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Abstract 
In syngeneic murine breast cancer models, poly ADP-ribose polymerase inhibitor (PARPi) and anti-PD-
L1 combinations induce deep, sustained responses independent of BRCA1/2 mutation status. We therefore 
investigated this combination in the AMTEC clinical trial, in which a one-month olaparib run-in was 
followed by combined olaparib and durvalumab in participants with BRCA1/2 wild-type metastatic triple 
negative breast cancer. To characterize adaptive responses to olaparib monotherapy, paired biopsies taken 
before and during PARPi lead-in were deeply characterized by DNA, RNA, and protein multi-omic 
analyses, including spatially-resolved single cell proteomics for tumor and immune contexture. We 
identified multiple potential tumor-intrinsic and microenvironmental biomarkers from pre-treatment and 
on-olaparib biopsies that robustly predicted participant response to combined olaparib and durvalumab. 
Notably, the on-olaparib biopsy provided the greatest information content, suggesting that adaptation of 
malignant cells and the tumor ecosystem to PARPi can serve as a predictor of potential benefit from 
combined PARPi and anti-PD-L1 therapy. 
 
Introduction 
Triple negative breast cancer (TNBC), comprising 15-20% of all breast cancers, predominantly affects 
younger women and certain ethnic groups. Compared to other breast cancer subtypes, TNBC is 
characterized by aggressive features, a higher propensity for metastasis, and an overall worse prognosis1. 
Despite advancements in understanding TNBC biology, outcomes for metastatic TNBC (mTNBC) remain 
poor, with an overall survival of 1-2 years with standard therapies2-4.  
 
The DNA damage response (DDR) pathway is frequently dysregulated in TNBC, with nearly half of all 
cases exhibiting aberrations. BRCA1/2 mutations are observed in about 15% of TNBC, while another 45% 
of TNBC with genomic instability have wild type BRCA1/2, suggesting that other aberrations can lead to 
defects in this pathway1,5-7. DDR dysregulation renders TNBC sensitive to DNA damaging therapies such 
as chemotherapy, radiation therapy, and more recently, PARP inhibitors (PARPi). PARPi are of particular 
interest in mTNBC because of the high frequency of defects in homologous recombination repair, the 
high-fidelity repair pathway for double-stranded DNA breaks8.  
 
In mTNBC, the PARP inhibitors olaparib and talazoparib, FDA-approved for patients with germline 
BRCA1/2 mutations, improve clinical outcomes primarily by exploiting synthetic lethality with HRD. 
However, even in this population, responses to PARPi monotherapy are often short-lived, with most 
patients eventually experiencing disease progression9,10. Moreover, PARPi monotherapy has limited 
activity in BRCA1/2 wild-type (BRCA1/2wt) tumors, which constitute the majority of mTNBC11, with the 
VIOLETTE trial showing minimal benefit in these patients12. Preclinical and early clinical data suggest 
that PARPi combination therapies are safe and more effective in BRCA1/2wt TNBC, highlighting potential 
opportunities for these treatments for this population13-15. 
 
Immune checkpoint blockade (ICB) has improved outcomes for various tumor types, especially those with 
high tumor mutational burden (TMB) and neoantigenic propensity, which can bolster anti-tumor 
immunity16,17. In mTNBC, the combination of the programmed death-1 (PD-1) inhibitor pembrolizumab 
and chemotherapy is FDA-approved for patients with tumors expressing programmed death ligand 1 (PD-
L1). However, this indication excludes the majority of mTNBCs, which are frequently PD-L1 negative, 
and clinical benefit is frequently brief even in PD-L1 positive patients18. Additionally, TMB in TNBC is 
usually below the generally accepted 10 mutations/Mb that predicts ICB efficacy in other cancer types19.   
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Extensive preclinical data demonstrate that PARP inhibitors induce adaptive responses in malignant cells 
and the tumor ecosystem, including immune cells, in models of HRR-deficient and competent tumors20-

24. Similar adaptive changes have been observed in human tumors, such as breast cancer, under therapeutic 
stress induced by PARPi14,15,25,26. While specific adaptive responses vary across patients, the number of 
stress responses engaged following PARPi appears to be limited, facilitating the identification of patient-
specific adaptive responses. Targeting these adaptive responses – for example, by increasing PARPi-
induced stress, blocking protective responses, or capitalizing on the rewiring of malignant cells and the 
immune microenvironment27 – has the potential to improve responses to PARP therapies, including in 
BRCA1/2wt TNBC. The identification of the specific adaptive response to target may require collecting 
tumor biopsies taken before and during PARPi monotherapy, then cataloguing drug-induced changes to 
exploit in a combined treatment regimen.  
 
Combining PARPi with ICB is a promising therapeutic approach to leverage PARPi-induced adaptive 
changes in immune signaling. PARP inhibition enhances antigen presentation, recruits cytotoxic T 
lymphocytes, and activates the stimulator of interferon genes (STING) pathway21,22,28, all of which could 
increase the efficacy of ICB. Notably, PARPi can activate the STING pathway in BRCA1/2wt syngeneic 
cancer models that are DNA repair competent23, potentially leading to an infiltration of adaptive immune 
cells that would recognize neoantigens generated through low fidelity DNA repair. Indeed, clinical trials 
combining ICB and PARPi showed activity in both BRCA1/2mut and BRCA1/2wt mTNBC, although 
response rates are lower in the wild-type group14,29-31.  
 
