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Abstract

Background: Infant meningitis can be a life-threatening disease and requires prompt and
accurate diagnosis to prevent severe outcomes or death. Gold-standard diagnosis requires
lumbar punctures (LP), to obtain and analyze cerebrospinal fluid (CSF). Despite being standard
practice, LPs are invasive, pose risks for the patient and often yield negative results, either
because of the contamination with red blood cells derived from the puncture itself, or due to the
disease's relatively low incidence due to the protocolized requirement to do LPs to discard a
life-threatening infection in spite its relatively low incidence. Furthermore, in low-income settings,
where the incidence is the highest, LPs and CSF exams are rarely feasible, and suspected
meningitis cases are generally treated empirically. There's a growing need for non-invasive,
accurate diagnostic methods.

Methodology: We developed a three-stage deep learning framework using Neosonics®
ultrasound technology for 30 infants with suspected meningitis and a permeable fontanelle, from
three Spanish University Hospitals (2021-2023). In Stage 1, 2194 images were processed for
quality control using a vessel/non-vessel model, with a focus on vessel identification and
manual removal of images exhibiting artifacts such as poor coupling and clutter. This refinement
process led to a focused cohort comprising 16 patients—6 cases (336 images) and 10 controls
(445 images), yielding 781 images for the second stage. The second stage involved the use of a
deep learning model to classify images based on WBC count threshold (set at 30 cells/mm?)
into control or meningitis categories. The third stage integrated eXplainable Artificial Intelligence
(XAl) methods, such as GradCAM visualizations, alongside image statistical analysis, to provide
transparency and interpretability of the model's decision-making process in our Al-driven
screening tool.

Results: Our approach achieved 96% accuracy in quality control, 93% precision and 92%
accuracy in image-level meningitis detection, and 94% overall patient-level accuracy. It identified
6 meningitis cases and 10 controls with 100% sensitivity and 90% specificity, demonstrating
only a single misclassification. The use of GradCAM-based explainable Al (XAl) significantly
enhanced diagnostic interpretability, and to further refine our insights, we incorporated a
statistics-based XAl approach. By analyzing image metrics like entropy and standard deviation,
we identified texture variations in the images, attributable to the presence of cells, which
improved the interpretability of our diagnostic tool.

Conclusion: This study supports the efficacy of a multistage deep learning model for the
non-invasive screening of infant meningitis and its potential to guide indications of LPs. It also
highlights the transformative potential of Al in medical diagnostic screening for neonatal
healthcare and paves the way for future research and innovations.
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1. Introduction

Infant meningitis, an inflammatory condition of the protective membranes covering the brain and
spinal cord, is a life-threatening disease, especially among newborns and infants. Early and
precise diagnosis is critical to rapidly initiate treatment, and thus to prevent severe, lifelong
neurological sequelae and reduce the high mortality rates associated with the disease [1].
However, the diagnostic challenges appear significant, with estimates from 2019 suggesting
approximately 2.51 million new cases and 336,000 deaths across all age groups, globally.
Meningitis cases disproportionately cluster among young infants and children under five, which
account for up to 1.28 million new cases and roughly 112,000 fatalities annually, bearing nearly
half of the mortality attributed to meningitis [2].

The current standard diagnostic procedure involves lumbar punctures (LPs) to obtain
cerebrospinal fluid (CSF) for the confirmatory laboratory analysis. Confirmation of meningitis
needs an elevated white blood cell (WBC) count and/or microbiological confirmation (either
through CSF culture or molecular techniques to identify the causative pathogen). LPs are not
innocuous and can cause infections, bleeding, nerve damage, or respiratory arrests, particularly
among the youngest infants. They also require specialized equipment, skilled personnel, and an
accompanying laboratory infrastructure to process and analyze the CSF [3]. The limitations of
LP are most acutely felt in resource-poor settings, which often leads to critical delays in
diagnosis and subsequent treatment, thereby increasing mortality. In high-income countries
(HICs), a proactive stance is often adopted, with LPs performed as part of standard protocols on
the youngest infants, perceived to be at a higher risk of disease, to prevent any missed
diagnoses of Acute bacterial meningitis (ABM), given its high associated lethality. However,
given the relatively low incidence of meningitis disease, less than five percent of these
punctures yield a positive result [5,6]. Even in well-equipped facilities, complications like the
blood contamination of cerebrospinal fluid samples during LP can challenge accurate diagnosis,
exposing the patient to preventive, yet often unnecessary antibiotic treatment [4]. These
limitations highlight the necessity for an accurate, non-invasive screening approach to screen
(i.e., rule in/rule out) meningitis early in infants. Alternatively, this approach may target infants
under high suspicion of meningitis, who may require a confirmatory lumbar puncture.

Neonates and young infants, who are at the highest risk of meningitis, possess a unique
anatomical feature on their cranium known as the permeable fontanel. This feature, due to the
immature ossification of the cranium until approximately the first year of life, provides a distinct
advantage for visualizing the CSF space beneath using ultrasound. The acoustic properties of
the fontanel differ significantly from the ossified bones in older children and adults, which
ultrasound waves generally cannot penetrate later in life. Leveraging this anatomical
particularity in this vulnerable age group, we have developed our technology.
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Artificial Intelligence (Al), especially through deep learning, has revolutionized medical
diagnostics, including ultrasound imaging. This technology enhances diagnostic precision in a
range of conditions and sometimes is on par with human expert analysis [7]. At the heart of this
innovation are convolutional neural networks (CNNs), which have become a fundamental
element in image analysis. Renowned CNN architectures like AlexNet, VGG, Inception,
MobileNet, and ResNet have demonstrated their value in various diagnostic applications [8-17].
The combination of Al with ultrasound is particularly promising for accurate diagnosis in diverse
medical conditions, including respiratory diseases such as COVID-19 and pneumonia [18,19],
as well as for identifying and classifying tumors, lesions [20,21], and nodules [22].

