure, heart failure, venous thrombus embolism (VTE), waist circumference, HDL etc. (full 

results please refer to Table S2). Again, all identified clinical variables have been reported as risk factors for 

COVID severity in existing studies. For example, two doses of COVID vaccine was identified as the most 

important direct causal variable from our study. This finding aligns with most existing studies on COVID severity, 

which acknowledged that two doses of mRNA were highly effective in preventing hospital admission/death from 

COVID. A meta-analysis on 7,267,055 COVID patients revealed that stroke could lead to increased COVID 

mortality by an effect size of 1.331. T2DM was also one of the earliest identified risk factors for COVID severity32. 

COVID patients with T2DM have been reported to demonstrate poor therapeutic effects29. Other identified causal 

variables like stroke, non-COVID pneumonia, townsend index, renal failure, and COPD were also well-

acknowledged risk factors for COVID severity.  

We respectively identified 59 and 123 causal genes for the whole blood and the lung (Table S2). Similar 

to COVID infection, the rankings of the identified direct causal genes were tissue specific. We compared our 
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identified causal genes with those from the PC-simple algorithm to examine their potential to be listed as targets 

for COVID. We conducted fisher’s exact test to examine whether there exist significant detection power 

differences between our method and the PC-simple algorithm. As expected, comparable power was observed even 

though fewer causal genes were identified by our method. How do we know the power was similar?]. 

Encouragingly, many of the identified genes have been reported to be associated with severe COVID in existing 

studies, e.g., DNZL, JAK1, CCR5, PDE8B, POM121, etc. (Table 6, for more details, please refer to Table S4). 

Anderini et al.33 reported that DNLZ could affect the binding of zinc(II), which may further lead to an inefficient 

immune response to COVID infection. Chen et al.34 revealed that inhibition of JAK1 could lead to reduced 

cytokine release syndrome. It is also worth noting that baricitinib, a treatment that targets JAK1, has been used to 

treat COVID patients in clinical practice.  

We also performed pathway enrichment analysis on the identified causal gene set (Table S3). 

Encouragingly, many of the enriched pathways were significantly associated with the pathophysiology of COVID 

or related complications. For example, other interleukin signaling was one of the top-enriched pathways for severe 

COVID. Interleukin signaling pathways were intensively involved in anti-inflammatory activity 35, and thus may 

be used for early identification of severe COVID patients. Membrane Trafficking was also identified as a top-

enriched pathway. As suggested by Banerjee et al.36, interrupted membrane protein trafficking could lead to the 

disruption of signal recognition particles, which in turn could promote the propagation of COVID. Vesicle-

mediated transport was another significantly enriched pathway. In a previous study by Hassanpour et al.37, 

exosome (an extracellular vesicle) may play a role in COVID-19 virus infection.  

Drug enrichment analysis was also performed for severe COVID (Table S4). Again, we found some of 

the enriched drugs have been tested/used for treating COVID patients. Here we highlight a few examples. 

Doxorubicin was one of the top-enriched drugs for severe COVID. Several existing studies have implicated its 

clinical usefulness in treating COVID patients38-40 

Table 6 Examples of identified direct causal genes for studied clinical traits 

Phenotype Direct causal genes Tissue 

COVID infection CCR5, HLA-DPB2, JAK1, SPR14, RNF138 Whole blood 

Severe COVID DNLZ, JAK1, PUS10, GPM6A, ORAI1 Whole blood 

COVID infection FYCO1, KCNN4, VPS16, TULP2, RPUSD4  Lung 

Severe COVID POM121, PRSA,CCR5, PDE8B, FYC01 Lung 

HDL LPL, CCDC92, ACP2, FAM76B, GPR180 Whole blood 

Triglycerides (TG) BACE1, NRBP1, LPL, TRIM74, SLC56A Whole blood 

 

Causal variable identification results for HDL 

In total, we identified 19 direct causal variables for HDL, comprising 8 clinical variables and 11 genes 

(Table S2). The identified clinical variables included apolipoprotein A, TG, waist-hip ratio (WHR), cholesterol, 

hemoglobin (HB), low-density lipoprotein (LDL), BMI, and hip circumference.  These clinical variables have 

been reported to be important indicators for HDL levels. For example, apolipoprotein A is the major 

apolipoprotein for HDL, and its concentration level in the plasma could directly reflect that of HDL. TG and HDL 

are well-known risk factors for coronary artery disease (CAD). Jeppesen et al.41 demonstrated that the risk for 