Building on these findings, we initiated the Adaptive Molecular Therapy of Evolving Cancers (AMTEC) 
trial to evaluate the efficacy of combining the PARP inhibitor olaparib with the PD-L1 inhibitor 
durvalumab in BRCA1/2wt mTNBC32. This trial includes an olaparib monotherapy phase followed by a 
combination phase with olaparib and durvalumab, with biopsies collected at baseline and during olaparib 
monotherapy. Both biopsies are analyzed with a suite of multi-omic assays in an in-depth examination of 
changes in malignant cells and the tumor ecosystem in response to PARPi-mediated therapeutic stress. 
Using this approach, the AMTEC trial aims to identify adaptive changes induced by PARPi monotherapy 
that could serve as biomarkers for selecting patients likely to benefit from PARPi/ICB combination 
therapy. An additional aim is to discover resistance mechanisms to combined PARPi/ICB, which could 
be targeted with alternative PARPi combinations. Here we report the clinical and translational results of 
stage 1 of the AMTEC trial. 
 
Results  
AMTEC is a single-arm, open-label phase II trial assessing the efficacy of olaparib combined with 
durvalumab in participants with BRCA1/2 wild type mTNBC (Fig. 1a). Eligible participants undergo a 
pre-treatment biopsy upon enrollment, followed by a 4-week olaparib treatment. At the end of this olaparib 
lead-in, all participants undergo a second biopsy on olaparib, and then durvalumab is added to the 
treatment regimen.  
 
The primary endpoint of the study is the overall response rate (ORR) for olaparib plus durvalumab. 
Secondary endpoints include clinical benefit rate (CBR), duration of response, progression-free survival 
(PFS), and overall survival (OS), as well as safety and tolerability of the treatment.  
 
Participant and Disease Characteristics 
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Seventeen participants with biopsy-proven mTNBC were enrolled in stage 1 of the AMTEC trial between 
January 2019 and May 2020. Participant characteristics are summarized in Table 1. All participants had 
an ECOG performance status of 0 or 1. Approximately equal numbers of participants had 0, 1, or 2 lines 
of prior therapy in the metastatic setting, including seven participants who had received platinum-based 
therapy. Four participants had brain metastases that were controlled at the time of enrollment. 
 
Of the seventeen enrolled participants, two were replaced due to required discontinuation of study drugs, 
resulting in a set of fifteen participants in the primary endpoint ORR analysis (Extended Data Fig. 1a). An 
additional participant voluntarily withdrew during olaparib/durvalumab cycle 3 per personal preference. 
This participant (“M”; Fig. 1b) achieved a RECIST best response of partial response (PR) 33 on first 
restaging and was included in the ORR analysis but omitted from survival analyses, resulting in a total of 
fourteen participants evaluable for the survival efficacy endpoints (PFS and OS).   
 
Efficacy Endpoints 
Among the fifteen participants who received the combination therapy and were evaluable for the primary 
ORR efficacy endpoint, there were four PRs and no complete responses (CR), for an ORR of 27% (Fig. 
1b and Extended Data Table 1a). An additional four participants had stable disease (SD) ≥6 months, for a 
CBR of 53%. A fifth participant (“G”) had SD for 5.7 months. 
 
The best percentage change from baseline for the sum of all target lesions was calculated for each 
evaluable participant (Fig. 1c). Among the five participants with SD as the best response, percentage 
changes ranged from 0% to -27%. For the four participants with PR as the best response, the range was 
from -30% to -40%. In contrast, the five participants with progressive disease (PD) showed percentage 
changes ranging from +23% to +165%. Participant N did not have target lesion size measurements taken 
at disease progression and percent change was therefore unevaluable.  
 
The median PFS for the entire cohort was 5.52 months (95% CI 2.4 – 8.97 months), and median OS was 
12.88 months (95% CI 4.17 – 17.77 months; Fig. 1d and Extended Data Table 1a). Participants with a best 
response of SD or PR did not show statistically significant differences in PFS or OS (data not shown). 
Therefore, for all further analyses, we combined SD and PR cases as participants who derived clinical 
benefit from the study therapy. 
 
Participants with PR or SD had significantly better survival outcomes than those with PD (OS p = 0.0013, 
PFS p <0.0001; Fig. 1e). The median survival times for participants with PR/SD were 9 months PFS (95% 
CI 5.72 – 10.12 months) and 17 months OS (95% CI 10.22 – 19.38 months), compared to 2 months PFS 
(95% CI 1.71 – 2.46 months) and 3 months OS (95% CI 1.94 – 7.98 months) for participants with PD as 
the best response.  
 
Clinical outcomes were not associated with either the total number of therapies or prior platinum treatment 
in the metastatic setting (data not shown). Additionally, for participants with a history of CNS metastases, 
CNS progression occurred concurrently with the progression of extra-cranial systemic disease.  
 
Safety Results 
All seventeen participants who received at least one dose of study drugs were evaluable for safety 
endpoints (Extended Data Table 1b). Most treatment-related adverse events (AEs) were mild to moderate 
(grade 1-2 = 140/152; 91%). Ten participants (59%) experienced severe AEs (grade 3), with 14/33 (42%) 
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considered as possibly related to the study treatment. No grade 4 or 5 AEs attributed to study interventions 
or treatment were noted. 
 