Our study builds on the emerging and highly innovative research into non-invasive ultrasound
methods for potential meningitis screening [23,24], initially focusing on in vitro data. While
ultrasound is inherently non-invasive, it can be prone to noise and clutter, typically positioning it
more as a screening tool rather than a definitive diagnostic method. However, integrating Al
specifically deep learning, can significantly amplify its screening capabilities. Prior research has
shown the potential of high-frequency ultrasound images to measure the concentration of
diagnostically relevant particles and cells in laboratory samples [23,25,26]. In our research, we
utilize deep learning to refine the accuracy and reliability of diagnostic meningitis screening
using high-resolution (HR) ultrasound images from the CSF region lying below the infant
fontanel [37].

Explainable Al (XAl) is gaining more and more relevance in healthcare-related applications,
enhancing Al-driven decision-making transparency, vital for bias detection and model
interpretability [33, 34]. It empowers clinicians and patients to understand Al outputs, essential
in diagnostics and plays a key role in reducing misdiagnosis risks and promoting ethical Al use
[35, 36]. Despite XAl's growth in medical diagnostics, particularly in ultrasound imaging for
areas like tumor analysis, thyroid nodule diagnosis, and lung image classification [38, 39, 40],
applying XAl to infant meningitis screening via ultrasound faces unique challenges. While HR
ultrasound produces well-defined and visible WBC backscatter signals even in very low WBC
concentrations suspensions in the absence of acoustically attenuation or absorption media [23],
when applied on CSF below the infant fontanel, the acoustic beam distortion attributed to the
fontanelle tissue generates instead a WBC specific signal pattern in the images, which can be
difficult to interpret. This complicates the task of identifying these crucial diagnostic indicators
and makes obtaining clear and interpretable insights from deep learning models challenging but
necessary. Acknowledging this, our study integrates advanced XAl techniques such as
Gradient-weighted Class Activation Mapping (Grad-CAM) [27] alongside image statistical
analysis, including entropy, standard deviation, and gradients, to address these specific hurdles.
This approach aligns with current best practices in Al transparency and is particularly important
for our task in infant meningitis screening, where visualizing and understanding the
diagnostically critical pattern produced by the WBC backscatter signals in CSF is imperative for
enhancing the diagnostic process and patient outcomes.
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Our team has previously developed Neosonics®, a cutting-edge, non-invasive ultrasound
technology designed to detect backscatter signals from white blood cells (WBC) in
cerebrospinal fluid (CSF) beneath the infant's fontanelle [37]. Leveraging deep learning (DL) for
image analysis, this technology aims to classify patients based on WBC levels in CSF, offering a
rapid, non-invasive screening method for infant meningitis.

Our study introduces a novel deep learning methodology [50] that further corroborates and
analyses in more depth the initial proof of concept in a clinical study [37]. A key element of our
work is the integration of Explainable Al (XAl) techniques, enhancing the interpretability and
transparency of the Al's decision-making process.

This approach involves a three-stage process specifically designed to classify the presence or
absence of white blood cells, optimizing the screening process for infant meningitis. Stage 1 is
dedicated to automated yet rigorous image quality control, required to maintain the accuracy of
the screening process. Stage 2 uses a deep learning architecture in combination with ensemble
learning for binary classification to distinguish patients as either control or meningitis cases, by
recognizing the presence of WBCs in CSF, indicators of meningitis. Stage 3 addresses the
"black box" nature of deep learning models by integrating the Gradient-weighted Class
Activation Mapping (Grad-CAM) algorithm [27] into our framework. This Explainable Al (XAl)
technique makes the decision-making process of our models transparent, highlighting the
crucial regions within the ultrasound images that are most informative in the classification. To
deepen our understanding further, we analyze the differences between control and meningitis
images using statistical measures like entropy, standard deviation, and gradients. This not only
improves the accuracy but also significantly enhances the interpretability of our models enabling
the identification of potential biases.

This structured methodology combines rigorous quality control with a classification stage, and
the application of the XAl to offer a comprehensive and transparent solution for meningitis
screening. This study highlights the potential use of ultrasound imaging in combination with
deep learning in reducing the need for invasive lumbar punctures in neonatal and infant care
and providing a solution that is efficient, cost-effective [49], and easy to deploy in remote areas
where there is most need.

2. Methods

The methodological workflow is divided into three sequential stages: Stage 1 utilizes Al models
for automated and precise image quality control, essential for maintaining the accuracy of the
screening process. Stage 2 utilizes Al models in conjunction with ensemble learning for binary
classification. These models are finely tuned to detect patterns indicative of white blood cells
(WBCs) in cerebrospinal fluid (CSF), crucial markers for meningitis diagnosis. Stage 3 is
dedicated to explaining the algorithms' predictions and results by integrating various techniques,
such as Grad-CAM [27], with statistical measures like entropy, standard deviation, and gradients
(see Figure 1).
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2.1. Datasets & Ground Truth Generation

Data acquisition. A total dataset of 2194 HR ultrasound images was collected from 30 Patients
with suspected meningitis, recruited across three hospitals in Spain: La Paz University Hospital,
Quirén Salud University Hospital Madrid, and Sant Joan de Déu University Hospital Barcelona
[37]. For each patient, a lumbar puncture (LP) was performed within 24 hours before image
acquisition for the obtention of cerebrospinal fluid (CSF) samples. Subsequently, HR ultrasound
images of the fontanelle region were captured using a specialized device. Clinicians received
training in device usage before patient enrollment.

This study rigorously followed ethical guidelines, ensuring patient confidentiality, anonymization

of data, and data collection only after obtaining written informed consent from the legal
guardians of the infant patients.
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Figure 1. Flowchart of the three-stage methodology employed for infant meningitis diagnostic screening
using ultrasound images. Images are acquired on the baby's fontanelle using novel Neosonics®
technology. Stage 1 (Quality Control): MobileNetV2 deep learning architecture is used to filter out
ultrasound images that exhibit blood vessels. Stage 2 (Screening) employs binary classification to
distinguish between "Control" and "Meningitis" cases based on the presence of increased WBC cellularity
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in the CSF as visualized in ultrasound images. Stage 3 (Explainable Attificial Intelligence (XAl): XAl
techniques are applied for Stage 1 and Stage 2 model interpretability.