CAD could be substantially reduced with low TG and high HDL levels. In a previous study, Hamalainen et al.42 

revealed that HB concentration in the plasma was closely associated with HDL particle size. More specifically, a 

high HB level could lead to large HDL particles, which is associated with an increased risk for various 

cardiovascular diseases like diabetes and metabolic syndromes. Furthermore, many of the identified causal genes 

have been demonstrated to be closely related to HDL (Table 6, full results please refer to Table S2c). For example, 

a previous study by Xiao et al.43 reported that CCDC92 has effect on the size and concentration of HDL particles 

in plasma. As suggested by Tsutsumi et al.44, a decrease in LPL activity was associated with unfavorable HDL 

levels in the plasma.  

Pathway enrichment analysis was also performed for HDL (Table S3). Some top pathways include 

‘composition of lipid particles’, ‘metabolic pathway of LDL, HDL and TG, including diseases’, and ‘role of ppar-

gamma coactivators in obesity and thermogenesis were found to be significantly enriched for HDL. Kersten45 

reported that the activation of PPAR receptors could lead to an increased HDL level in plasma. For more details 

about the enriched pathways, please refer to Table S3. 

 

Causal variable identification results for TG     
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For TG, we identified a total of 58 direct causal variables, with 16 clinical variables and 42 genes (Table 

S2). The identified clinical variables included HDL, apolipoprotein A, glucose, glycated hemoglobin (HbA1c), 

ethnic group (black or not), lipoprotein A, cholesterol, T2DM, hypertension (HTN), smoking status, bipolar, etc 

(full results please refer to Table S2d).  As expected, these clinical variables have been shown to be associated 

with TG. For instance, Srinivasan et al.46 reported that poor glucose metabolism is associated with high TG levels. 

Also, TG and glucose can serve as a cost-effective marker for insulin resistance. A study by Naqvi et al.47 showed 

that HbA1c can act as an indicator of TG level in the plasma. High HbA1c concentration was shown to reflect 

unfavorable TG levels in the plasma.  

 

In addition, many of the identified genes were found to be closely associated with TG (Table 6, full 

results please refer to Table S2d ). For example, Meankin et al.48 suggested that the loss of BACE1 could lead to 

unfavorable lipid levels. NRBP1 has been identified as a susceptibility gene for TG based on an independent 

GWAS study by Read et al.49. 

 

Table S3 demonstrates the pathway enrichment analysis result for TG. Here we will highlight a few top 

pathways. Integrin signaling pathway was one of the top-enriched pathways based on the identified causal gene 

set. In a related study, Xiao et al.50 demonstrated that integrin 𝛽3 deficiency was associated with elevated 

triglyceride levels. Cholesterol metabolism was another significantly enriched pathway for TG. According to 

Feingold51, the removal of triglycerides in very low-density lipoprotein was associated with cholesterol levels. 

NRF2 pathway was also found to be significantly enriched for TG. In a study by Tanaka et al.52, the NRF2 pathway 

was implicated to inhibit the accumulation of triglycerides in the blood.  

 
Discussion 
Overview 

This study introduced a novel method, I-GCM, to identify direct causal variables for the target of interest. 

The method combines the GCM (developed for causal relations detection) with the invariance property of causal 

relationships for effective causal variables discovery. Simulation results validated the efficacy of the proposed 

method in detecting actual causal variables. Notably, our method consistently outperformed the PC-simple 

algorithm in uncovering true direct causal variables, especially in terms of higher PPV, while also maintaining 

comparable sensitivity.  

Also, we applied our proposed approach to 2 binary and 2 continuous traits extracted from the UK 

Biobank (i.e., COVID infection, severe COVID, HDL-C, and TG) to uncover the corresponding causal clinical 

and genetic variable sets in the whole blood and lung tissues. Encouragingly, most of the identified clinical causal 

variables are known risk factors for the studied traits. Additionally, we found that the gene sets identified by our 

method were significantly enriched in pathways involved in the pathophysiology of the studied traits. Given the 

satisfactory performance of our proposed method in identifying true causal variables, it proves particularly useful 

for selecting genes for follow-up studies. Furthermore, the identified causal genes may serve as potential targets 

for novel treatments and drugs. 