Among the grade 3 AEs, two occurred in participants with immune-related elevated liver enzymes 
attributed to durvalumab, which resolved following dose hold and supportive medications (Extended Data 
Table 1c). The most common olaparib-related grade 3 AE was anemia in 4/17 participants (24%), which 
resolved with a dose hold and adjustment per protocol. The two grade 5 AEs included a motor vehicle 
accident unrelated to treatment and a case of pain related to rapidly progressive disease. 
 
Clinical and Exploratory Research Analytics  
We conducted a comprehensive exploratory analysis of the tumor-intrinsic and microenvironmental 
biology of both the pre-treatment and on-olaparib tumor biopsies. This included a focus on signatures that 
emerged as adaptive responses to the olaparib monotherapy lead-in. 
 
The methods used included: 1) clinical immunohistochemistry (IHC); 2) GeneTrails® DNA sequencing 
of 225 cancer-relevant genes; 3) whole exome DNA sequencing (WES); 4) bulk transcriptomic 
sequencing (RNAseq) for gene rearrangements and RNA expression levels; 5) NanoString GeoMx® 
Digital Spatial Profiling (DSP) of 48 proteins and phospho-proteins; 6) reverse phase protein arrays 
(RPPA) of 480 proteins and post-translational modifications; 7) RAD51 foci analysis to detect 
homologous recombination deficiency, and 8) multiplexed immunohistochemistry (mIHC) with 23 
antibodies to quantify infiltrating immune cells and their functional states. Due to sample availability and 
assay-specific tumor content requirements, not all assays were performed on every sample, and some 
mIHC assays failed due to tissue loss during analysis.   
 
Extended Data Fig. 1b and Extended Data Table 1d summarize the results from these clinical and 
exploratory research analytics, discussed in detail below. Extended Data Fig. 1b shows clinical metadata 
for each sample, along with data resulting from each of the assays listed above, noting statistical 
significance and associations with best response (R), PFS (P), OS (O), and/or changes between paired 
biopsies (B). Extended Data Table 1d lists the statistically significant features that predict response to the 
olaparib/durvalumab combination, using Boruta and Bonferroni multiple comparison adjustment within 
each data type.  
 
Tumor-Intrinsic Analytes  
The following tumor-intrinsic measurements did not show statistically significant correlations with 
participant outcomes:1) mutations in TP53, the HRD pathway, or the MAPK pathway; 2) TMB (no sample 
exceeded 10 mutations/Mb); 3) percentage of malignant cells expressing PD-L1 or Ki-67 by IHC; 4) AR 
positivity by IHC or DSP; 5) biopsy site; or 6) tumor content, although this tended to be higher in 
participants with PD.  
 
PD-L1 tumor cell positivity was assessed by IHC using two different cutoffs due to discrepancies in the 
literature34. PD-L1 tumor proportion scores ≥10% were observed in at least one biopsy from four of the 
fifteen participants, including three of nine (33%) demonstrating clinical benefit (PR/SD) and one of six 
(17%) participants who did not (PD; Extended Data Fig. 1b). PD-L1 scores ≥1% were observed in at least 
one biopsy from ten of the fifteen participants, including seven of nine (78%) demonstrating benefit 
(PR/SD) and three of six (50%) who did not (PD). Although not statistically significant, participants with 
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PD-L1 ≥1% were more likely to achieve PR/SD, aligning with other studies indicating an association 
between PD-L1 positivity and response to ICB in TNBC35,36.  
 
PD-L1 protein levels were also measured by NanoString DSP. Unlike IHC, high DSP protein levels in the 
pre-treatment biopsy, but not the on-olaparib biopsy, showed a statistically significant association with 
OS (pre-treatment p=0.03; see Extended Data Fig. 4o). The differences in statistical significance between 
IHC and DSP may be attributed to the greater quantitative sensitivity of DSP, variations in cutoff values 
for positive sample calls, or slight differences in sample sets. Thus, while PD-L1 may have influenced the 
response to olaparib and durvalumab, PD-L1 protein measurements by IHC are insufficient to accurately 
predict response.  
 
Interestingly, olaparib-induced increases in the number of PD-1+ cells, but not in PD-L1+ cells, were 
significantly associated with achieving clinical benefit (PR/SD) from combined olaparib/durvalumab, as 
measured by mIHC (see Fig. 6a; Extended Data Fig. 6b). High PD-1+ cells in the on-olaparib biopsy also 
showed a trend toward significance for OS (p=0.1, data not shown).  
 
The most frequently mutated gene was TP53, observed in 14 out of 15 participants (93%). No tumor had 
a deleterious aberration in BRCA1, BRCA2, BARD1, PALB2, RAD51C, or RAD51D, which are known to 
confer sensitivity to PARPi37,38 (Extended Data Fig. 1b). However, there were alterations in two other 
genes involved in homologous recombination (HR): a potentially pathogenic germline ATM mutation in 
Participant A and a potentially clinically significant somatic CDK12 mutation in Participant G. Regarding 
mutations possibly related to durvalumab response, Participants E and F had deleterious mutations in beta-
2-microglobulin (B2M), and Participant K had a low frequency JAK1 mutation detected only in the on-
olaparib biopsy.  
 
PI3K/AKT pathway alterations were present in biopsies from two of nine PR/SD participants and in five 
of six PD participants. Note that Participant N had only one of the two biopsies with clinically reported 
PTEN loss, possibly due to tumor content variability constraining copy number loss detection. Receptor 
tyrosine kinase or MAPK pathway aberrations were present in only two participants: one with SD and one 
with PD as best response.  
 