Neosonics technology. The Neosonics® device is a novel non-commercially available device
that has not yet received any certification clearance. It is making spatial scans with steps
smaller than 5 microns, which allows capturing the backscatter signals of individual cells within
the CSF, crucial for analyzing the composition of serous body fluids in a non-invasive way and
at a high sensitivity to structural changes not captured by conventional ultrasound systems [37].
For ultrasound imaging data collection, we used the Neosonics® ultrasound probe positioned
over the anterior fontanelle region of the infants’ head. The fontanelle is a spot where the
infant’s skull is not yet closed and thus allows the ultrasound signal to pass through to the
cerebrospinal fluid lying below the layers of tissue.

Data preprocessing. All images were processed to enhance their quality and suitability for
analysis, utilizing the signal processing module of the SciPy Python library [46]. The first step
involved applying a Butterworth bandpass filter, followed by calculating the signal envelopes
using the Hilbert transform and a min-max normalization of the images. The min-max
normalization procedure was used to scale the pixel values to a uniform range, maintaining
consistency across the dataset.

Ground Truth Generation. For Stage 1 (Quality Control), ultrasound images were manually
labeled by expert visual inspection to identify the presence or absence of blood vessels in the
CSF, as required by the deep-learning model. Of the 2194 high-resolution (HR) ultrasound
images reviewed, 965 were labeled as containing blood vessels and 1229 as not containing
blood vessels. For visual examples of vessel and non-vessel images, refer to Figure 2-a.

In the screening stage (Stage 2), clinical outcomes derived from WBC counts from LPs were
employed to categorize patients as either control (<30 WBC/mm?3®) or meningitis (=30
WBC/mm3), offering a patient-level ground truth. This threshold was selected as a pragmatic
criterion to distinguish between likely and unlikely cases of meningitis, in line with clinicians'
consensus and with the anticipation that the majority of Phase | patients would be neonates
[37]. Figure 2-b exhibits ultrasound images of patients in both control and meningitis categories.
Each image also displays the corresponding WBC count in the top left corner.

Following the quality control stage of excluding images with blood vessels present, and
additionally excluding images with bad quality or wrong positioning, the cohort was refined to 16
patients (including one patient with 2 LP results), providing a total of 781 HR ultrasound images
for Stage 2. (6 cases and 10 controls). On average, there were 40 images acquired per patient.
The dataset comprises infants aged 3 to 337 days, with an equal gender distribution (8 males
and 8 females) and an average weight of 3,952 grams. Table 1 details a comprehensive
summary of the dataset, encompassing demographics, WBC counts, image frame numbers,
and clinical outcomes. Further information about this dataset can be found in [37].

Participant Age Ra.nge Weight Sex WBC in CSF * Number Cllnlc_:a_l flr.1al Output_of DL
No. (Quartiles, (grams) of Images  classification algorithm
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days)
Meningitis
1 0-9 2.035 f 53 45 Suspected Meningitis
2 62+ 5.000 f 85 24 Suspected Meningitis
3 0-9 3.900 f 520 32 Confirmed meningitis Meningitis
4 10-29 3.370 m 2400 50 Confirmed meningitis Meningitis
5 62+ 4.900 m 300 25 Confirmed meningitis Meningitis
6 30-61 3.600 m 430 36 Confirmed meningitis Meningitis
6-2 30-61 3.600 m 169 233 Confirmed meningitis Meningitis
Control

7 62+ 4.420 f 7 11 No meningitis Control
8 0-9 3.290 f B 9 No meningitis Meningitis
9 10-29 3.000 m 5 26 No meningitis Control
10 10-29 2.965 m 15 14 No meningitis Control
11 0-9 3.890 f 5 24 No meningitis Control
12 0-9 2.690 f 9 34 No meningitis Control
13 30-61 4.000 m 18 81 No meningitis Control
14 30-61 4.150 m 0 18 No meningitis Control
15 62+ 8.600 m 11 55 No meningitis Control
16 10-29 4.220 f 0 64 No meningitis Control

Table 1. Final Stage Participant Details: CSF: cerebrospinal fluid, LP: lumbar puncture, WBC: white blood
cells, WBC in CSF has been reported in units / mm3. The precise ages of the participants have been
replaced with quartile-based age ranges. The age ranges were determined by dividing the data into
quartiles: 0-9 days, 10-29 days, 30-61 days, and 62+ denoting 62 days and above.

(a) (b)
Non-Vessel
T

'_:' = D A e = R7 2L e ST i o
Figure 2: (a) Ultrasound images of the CSF depicting two categories: Presence of vessels vs. no
presence of vessels. (b) Ultrasound images of both Control (<30 WBC/mm3) or Meningitis (=230
WBC/mm?) patients, with the respective WBC count displayed in the top left corner. The colormap used

for representing all ultrasound images is jet.
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2.2. Deep Learning Multi Stage Framework

We have developed a deep-learning based framework for both Quality Control in Stage 1 and
Meningitis Screening in Stage 2 with an additional focus on Explainable Al in Stage 3 (Figure 1).
For all deep learning model development and optimization tasks, we utilized Keras with a
TensorFlow backend [47].

2.2.1 Stage 1: Quality Control for Blood Vessel Identification

In this stage, we experimented with two pre-trained models, MobileNetV2 [11] and ResNet50
[12], both initially trained with ImageNet [8], for the classification of vessel vs non-vessel images.
For each model, we added three additional dense layers with units set as (512, 128, 1) on top of
the respective pre-trained base models. These added dense layers were the only trainable
components, keeping the base model layers frozen during training. This approach allowed us to
leverage the advanced feature extraction capabilities of the pre-trained models and tailor them
to our specific task of blood vessel identification.