 

Strengths 
The proposed framework I-GCM has several strengths. A key advantage is its superior performance in 

uncovering direct causal variables (especially in terms of PPV or precision) compared to the PC-simple algorithm 

alone, while maintaining comparable sensitivity, especially in high-dimensional settings. Importantly, we showed 

that integrating structural causal discovery methods (e.g. PC algorithm-based methods) with the more recently 

proposed invariance-based methods (ICP) may improve both causal discovery performance and computational 

speed. This advancement opens up possibilities for applying ICP methods to high-dimensional data. 

 

Another strength of our proposed method is its ability to capture both linear and non-linear relationships, 

eliminating the need for prior knowledge about the underlying generative model. We employed the GCM as a 

measure of dependence, which allows non-linear relationship between the covariates and the outcome or 

environment.  Many existing or common causal inference approaches, such as PC/PC-simple and the original ICP 

approach, assume linear relationships between the variables. Although we utilized gradient boosted trees 

(XGBoost) in our study, any machine learning methods, including deep neural networks, could be employed to 

calculate GCM to detect the causal relations between variables and the target. It is also worth noting that our 

method combines datasets collected from different experimental settings (e.g., observational/interventional 

datasets) and leverage them for causal discovery. This makes our method a natural fit for datasets from different 

sources, data obtained under different interventions (e.g. knockout or perturbation of different genes, different 

medication treatment, different experimental conditions etc.), or data obtained under both interventional and 

observational settings. However, it may be challenging to use the PC-simple algorithm per se in such situations 
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as it is not straightforward how the different kinds of data can be combined together. (In our proposed framework, 

PC-simple is just used for pre-screening but not as the final step for causal discovery; one may perform pre-

screening separately in different environments and take the union of results).   

 

Furthermore, performing variable selection before causal variable discovery substantially reduces 

computation complexity. Since we ranked the preselected variables and used a backward feature selection method 

to enumerate the candidate causal variable sets, we dramatically reduce the number of candidate sets (𝑞 𝑣𝑠 2𝑞), 

leading to improved computational speed. To the best of our knowledge, this study is the first to exploit invariant 

causal prediction in genetic epidemiology studies, and the first to apply ICP principles in biobank-scale datasets 

with high-dimensional genomic data. Given the increasing availability of large-scale datasets, our method shows 

great potential for identifying reliable causal variables for various diseases. The identified causal variables could 

provide insights into underlying disease mechanisms and inform more effective treatment and prevention 

strategies. 

 

Limitations 
There are a few limitations in this study. The PC-simple algorithm, used to preselect a subset of features 

for further analysis, was designed to handle linear relations, and may not be adequately capture all non-linear 

associations. On the other hand, pre-selection of variables based on more complex algorithms to account for non-

linearity is likely computationally demanding. Nevertheless, simulation results demonstrated that our proposed I-

GCM performed reasonably well in the presence of non-linear relations. Also, when identifying the causal variable 

set for the target, we only consider single-directional relations, thereby ignoring reverse causality. This could 

potentially lead to the discovery of false positives. However, since the expression profiles were “predicted” from 

genotypes, reverse causality between genes and the target was highly unlikely. Incorporating timestamps could 

also address this issue, as effects cannot precede causes. In this study, when extracting exposures and covariates 

for the outcome, we only took the covariates measured before the outcome occurred. Furthermore, domain 

knowledge could be exploited to mitigate this problem. This could serve as a promising direction for future work. 

   

In summary, we have proposed a novel framework for causal variable discovery with high precision. We 

consider our method a useful tool to prioritize variables, especially genes, for follow-up studies. Our proposed 

framework is flexible and may be extended to other omics studies. For example, given the substantial increase of 

single-cell RNA-sequencing (scRNA-seq) datasets in recent years, our proposed I-GCM may represent a new 

avenue for causal analysis based on multiple scRNA-seq datasets. Furthermore, the proposed I-GCM is a useful 

extension to existing causal inference methods. 

        

Data availability: UK biobank data is available to any researchers who formally apply for the data. However, the 
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