RPPA proteomics data were generated from a subset of samples: 9 pre-treatment biopsies, 8 on-treatment 
biopsies, and 7 matched pairs. Protein PARylation (PAR), which is catalyzed by PARP upon binding 
single-strand DNA breaks, was elevated in all evaluable pre-treatment biopsies from PD participants, but 
in only one PR/SD sample (Participant F) (Fig. 2a; Extended Data Fig. 1c). Although PAR was initially 
high in the PD samples, it significantly decreased to levels similar to those in the PR/SD samples upon 
olaparib treatment (Fig. 2a). This indicates that the poor response to the olaparib/durvalumab combination 
in these participants was not due to insufficient olaparib activity. No other proteins or protein pathways 
assessed by RPPA were associated with treatment outcomes, likely due to the limited number of samples 
with sufficient material for analysis. 
 
Defects in HR are well-established predictive biomarkers for PARPi response, even in the absence of 
BRCA1/2 mutations39-42. To assess HR deficiency in our BRCA1/2wt samples, we developed an 
immunofluorescence-based assay that distinguishes HR-competent (HRC) and HR-deficient (HRD) cells. 
Cells in G2 phase were evaluated for the presence of functional HR repair complexes and double-strand 
DNA breaks within the same nuclei, then samples were categorized as predominantly HRC, HRD, or 
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Intermediate (Extended Data Fig. 1b-e). Although HRC or HRD status alone was insufficient to predict 
clinical outcomes, the two participants with tumors classified as HRD (Participants M and E) achieved a 
best response of either PR or SD. In contrast, no analyzable samples from participants with PD were 
classified as HRD. 
 
Genomic scarring is a common indicator of HRD due to its strong association with BRCA1/2 mutations 
and other DNA damage mechanisms43. Given its association with HRD, we assessed the predictive value 
of the MutSig3 signature in the WES from the pre-therapy biopsy. Interestingly, MutSig3 was 
significantly associated with OS (p-val = 0.03; Fig. 2b) but not with best response or PFS (data not shown).  
 
PI3K-AKT and RTK-MAPK pathway activity is associated with therapeutic resistance, including to 
PARPi and ICB15,44,45. To evaluate whether activation of these pathways influenced the response to 
olaparib/durvalumab in AMTEC, we catalogued PI3K-AKT and RTK-MAPK gene alterations and 
pathway activation via NanoString DSP phosphoprotein profiling.  
 
Samples with elevated phosphoproteins in the PI3K-AKT pathway (indicative of PI3K-AKT pathway 
activation) tended to also have PI3K-AKT gene aberrations: six of the seven pathway-activated samples 
had a concurrent pathway gene alteration (Extended Data Fig. 1b). Consistent with the notion that PI3K-
AKT gene alterations may be leading to pathway activation, in either biopsy, gene alterations or pathway 
activation were associated with poor outcomes: gene alterations with progressive disease and reduced OS 
and PFS, and pathway activation with reduced PFS (Extended Data Fig. 2a-c). Additionally, a combined 
analysis of samples with a mutation and/or elevated pathway activity showed an association with 
progressive disease and reduced OS and PFS (Fig. 2c; Extended Data Fig. 2d).  
 
In contrast, RTK-MAPK DSP pathway activation was independent of gene alteration: none of the four 
pathway-activated samples had concurrent pathway mutations, and none of the three samples with 
genomic alterations also had pathway activation (Extended Data Fig. 1b). Consistent with our previous 
studies15,26, MAPK pathway activation appeared to be induced by PARPi, as all four pathway-activated 
samples were from on-olaparib biopsies. MAPK pathway activation in the on-olaparib biopsy but not the 
pre-treatment biopsy was associated with worse OS and PFS (on-olaparib p-value = 0.03 for OS and 0.004 
for PFS; Fig. 2d; Extended Data Fig. 2e).  
 
Elevated signaling activity in the on-olaparib biopsy in either the PI3K-AKT or RTK-MAPK pathway 
strongly indicated poor clinical outcomes, including OS, PFS, and RECIST best response (on-olaparib p-
values of 0.005, 0.003, and 0.015, respectively; Fig. 2e; Extended Data Fig. 2f). One or both pathways 
were activated in four of six PD participants but not in any PR/SD participants (Extended Data Fig. 1b). 
In contrast, gene alterations in either pathway in the on-olaparib biopsy did not significantly associate 
with response (on-olaparib p-value = 0.1 for OS, 0.12 for PFS, and 0.103 for best response; Extended Data 
Fig. 2g and data not shown). This suggests that protein-based analyses from on-treatment biopsies may be 
more informative for anticipating resistance to olaparib/durvalumab driven by PI3K-AKT or RTK-MAPK 
signaling in mTNBC.  
 
Tumor Microenvironment Analyses 
We also evaluated the tumor microenvironment in pre-treatment and olaparib-treated samples to identify 
features predicting benefit from the olaparib/durvalumab combination. Using GSVA analysis of RNAseq 
data, high levels of the Cancer Hallmark “Angiogenesis” signature in the on-olaparib biopsy were 
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associated with worse response to therapy (PD vs. PR/SD p-value = 0.021) and survival (OS p-value = 
0.003 and PFS p-value = 0.0009) but had no predictive value in the pre-treatment biopsy (Fig. 3a; 
Extended Data Fig. 3a). Interestingly, olaparib treatment changed the expression levels of this signature 
for six of the fifteen participants, with a decrease from high to low in three good responders and an increase 
from low to high in two poor responders (Extended Data Fig. 1b). 
 