To train and evaluate the models, we employed a 75/25 train/test split combined with a 4-fold
cross-validation approach. This setup facilitated a thorough and robust performance evaluation,
reducing the likelihood of overfitting and ensuring the generalizability of our findings. A batch
size of 16 was used to efficiently process the high-resolution images. The optimization process
for both models relied on the Adam optimizer [29], with a learning rate set to 1E-4 to fine-tune
the model. Performance was evaluated using a set of standard machine learning performance
metrics, including precision, recall, F1 score, and accuracy [28], utilizing the Scikit-learn Python
library for this analysis [48].

2.2.2 Stage 2: Meningitis Screening at Patient Level

In Stage 2, a ResNet50 model pre-trained on ImageNet [12] was employed, undergoing
fine-tuning to classify individual images as indicative of meningitis or control. The base layers
were kept unchanged, except for the final convolutional block which was adjusted to new data.
The network's fully connected layers were replaced by a global average pooling layer and a
single-output dense layer to conduct binary classification.

During training, binary cross-entropy loss is used to distinguish between meningitis and control
cases. We utilized the SGD optimizer [30] for the optimization process, setting a learning rate of
1E-4 to fine-tune the model. Performance was evaluated using a set of standard machine
learning performance metrics, including precision, recall, F1 score, and accuracy [28].

For patient-level classification, we adopted a rigorous leave-one-out methodology [28], ensuring
that each patient was tested individually while using data from the remaining patients for
training. This approach was crucial for the accurate and unbiased evaluation of our model.
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Ultrasound images were independently classified, and ensemble-learning techniques were then
employed to merge individual image predictions into a unified patient classification. We explored
ensemble learning techniques, comparing soft voting with hard voting methodologies [31]. To
calculate these, we utilized ‘groupby’ and ‘aggregate’ functions from the Pandas library in
Python [41].

The soft voting method involved calculating the average predicted probability score from groups
of N images for each patient. The process is mathematically expressed as follows:

. N
Co — {1 if + >0 p; > 0.5,
0 otherwise

Where Pi is the predicted probability score of meningitis for each image within a group. Scores
with an average above 0.5 were classified as meningitis, and those below as control.

In contrast, the hard voting method was implemented using a majority rule for each group of N
images. Each image was initially categorized as meningitis or control based on its predicted
probability score relative to the 0.5 threshold. The final classification for each group was
determined by the mode of these binary classifications. This is represented by the following
equation:

Chara = mode{ci, ca,...,cN}

where ¢; denotes the class label for each image.

For all experiments within our study, we set N = 7.
2.2.3 Stage 3: Explainable Al (XAl)

In this stage, we used Gradient-weighted Class Activation Mapping (GradCAM) [27], using the
OmniXAl Python library [43], to gain a deeper understanding of the decision making processes
of our convolutional neural networks.

For our analysis, we randomly selected 9 images per patient from both Stage 1 and Stage 2,
regardless of their class. These images underwent processing with the GradCAM function,
utilizing the final convolutional layer of the deep-learning models from the previous stages. This
process generated heatmaps for each image scaled to a 0-255 range with a color spectrum
ranging from blue to red. In this spectrum, red areas identified the regions most influential to the
network's classification decisions, while blue areas represented the least influential regions.

We also conducted four statistical comparisons of image characteristics to distinguish control
from meningitis cases of Stage 2. The statistical measures used were: normalized intensity,
standard deviation, entropy, and the gradient in the Y direction. These analyses were conducted
to identify the backscatter signals of WBCs in case of their presence in the CSF in ultrasound
images, yielding a specific pattern in the images of the cerebrospinal fluid, not always easily
visible to the human eye. In response to the challenge of visualizing these cells directly, our
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strategy focused on examining statistical differences between images to uncover patterns that
may indicate meningitis.

For normalized intensity, we normalized the pixel intensities of the images to ensure consistency
in our calculations. For standard deviation and entropy, we used local standard deviation and
local entropy functions from the scikit-image python module [43]. We applied a morphological
element in the form of a disk with a size of 5. Finally, for the gradient in the Y direction, we
calculated it using the Sobel operator from OpenCV [44].

For each of these measures, we constructed histograms of both control and meningitis classes
to quantitatively analyze the image characteristics. We utilized 20 bins for all histograms, each
with an appropriate bin range to capture meaningful variations in the image features. For
instance, the normalized intensity histograms ranged from [-1, 1], while the standard deviation
histograms spanned [0, 0.2], and entropy histograms covered [0, 8]. These carefully chosen bin
sizes and ranges allowed us to extract valuable information from the images. To quantitatively
measure the differences between these histograms, we employed the Jensen-Shannon
divergence (JSD) [45] method from the SciPy python module [46]. We plotted the relationships
of cell count with entropy and mean Grad-CAM score with entropy. For these plots, we fitted a
regression line using the linear regression method from the SciPy python module [46] and
computed the coefficient of determination (R?) to evaluate the predictive strength and
significance of the relationships [28].

3. Results

3.1 Stage 1: Quality Control

In this initial quality control stage, the primary task was the binary classification of ultrasound
images to identify good quality ones and exclude those with blood vessels, crucial for an
accurate meningitis screening. Blood vessels can obscure CSF areas, where white blood cells
indicate meningitis, potentially leading to screening inaccuracies. We fine-tuned two pre-trained
deep learning models, MobileNetV2 [11] and ResNet50 [12]. The performance of these models,
including average metrics and their variability as indicated by standard deviation across 4-fold
cross-validation, is detailed in Table 2. Examples of vessel/non-vessel images are illustrated in
Figure 2-a.

Both deep learning architectures achieved a comparable accuracy rate of 96%, effectively
identifying the presence of blood vessels (Table 2). MobileNetV2 exhibited a precision of 97%
and a recall of 95%. ResNet50, while having a slightly higher precision at 98%, had a lower
recall of 93%. Despite the comparable accuracy, there was a slight difference in their F1 scores:
MobileNetV2 maintained an F1 score of 96%, while ResNet50 had a slightly lower F1 score of
95%. The standard deviation values for precision, recall, F1 score, and accuracy are provided in
Table 2, reflecting the performance consistency across different folds.
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DL Model Precision(%) Recall(%) F1(%) Accuracy(%)
ResNet 97.83+1.10 93.26 £ 2.02 95.49 + 0.64 96.13 £ 0.50
MobileNetvV2 = 96.73 + 1.71 95.13£3.19 95.92 + 1.65 96.44 £ 0.82

Table 2. Performance Comparison of MobileNetV2 and ResNet50 Models Using 4-Fold Cross-Validation
for Stage 1 (Quality Control), Including Mean Metrics and Standard Deviation to Indicate Variability
Across Folds.

The confusion matrix for MobileNetV2 (Figure 3-a) demonstrates the model's ability to
accurately classify vessel and non-vessel regions. It revealed a high number of true positives for
vessel detection and a low number of false negatives, showcasing its effectiveness. In contrast,
non-vessel regions showed significant true negatives and minimal false positives. The
probability distribution histogram (Figure 3-b) further illustrates MobileNetV2's classification
confidence, with two distinct peaks representing vessel and non-vessel images.
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Figure 3: Results (a) Confusion Matrix of MobileNetV2 for Vessel and Non-Vessel Image Classification.
(b) Probability Distribution Histogram of MobileNetV2 Classifications for Vessel and Non-Vessel Images:
Histogram showing the probability of each image being classified as Healthy or Meningitis. (c) Confusion
matrix of the ResNet50 model for Control or Meningitis classification. (d) Histogram showing the
probability of each image being classified as control or meningitis.
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3.2 Stage 2: Meningitis Screening at Patient Level

Stage 2 focuses on screening for meningitis cases. This stage uses a fine-tuned ResNet50 [12]
architecture for binary classification at the image level. Next, we applied an ensemble technique
to aggregate all the image scores corresponding to each patient into a final patient-level
prediction.

At the image level, the ResNet50 model demonstrated a precision of 93%, recall of 90%, an F1
score of 92%, and an overall accuracy of 92%. The confusion matrix analysis revealed robust
performance, with 305 true positives for control cases and 403 true positives for meningitis
cases. The confusion matrix for meningitis vs control task is shown in Figure 3-c. The probability
distribution for images being predicted as meningitis and controls shows a skewed U shape
showing that there is a robust predictive power at the image level (Figure 3-d).

A key aspect of Stage 2 was the evaluation of ensemble learning techniques, particularly
soft-voting and hard-voting methods [31], to aggregate image-level predictions for patient-level
screening accuracy. Simultaneously, as illustrated in Table 3, our experiments examined the
impact of different image sizes on this process. Lower resolution images offer advantages such
as storage efficiency, faster handling, and reduced power consumption in devices. To achieve
this, we employed column and row subsampling [32] to reduce the original image size of
556x200 pixels by factors of 2 and 4, resulting in experimental image sizes of 278x200,
139x200, 278x100, and 139x100 pixels. Our findings revealed that soft voting, which averages
predicted probabilities, was more effective than hard voting across these downsized images,
notably at smaller dimensions like 139x100 pixels, where accuracy markedly improved.
Employing a fixed aggregation value of N = 7 predicted image outputs per patient, soft voting
consistently outperformed hard voting, enhancing patient-level accuracy. This methodology
successfully identified 15 out of 17 patient-level acquisitions at the smallest image size,
demonstrating significant progress in precise patient-specific screening. Overall, the
patient-level accuracy provided by this workflow reached 94%.

Next, it is relevant to understand the optimal number of N images needed per patient, as it
determines the acquisition burden on the patient, the doctor, and the caregiver, as well as
impacts the data storage and data processing times. Therefore, we conducted experiments with
different numbers of images per participant (N = 3, 5, 7, and 9) to evaluate this aspect. As
shown in Table 4, for the smallest image size (139x100 pixels), both soft and hard voting
techniques were compared across various N values. This experiment was repeated 20 times
with shuffled data, and Ttable 4 presents the mean results with standard deviation.
Unsurprisingly, we found that performance in both image and patient-level accuracy improves as
the number of images per patient N increases. However, soft voting effectively allows the
information from all the images to be integrated providing an accurate result already at N = 7,
allowing the system to make an effective compromise between accuracy and patient burden.
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Exp Image Single image Soft Voting Hard Voting
No.  Size Accuracy Recall PLAccC Accuracy Recall PLAccC Accuracy Recall PLAccC
1 | 556x200 92.06 89.66 16 93.33 91.18 16 93.33 89.71 16
2 278x200 87.07 83.82 16 90.00 88.24 16 89.17 85.29 16
3 139x200 75.42 69.21 13 76.67 72.06 13 75.00 70.59 13
4 278x100 72.60 66.52 15 75.83 69.12 15 76.67 70.59 15
5 139x100 72.47 66.29 14 75.83 67.65 15 75.83 66.18 14

Table 3. Experiments Comparing Soft Vioting and Hard Voting Techniques Across Various Image Sizes,
"PLAccC" denotes the number of patients correctly classified out of a total of 17 patient-level acquisitions
(16 patients, one with 2 LPs).

N for Soft Voting Hard Voting
Voting Accuracy Recall PLAcc% Accuracy Recall PLAcc%
3 77.74 £ 0.01 70.37 £ 0.01 83.82+0.04 | 76.62+0.01 69.00 + 0.02 82.94 +0.04
78.61 +£0.02 71.48+0.02  82.06+0.05 | 78.33+0.01 70.49 +0.03 82.35+0.03
7 79.13 £ 0.02 72.35+0.04  87.18+0.03 | 78.54 +0.01 70.88 + 0.02 86.72 + 0.03
9 79.95+0.03 7294 +0.04 @ 84.71+0.04 | 79.29£0.02 71.57 +0.03 81.47+0.02

Table 4. Comparison of Soft and Hard Voting Based on aggregation values between 3-9 for the Smallest
Image Size (139x100 Pixels). "PLAcc%" represents the patient level accuracy in percentage.