Olaparib alters the immune landscape in model systems and in patient tumors, and immune contexture is 
a key determinant of durvalumab activity46,47. While clinical IHC measurements of infiltrating CD4 and 
CD8 T cells showed no correlation with participant outcomes (data not shown), multiple immune features 
in the AMTEC on-olaparib samples from our multi-omic analyses were associated with PFS, OS, and 
RECIST best response, including gene expression signatures, protein markers, and immune cell density 
(summarized in Extended Data Fig. 1b and Extended Data Table 1d).  
 
In the bulk RNAseq data, the immune-related GSVA gene sets “IL6/JAK/STAT3 Signaling”, “Activated 
CD8 T Cells”, and “T Helper Cells” were associated with favorable OS and RECIST best response 
(PR/SD) in the on-olaparib biopsy only (Fig. 3b-d). “Interferon Gamma Response” and “NK/CD56dim 
Cells” were both associated with best response (PR/SD) in the on-olaparib biopsy, but neither signature 
significantly associated with survival (Extended Data Fig. 3b,c). In contrast, enriched “Cytotoxic Cells” 
was associated with favorable OS and RECIST best response in both the pre-treatment and the on-olaparib 
biopsies (Extended Data Fig. 3d).  
 
To spatially resolve changes in immune contexture in response to olaparib, we used the protein-based 
mIHC and DSP assays. Elevated densities of CD20+ B cells and multiple CD8+ T cell states were 
associated with improved outcomes in mIHC from on-olaparib biopsies (Fig. 4a-b, Extended Data Fig. 
4a-c,q-s). Interestingly, both naïve (TBET/EOMES/PD-1-; Extended Data Fig. 4q) and exhausted (PD-
1/EOMES+) CD8+ T cells, particularly Ki-67+ (Extended Data Fig. 4a-c), were associated with improved 
outcomes. This indicates that olaparib may facilitate T cell recruitment and/or expansion.  
 
Within the myeloid compartment, high macrophage density was associated with better OS in the on-
olaparib biopsy but poor PFS in the pre-treatment biopsy (Extended Data Fig. 4f,g). This contradiction 
may be due to differences in CD163+ myeloid populations associated with response:  high infiltrating 
CD163+ macrophages in the pre-treatment biopsy associated with shorter PFS, whereas high CD163- 
macrophages and CD68+ CD163- monocytes in the on-olaparib biopsy associated with better clinical 
outcomes (Extended Data Fig. 4h-j). These results indicate that elevated CD163+ myeloid subsets at 
baseline may be an indicator of poor outcomes, and that olaparib increases the number of CD163- myeloid 
cells that contribute to improved responses. 
 
Using the DSP platform, we focused on immune markers within the tumor (PanCK+) compartment, which 
represents immune cells proximal to malignant epithelial cells. Consistent with mIHC, elevated CD45 
(immune cells) and CD3 (T cells) in the tumor compartment were associated with improved outcomes in 
the on-olaparib biopsy, including OS and best response (Fig. 4c,d). In addition, CD68 (myelomonocytic 
cells), CD56 (natural killer cells), and CD11c (dendritic cells). were all associated with improved PFS 
and/or OS in the on-olaparib biopsy (Extended Data Fig. 4k-n). As noted above, elevated PD-L1 in the 
tumor compartment was associated with better OS and RECIST best response in the pre-treatment biopsy, 
even though clinical IHC was not (Extended Data Fig. 4o).  
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Our data show that while each analysis platform revealed multiple immune cell populations or markers 
that predicted clinical outcomes on the AMTEC trial, these predictors varied from platform-to-platform 
(Extended Data Fig. 1b, Extended Data Table 1d). There are a variety of possible technical explanations 
for this, some of which we present in the “Discussion” below. To identify cross-platform response 
predictors that minimize the technical nuances of each platform, we combined the findings from the three 
assay platforms into a unified consensus signature, using the most predictive individual findings from 
each. 
 
We first combined the response predictors from each of the three individual assay platforms into single-
assay consensus immune signatures (see Methods and Extended Data Fig. 1b for response predictor 
inclusions). A “Positive” RNAseq consensus signature was defined as high enrichment scores in four or 
more immune RNA signatures (GSVA gene sets) and was significantly associated with favorable OS and 
RECIST best response but not PFS (“IMMUNE RNA SUMMARY”; Fig. 5a, Extended Data Fig. 5a). 
Similarly, a “Positive” mIHC consensus signature was defined as having six or more high mIHC cell types 
and was significantly associated with favorable PFS and best response as well as a trend toward OS 
(“IMMUNE mIHC SUMMARY”; Fig. 5b, Extended Data Fig. 5b). A “Positive” DSP consensus immune 
signature was defined as having four or more high Immune DSP proteins and was significantly associated 
with favorable PFS, OS and best response (“IMMUNE DSP SUMMARY”; Fig. 5c, Extended Data Fig 
5c). Importantly, the consensus immune signatures for each of the three assay platforms was associated 
with improved clinical outcomes when observed in the on-olaparib biopsy but not the pre-treatment 
biopsy. 
 
The consensus calls showed strong concordance from platform-to-platform: RNA vs. DSP was 76% 
concordant, RNA vs. mIHC 74%, and DSP vs. mIHC 83% (Extended Data Fig. 1b: compare “IMMUNE 
RNA SUMMARY”, “IMMUNE mIHC SUMMARY”, and “IMMUNE DSP SUMMARY”). This finding 
indicates that combining individual assay predictors within each assay platform can effectively 
compensate for the significant technical differences across the assays as detailed in Discussion.  
 
Importantly, a multi-omic consensus immune signature combining all three platforms strongly predicted 
PFS (p=0.003), OS (p=0.01), and PR/SD (p=0.005) in the on-olaparib biopsy but not the pre-treatment 
biopsy (Fig. 5d, Extended Data Fig. 5d). Taken together, evaluation of immune contexture, particularly 
within the on-olaparib biopsy, provides a compelling ability to predict clinical response to combined 
olaparib/durvalumab.  
 
In the analyses above, biopsies from participants with better responses and longer survival tended to have 
higher levels of immune-related RNA signatures, mIHC cell types, and DSP proteins than non-responders, 
suggesting that participant outcomes are influenced by adaptive changes in tumor-infiltrating immune 
cells in response to olaparib. To investigate this further, we examined changes in immune signatures in 
matched pairs of pre- and on-olaparib biopsies to identify statistically significant changes correlated with 
RECIST best response. As shown in Fig. 6 and Extended Data Fig. 6, multiple markers increased on 
olaparib in matched biopsy pairs from participants with favorable responses but not in those with poor 
responses, such as CD4+ T cells (pre-treatment to on-olaparib change, p=0.0017 for PD vs. PR/SD), CD8+ 
T cells (p=0.00055 for PD vs. PR/SD), and PD-1+ cells (p=0.00024 for PD vs. PR/SD). Moreover, several 
changes induced by olaparib in responding participants were also associated with longer survival, 
including exhausted CD8+ T cells and CD68+ CD163- monocytes from mIHC (compare Fig. 6a and 
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Extended Data Fig. 6a to Extended Data Fig 4b,c,j) and CD3 and CD68 from DSP (compare Fig. 6b to 
Fig. 4d and Extended Data Fig. 4k).   
 
TNBC classification systems that use bulk RNAseq data to define luminal, basal, mesenchymal, and 
immune states have been refined to encompass basal-like immune-activated (BLIA), basal-like immune-
suppressed (BLIS), luminal androgen receptor (LAR), and mesenchymal (MES) subtypes48-51. We have 
since implemented and validated the latter classification algorithm within the CLIA/CAP certified OHSU 
Knight Diagnostic Laboratories, adding an indeterminant (IND) category for samples with insufficient 
confidence to discriminate between the BLIA and BLIS subtypes.  
 
In the AMTEC study, participants with BLIS or LAR subtypes in either the pre-treatment or the on-
olaparib biopsy had significantly poorer outcomes than those with either BLIA or IND (Fig. 7a,b), with a 
decreased OS (on-olaparib biopsy p-val=0.001) and PFS (p-val=0.001) and a significantly likelihood of 
RECIST best response of PD (p-val=0.035). Tumors classified as BLIA were associated with a high 
likelihood of benefit. Indeed, all four BLIA participants achieved a best response of SD/PR and all three 
BLIS/LAR participants had PD (Fig. 7c). No MES tumors were present in the sample set. 
 
Olaparib treatment changed the TNBC subtype for several participants, from either IND to BLIA or BLIS 
to IND (Extended Data Table 1a). These changes were clinically relevant, as the subtype of the on-olaparib 
biopsy had a higher predictive value than the pre-treatment biopsy for both survival and best response 
(Fig. 7a,b).  
 
The predictive value of the TNBC subtype was tested on an independent sample set treated under the same 
AMTEC protocol using samples not included in the stage 1 dataset described here. In this set, the best 
response of 7 of 8 participants (88%) was accurately predicted by the BLIA/BLIS algorithm (data not 
shown). This training and test set approach demonstrates that despite the limited number of samples 
analyzed, TNBC subtype is a strong signature predicting benefit from olaparib/durvalumab that warrants 
further investigation, particularly in the on-olaparib biopsy. 
 
A striking observation was that a subset of the highly ranked BLIA genes (centroid >0.5) was interferon-
induced, with a median fold change of >2 (based on data from interferome.org; Extended Data Fig. 7a). 
However, while some genes in the BLIA signature were interferon inducible, classical interferon-induced 
genes such as IRFs and IFITs did not score among the highly ranked genes, indicating that the BLIA 
predictor potentially captures a novel interferon-induced gene set.  
 
We analyzed an internal single-cell RNAseq data set from 13 breast cancer specimens to determine which 
kinds of cells express the genes defining the TNBC subtypes. As shown in Extended Data Fig. 7b, BLIA-
associated genes were predominantly expressed in immune cells, including various subtypes of T cells, 
NK cells, myelomonocytic subsets, and dendritic cells. Consist with this, these genes were strongly 
associated with antigen presentation, T cell localization, and T cell killing. The BLIA-associated genes 
showed minimal expression in other cell types in the dataset, including cancer-associated fibroblasts, B 
cells, malignant cells, or normal epithelial cells. However, like the interferon-induced genes, classic T 
cell, macrophage, monocyte or dendritic cell genes were not part of the BLIA signature.  
 