3.3 Stage 3: Explainable Al (XAl)

In our study, we use Gradient-weighted Class Activation Mapping (GradCAM) [27], an XAl
technique, to enhance the interpretability of our deep learning framework for the Quality Control
and meningitis screening stages.

Grad-CAM, is a technique used for visualizing and understanding the decision-making process
of deep neural networks, particularly convolutional neural networks (CNNs), in the context of
image classification tasks, contributing to the explainability of an Al algorithm (XAl). It helps to
highlight the regions of an input image that contribute the most to the final prediction made by
the neural network. In a nutshell, GradCAM uses the gradient information flowing back from the
final prediction to highlight the important regions in the input image. By visualizing these
heatmaps, one can gain insights into which parts of the input image the model is paying
attention to during the classification process.

Quality Control XAl (Stage 1). In the first stage, the deep learning classification model focused
on distinguishing between vessel and non-vessel regions. GradCAM visualizations (Figure 4-a)
highlighted the model's strategy in differentiating these regions. Vessel regions, marked by red
areas in the heatmap, showed structured high-frequency patterns, similar to barcodes.
Conversely, non-vessel regions, which lacked such distinct patterns, demonstrated the model's
ability to identify areas without vessel presence.
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Figure 4. GradCAM heatmap visualizations: (a) Showcase patterns between vessel and non-vessel
regions for Stage 1 classifications. (b) Features highlighted in control and meningitis cases, with WBC
counts written in the top left corner. The accompanying color code bar represents the intensity scale of
the heatmap, with red denoting regions of highest influence and blue indicating areas of least influence on
the model's predictive decision (same scale used for both vessel vs non-vessel and control vs meningitis
models).

Screening XAl (Stage 2). In the second stage, aimed at distinguishing between control and
meningitis cases, we also applied GradCAM to obtain a better insight into the model’s decision
process. Initial examination of the HR ultrasound images (Figure 4-b) from both categories did
not reveal distinguishable patterns to the human eye. Nevertheless, GradCAM visualizations
revealed distinctive areas within the images, suggesting potential regions of interest associated
with the presence of white blood cells (WBC), crucial indicators of meningitis. The heatmaps
highlighted large, blob-like regions, resembling clusters, indicating the model's areas of
concentration without specifying diagnostic features.

To delve further into these observations, a statistics based XAl approach was utilized. Analysis
of histograms for various image metrics, including normalized intensity, normalized intensity
standard deviation, entropy, and the gradient in the Y direction, were calculated as shown in
Figure 5-a. Distributions of all these metrics were checked using the JSD score to find
differences between control and meningitis cases. Normalized pixel intensity distributions range
between -1 and 1, showing a small peak at 1 indicative of image saturation (Figure 5-a top-left).
Normalized intensity is higher for meningitis cases, indicative of higher image to noise ratio in
cases vs controls. Notably, images from meningitis cases displayed a broader distribution in the
intensity standard deviation and higher entropy values. This suggests a variation in complexity
and variability within these images compared to those from control cases, which exhibited
narrower and steeper distributions. Quantitatively, among all these metrics, entropy has the
highest JSD score, indicating a notable distinction in this measure between meningitis and
control categories.

To further examine the nature of these “blobs” and their relationship to the white blood cells, we
calculated the correlation between entropy versus cell count (top) and entropy versus mean
Grad-CAM scores (Figure 5-b, middle). The analysis revealed a moderate correlation for both,
with R? values of 0.56 for entropy and cell count, and 0.54 for entropy and mean Grad-CAM
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scores. This observation suggests a proportional relationship between the complexity captured
by entropy in the ultrasound images and the presence of WBCs.

The bottom plot of Figure 5-b illustrates the correlation between mean Grad-CAM scores and
predicted probabilities for each image. Figure 5-b (bottom) shows a very good separation
between cases and controls, accounting for the high performance of the classifier. Control cases
predominantly clustered in the lower left quadrant, showing lower Grad-CAM scores and
predicted probabilities, whereas meningitis cases were mainly found in the upper right quadrant,
associated with higher scores and probabilities. The R? value of 0.92 indicates a significant
correlation, illustrating the relationship between the model's Grad-CAM activations and the
predicted likelihood of meningitis.
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Figure 5. Statistical XAl analysis for meningitis screening: (a) Histograms ordered from top to bottom and
left to right, comparing pixel intensity, normalized intensity standard deviation, entropy, and gradient in the
Y direction between control and meningitis cases, with Jensen-Shannon Divergence (JSD) values
quantifying the differences between distributions of meningitis cases and control images. Normalized pixel
intensity values range between -1 to 1. (b) Scatter plots showing the relationship between cell count and
local mean entropy (top), mean Grad-CAM scores and local mean entropy (middle), and predicted
probabilities versus mean Grad-CAM scores (bottom), each with a regression line and R? value
demonstrating the strength of correlation.
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4. Discussion

Our study introduces a multistage deep learning approach for non-invasive screening of infant
meningitis, a life-threatening condition, utilizing HR ultrasound images acquired below the infant
fontanelle region. This method addresses, in a first step, many of the challenges associated with
lumbar puncture (LP), the established gold standard for meningitis diagnosis. LP, an invasive
procedure involving spinal fluid extraction, is not innocuous and can be particularly distressing
for infants and their families. Moreover, the requirement for skilled execution and specialized
equipment and laboratory infrastructures makes LP and its subsequent analysis challenging in
resource-limited settings, where such medical resources are often scarce. Our approach is
designed to potentially limit the use of LP to only high-suspicion and positive cases by providing
preliminary noninvasive screening based on WBC count in CSF through an Al-based automated
ultrasound framework, designed for real-time application in clinical settings. Ultimately, accurate
discrimination of WBC levels in CSF could significantly narrow down indications of LPs, sparing
unnecessary LPs to the majority of suspected cases that are ultimately ruled out, and also
saving costs and valuable resources, both in high- and low-income countries. Conversely, a high
suspicion of meningitis, as suggested by a high WBC count determined by the initial screening,
would help target LPs in those cases whereas the likelihood of the diagnosis is very high.