Discussion 
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The AMTEC trial, which included one month of olaparib monotherapy followed by combined olaparib 
and durvalumab, showed significant benefit for BRCA1/2 wild type participants, with a median PFS of 
5.52 months and OS of 12.88 months. Of the 15 evaluable participants, 4 (27%) achieved PR and 8 (53%) 
demonstrated clinical benefit. The overall PFS did not differ between participants with PR and those with 
SD, indicating that for this combination, the clinical benefit rate is the most important determinant of 
efficacy. The combination therapy in this trial was reasonably well-tolerated, with toxicity resolving 
through dose holds or reductions. Many, but not all, AMTEC participants demonstrated significant clinical 
benefit from the combination of olaparib and durvalumab. We therefore conducted a deep analysis of our 
multi-omic data sets to identify predictive markers that differ between responding participants and non-
responders, particularly those that emerge as an adaptation mechanism in response to olaparib 
monotherapy.  
 
Despite initial expectations, several markers were non-predictive of response. These include TMB; 
percent PD-L1 or Ki-67 positive cells by IHC; mutations in TP53, the HRD pathway, or the MAPK 
pathway; numbers of CD4+ or CD8+ T cells by IHC; AR levels by IHC or DSP; biopsy location; and 
percent tumor content.  Interestingly, two participants had mutations in B2M that are expected to decrease 
class I HLA expression on the cell surface and impair antigen presentation. Loss of B2M and HLA 
expression has been linked to resistance to immune checkpoint blockade52. Despite this, both participants 
with B2M mutations benefited from treatment, with one showing evidence of constitutive NK cell 
activation and the other exhibiting an olaparib-induced immune response.  
 
Using a RAD51 foci assay, we found that neither HRC nor HRD status was sufficient to predict clinical 
outcomes. This may be due to the limited number of participant samples definitively classified as HRC or 
HRD. Importantly, our method of counting RAD51 foci exclusively in G2 cells with DNA damage 
revealed tumors with mixed populations of HRC and HRD cells. This suggests that clinical outcomes in 
PARPi-treated mTNBC patients may be adversely affected by intratumoral heterogeneity in HRR 
competence. 
 
PD-L1 protein levels were predictive of outcomes in our quantitative DSP assay. Although PD-L1 clinical 
IHC was not a statistically significant outcome predictor, higher percentages of PD-L1+ tumor cells were 
frequently seen in participants with favorable clinical outcomes and less common in those with 
unfavorable outcomes, particularly in the on-olaparib biopsy. Notably, PD-1+ T cells were more abundant 
in on-olaparib biopsies from participants with PR/SD, indicating that olaparib either remodeled immune 
contexture or enhanced antigenic priming in responding participants.   
 
We found that AKT and MAPK pathway mutations and activity identified a subset of participants with 
limited response to the combination of olaparib and durvalumab. The predictive value was particularly 
strong in on-olaparib biopsies. This supports the concept that the AKT and MAPK pathways are activated 
as an adaptive response to PARP inhibition, which subsequently limits the efficacy of olaparib plus 
durvalumab. These pathways have been implicated in the response to olaparib combination therapies in 
other preclinical studies and clinical trials15,26,37,45,53. Based on these findings, we initiated a follow-on 
multi-arm AMTEC trial (NCT03801369), which includes olaparib combined with either a MEK inhibitor 
(selumetinib) or an AKT inhibitor (capivasertib). Arm allocation in this study is largely based on analysis 
of MAPK and AKT pathway activation in the on-olaparib biopsy, assayed in the CLIA environment using 
the DSP platform. 
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Somewhat unexpectedly, most participants with a high “Angiogenesis” RNA signature in the on-olaparib 
biopsy had a poor clinical response to the olaparib/durvalumab combination. This observation is consistent 
with an ovarian cancer study that implicated VEGFR3 expression in resistance to olaparib and 
durvalumab54, as well as the clinical benefit derived from angiogenesis-targeting PARPi combinations 
such as olaparib plus cediranib or bevacizumab55-57. Our observation that this signature changed as an 
adaptive response to PARPi indicates that measuring angiogenesis in on-therapy biopsies may identify a 
population of patients more likely to benefit from the addition of an angiogenesis inhibitor, justifying the 
potential toxicity associated with these combinations. 
 
Many predictive markers were associated with immune status in the on-olaparib biopsy, supporting the 
contention that olaparib-mediated alterations in the immune contexture contribute to the response to the 
olaparib and durvalumab combination. However, not all analyzed markers showed response-dependent 
changes with olaparib treatment (data not shown), indicating that the immune signature predictors reflect 
specific changes in immune contexture induced by olaparib rather than sample set differences or 
differential tumor heterogeneity between responders and non-responders 
 
Interestingly, we and others have demonstrated in preclinical studies that PARPi induces STING 
activation, leading to subsequent interferon production22-24,28. In the current study, while a baseline 
interferon signature was associated with response, three PR/SD participants went from a low to a high 
“Interferon Gamma Response” RNA signature on the on-olaparib biopsy. In contrast, one PD participant 
went from low to high and a second went from high to low. Since interferon signals through the JAK-
STAT pathway, the observed increase in the “IL6/JAK/STAT3 Signaling” RNA signature in two of the 
three PR/SD participants with the high interferon signature, along with the decrease in this signature in 
the PD participant with a low interferon signature, support the concept that activation of interferon 
signaling in response to olaparib could contribute to benefit from olaparib and durvalumab.   
 