The first stage of the pipeline dedicated to image quality control, focusing on the identification of
blood vessels with 2194 ultrasound images, achieved a solid accuracy of 96% using the
MobileNetV2 architecture. This accuracy is critical, as the classification process is embedded
directly into the diagnostic devices, enabling clinicians to conduct real-time screening and
ensuring that only high-quality images, free from blood vessels, are captured. This approach
optimizes storage and processing time by skipping the acquisition of images that don't meet
quality standards. MobileNetV2 has a simpler architecture, with only 3.5 million trainable
parameters compared to ResNet50's 25.6 million. This simplicity aligns with the real-time
hardware requirements of clinical settings, which demand quick processing and efficiency.
Accurate, automatic, and on-the-fly image quality control methods are key diagnostic and
screening platform components. Our future developments in quality control involve extending
beyond vessel identification to fully automated filters that include clutter, poor quality, and other
artifacts in ultrasound scans.

Stage 2, the patient-level screening phase, employed a fine-tuned ResNet50 model on a refined
dataset of 781 images from 16 patients. This stage differentiated between control (<30
WBC/mm?3) and meningitis cases (=30 WBC/mm3). We achieved a precision of 93% and an
accuracy of 92% in distinguishing between control and meningitis instances based on imaging
frames. Notably, at the patient level, the stage accurately identified 6 meningitis cases and 10
negative controls among 16 patients (one patient with two LPs, resulting in 17 LPs), achieving a
sensitivity of 100% and a specificity of 90%, with only a single control misclassification.

Moreover, our study highlighted the crucial role of ensemble learning techniques, particularly
soft voting, in enhancing diagnostic accuracy at the patient level. Soft voting, by averaging
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predicted probabilities, proved superior to hard voting, especially when analyzing images at
reduced resolutions. For instance, in the smallest image dimension of 139x100 pixels, soft
voting not only improved accuracy from 72% to 78% but also correctly reclassified an initially
misdiagnosed patient. This approach enabled more effective patient-level screening,
demonstrating the model's robust predictive power even with downsized images. By employing
column and row subsampling, we not only optimized storage and processing efficiency but
potentially minimized ultrasound scan time exposure, aligning with our goal to reduce patient
discomfort and streamline the screening workflow.

The choice of N=7 for aggregating consecutive image frame results was found optimal, striking
a balance between accuracy and processing demand. While increasing the number of frames
does enhance accuracy by leveraging the predicted probabilities per image, the performance
gains start to saturate, presenting diminishing returns. This consideration is crucial in practical
settings, particularly in real-time clinical scenarios where processing time is a critical factor.
Additionally, a shorter acquisition time implies less burden to the patient and less time required
by the clinician, further emphasizing the significance of this optimal frame aggregation choice.

In stage 3, the integration of Explainable Al (XAl) techniques, particularly Gradient-weighted
Class Activation Mapping (GradCAM), provides insights into our model's decision-making
processes, enhancing transparency and trust in our Al-driven approach. This approach in the
initial quality control phase highlighted that the model identifies distinct high-frequency patterns
in vessel images, similar to barcodes, which are visible to the human eye. These patterns,
indicating the presence of vascular structures, are key for the model's ability to distinguish
between vessel and non-vessel images. This observation indicates that the model mimics a
human-like visual assessment process, relying on visible patterns to classify images accurately.

XAl proves particularly useful in Stage 2, where structural differences between control and
meningitis cases are not easily visible to the human eye. The backscatter signals from
potentially present WBCs in the CSF generate a pattern that is not always easily interpretable
and distinguishable from clean CSF by visual inspection. As illustrated in Figure 4-b, the
GradCAM heat map identifies larger areas or "blobs" in the meningitis case images. This
observation suggests that the network learns from the long-range patterns created by the
complex interaction between the ultrasound waves and the white blood cells, using these areas
as clues to differentiate between the two classes.

To understand these differences better, we applied a statistical-based XAl approach to
complement GradCAM. This method involved analyzing intensity variations, entropy, standard
deviation, and gradients to quantify the variances hinted at by GradCAM visualizations. We
selected these metrics based on our hypothesis that the presence of WBCs, indicative of
meningitis, would result in quantifiable statistical changes in the ultrasound images. These
changes would become evident when comparing control to meningitis images. The results,
presented in Figure 5-a, confirmed our hypothesis. We observed that meningitis cases had
higher average values for entropy and standard deviation, reflecting increased image complexity
and variability which are key factors in distinguishing between meningitis and control images.
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The Jensen-Shannon Divergence (JSD) values further quantified the differences between the
distributions of these metrics for the two groups. These higher values are indicative of the
textural influences of backscatter signals from WBCs present in the CSF in the meningitis
images, which our model relies on to differentiate between conditions.

The JSD score for the entropy histogram, at 0.28, is the highest difference among all evaluated
metrics, effectively distinguishing meningitis cases from control images. Entropy is a statistical
measure that quantifies the information content within images, indicating that images with
greater variability and complexity, characteristics indicative of meningitis, tend to exhibit higher
entropy. This suggests that images with higher entropy levels are characterized by significant
variations, shown as complex and irregular patterns in pixel intensity due to the presence of
both isolated or clustered white blood cell (WBC) dispersions or clusters. It needs to be noted,
however, that while the entropy is significantly higher in images of meningitis patients, there is
still a large local mean entropy variability in control images which we attribute to several sources
of noise including clutter. For that reason, entropy and intensity measures are insufficient for
classifying whether an image originates from a meningitis or control patient. The advantage of
the deep learning classifier resides in its ability to learn complex patterns beyond texture,
intensity and gradient, learning to differentiate signal from noise, and thereby providing an
accurate classification performance.

Moreover, as shown in the scatter plot in Figure 5-b, there is a positive correlation between the
cell count and the local mean entropy, evidenced by the regression line with an R? value of 0.56.
This correlation suggests that as WBC counts rise, as an increasing sign of infection, so does
the entropy in the image, suggesting a greater level of complexity due to WBC aggregation.
Similarly, the average Grad-CAM scores, which identify the regions most significant for
diagnosis according to the neural network, also have a positive correlation with mean entropy,
as shown by a regression line with an R? of 0.54. This indicates that the model focuses on areas
with higher entropy, likely reflecting a greater presence of WBCs, for its classification decisions.
Taken together, these observations indicate that the neural network can not only detect the
presence but also the quantity of white blood cells. This raises the prospect of developing more
sophisticated multi-class or regression-based models for future studies with larger datasets.

The comprehensive application of XAl, merging GradCAM visualizations with statistical analysis,
enhances our understanding of the diagnostic features within ultrasound images, facilitating a
deeper insight into the model’s decision-making process in distinguishing meningitis from control
cases.

Our study has limitations. One main constraint for deep learning model training is the relatively
small size of our patient cohort, comprising only 17 acquisitions from 16 individuals with a total
of 781 images for Stage 2 analysis. To address this challenge, we opted to use a leave-one-out
cross-validation strategy, allowing us to assess each patient's data individually and potentially
enhance the robustness of our findings. With this strategy, the model's accuracy could still be
robustly evaluated on an unseen sample of patient images. Future validation of prospective
datasets from a diverse set of patients is needed for the implementation of a production
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algorithm, and patients are already being recruited in Spain, Mozambique, and Morocco for that
purpose.

Another limitation of our study is the use of a threshold of 30 cells/mm? to differentiate between
meningitis and control cases. While this threshold has been effective in classifying patients
within our cohort, which includes children from various age groups, its applicability might not be
universal across different hospitals, age groups, and disease stages. The factor of age is
especially important, as the thresholds for white blood cell counts vary with age, highlighting the
necessity of considering age when diagnosing meningitis to ensure accuracy across a broad
spectrum of patient ages. Also, in specific scenarios (such as immunocompromised patients,
some viral meningitis or CSF exams after receiving antibiotics), meningitis can be present
without an elevated WBC count in CSF. However, the aim of the device is to be equal to the
laboratory WBC count in CSF, therefore in such gray area scenarios, clinicians should interpret
Neosonics’ results as they would the gold standard and decide accordingly. For instance, if the
clinical suspicion is high independently of the WBC count in CSF, LPs should be performed for
further microbiological investigation. On the other hand, Neosonics could be performed in
scenarios where now clinicians face great uncertainty and are forced to make decisions without
certainty. One example is very severe and unstable patients in which LPs are contraindicated
and, therefore, delayed, and clinicians need to treat them empirically. Also, some patients
present with slightly elevated WBC counts in CSF but are not considered meningitis cases and,
accordingly, are not treated for it, and clinicians could easily repeat non-invasive exams
periodically to ensure that inflammatory cells go back to normal values without treatment.

Additionally, the process of cell counting with a Fuchs-Rosenthal or Neubauer chamber
following lumbar puncture (LP) involves technicians analyzing cells across 8 out of 64 quadrants
under a microscope and taking the average to determine the count for each patient. While this
method is the gold standard, it is subject to human error and variability introduced by the
technicians, thereby affecting the precision of the ground truth data. For instance, the
visualization of a single cell in the 8/64 count can make final results differ by 8 cells, which can
be even higher if the initial sample has been diluted prior to its analysis (due to high cellularity,
either in WBC or blood contamination during the procedure) and, consequently, conversion
factors need to be applied to obtain the final result. This problem is even more exacerbated in
LICs, where the baseline resources and technicians’ training are poorer. This partially explains
the variability observed in the graph of cell count vs. entropy graph in Figure 5-b (top) of our
study.

As part of our future steps, we aim to provide clinicians with quantitative results, offering high
sensitivity even at low cell concentrations (e.g., 5 cellss/mm?3®). By incorporating a robust
regression or multi-classification model, we plan to develop a refined method that adjusts for
inherent errors and improves accuracy across a wider range of cell concentrations. This
quantitative approach will enable clinicians to interpret results based on their specific thresholds,
which may vary according to clinical context (such as age, previous antibiotics administration or
immunocompromised patients).
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The clinical impact of our study is considerable, particularly given that most patients in our
cohort were subjected to lumbar punctures (LPs) because of non-specific symptoms like fever
and raised inflammatory markers. By employing deep learning (DL) models with our
non-invasive ultrasound method to estimate the WBC count in the CSF, we offer a promising
approach for meningitis screening in neonates and infants. This could notably decrease the
necessity for LPs, facilitating more precise indications for LPs, quicker commencement of
treatment, and improved outcomes for patients.

In summary, our research marks a significant advancement in the use of Al and deep learning
for the non-invasive screening of meningitis in neonates and infants. By integrating advanced Al
models with ultrasound imaging, we've introduced a novel and non-invasive approach that has
the potential to transform the preliminary screening process for meningitis. This approach not
only has the potential to substantially decrease the reliance on unnecessary lumbar punctures
but also highlights the profound impact of Al in democratizing health care by facilitating efficient
and affordable screening technology to areas with high need, where there is limited availability
of laboratory resources. Moreover, our work highlights the importance of explainability and
transparency in Al required for all medical applications where the objective is clinical decision
support to screening and diagnosis. Our utilization of eXplainable Al (XAl) has demonstrated
that increases in complexity within ultrasound imaging, such as gradient changes, which may go
unnoticed by the human eye, are correlated with higher blood cell counts and thus indicative of
greater disease severity.

Moving forward, our goal is to further refine these Al-driven methodologies to ensure their
effectiveness and applicability in a wider range of clinical scenarios. The progress outlined in our
study opens new pathways in neonatal and infant healthcare, where Al enhanced technologies
provide safer, more accessible, and efficient diagnostic options, establishing a new benchmark
for the early detection and management of life-threatening conditions like meningitis.
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