While immune indicators from the RNA, mIHC, and DSP platforms all predicted benefit from olaparib 
and durvalumab, each platform identified different predictive markers. This discrepancy is not surprising, 
as the mIHC and DSP platforms used different antibodies and the assays were sometimes run on different 
cores with varying degrees of tissue heterogeneity. Additionally, the mIHC platform measures antigens at 
the single-cell level, while DSP and RNA sequencing yield data from populations of cells within tumor-
rich regions. RNA and protein levels are often poorly correlated, especially for proteins primarily 
regulated through post-translational modifications rather than RNA transcription58. Furthermore, the 
limited number of samples assessed and the cut-offs for positive versus negative calls, compounded by a 
lack of community consensus on markers used for cell type assignments, likely influenced the statistical 
significance of specific markers. These factors highlight the need for further refinement of predictors 
within each platform using additional samples.  
 
Despite these issues, our patient-by-patient analysis of immune activation state showed high concordance 
across the platforms. Interestingly, CD4, CD8, and CD20 levels measured by IHC were not predictive of 
response (data not shown), indicating that deeper analyses, such as those performed here, are necessary to 
uncover predictive signals. Further, while most of the immune markers were associated with an improved 
outcome, total macrophages and CD163+ macrophages (M2-like) were associated with a worse outcome. 
An association of M2-like macrophages with poor outcomes has been identified with multiple different 
therapies, including ICB59. 
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The BLIA/BLIS algorithm for determining TNBC subtype is particularly interesting as we have moved it 
to the CLIA environment, allowing its use in patient selection. The first step in utilizing the algorithm is 
to eliminate LAR patients, and indeed, we have excluded participants who have >80% AR levels by IHC 
from the ongoing AMTEC trial. Importantly, BLIS or BLIA on the on-olaparib biopsy accurately 
predicted participant benefit. However, clinical use of this assay is confounded by the number of 
participants who are Indeterminant. While most participants who were Indeterminate on the on-olaparib 
biopsy benefited (4/6), some did not (2/6). Thus, it is necessary to develop approaches to refine the 
predictive value of the BLIA/BLIS algorithm.  
 
It is important to note that the TNBC subtype (combining IND with BLIA and LAR with BLIS) is a strong 
predictor of benefit on the pre-therapy biopsy with p-values of 0.03 and 0.01 for PFS and OS, respectively. 
The predictive value of the on-olaparib biopsy was better than that of the pre-therapy biopsy, with the pre-
therapy biopsy containing about 85% of the information content of the on-olaparib biopsy. Thus, a pre-
therapy analysis of BLIA/BLIS, while not optimal, does provide a high predictive value for selection of 
patients who are likely to benefit from the olaparib and durvalumab combination, especially when an on-
olaparib biopsy is unavailable.  
 
This study has multiple limitations, the foremost being the limited number of participants. This concern 
will be alleviated somewhat by the ongoing AMTEC trial with a small test set to assess potential markers; 
however, prospective analysis of our potential predictors in future trials is necessary. Some of the assays 
were only completed on a subset of participants. Despite obtaining up to six cores as part of each biopsy, 
there was not always sufficient material and tumor content to complete the assays. Further, the DSP data 
were incomplete from some samples because the assay was upgraded during the trial and there was 
insufficient material to re-run the analysis; we only included data from the most recent version. Finally, 
several of the immune characterization assays were not concordant. As discussed above, there are likely 
multiple reasons for this that need to be resolved.  
 
In summary, the AMTEC trial demonstrated marked activity with acceptable toxicity. Importantly, we 
identified a set of potential signatures that strongly predicted participant outcomes, with a subset of these 
markers already validated in the CLIA environment. The ongoing AMTEC trial will provide an 
independent test set to validate multiple potential biomarkers and to explore their utility in predicting 
response to additional combination therapies. 
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(https://data.humantumoratlas.org/). Raw sequencing data have been deposited to dbGAP (Project 
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Methods 
 
STUDY DESIGN 
AMTEC is a single arm, open-label phase II trial to assess the efficacy of olaparib in combination with 
durvalumab in participants with BRCA1/2wt mTNBC (Fig. 1a). Participants with biopsy-proven mTNBC 
undergo a pre-treatment biopsy, followed by a 4-week induction treatment with olaparib (300 mg PO 
twice daily). Participants undergo a repeat on-olaparib biopsy 4 weeks (± 7 days) after starting olaparib 
monotherapy (i.e., Cycle 1, Day 28 ± 7 days). Following the 4-week olaparib induction treatment, 
durvalumab (1500 mg IV every 4 weeks) is added to olaparib. Participants are planned to receive 12 cycles 
of the assigned combination therapy but may continue treatment beyond 12 cycles in the absence of 
disease progression or unacceptable toxicity. Participants are also offered an optional repeat biopsy at the 
time of disease progression. Participants will be followed after removal from protocol therapy for a 
maximum of 1-year post-treatment.   
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TRIAL OVERSIGHT 
All biospecimens and data were collected under the single-center, observational study Adaptive Molecular 
Therapy of Evolving Cancers (AMTEC), ClinicalTrials.gov identifier NCT03801369.  Written informed 
consent was obtained from all participants prior to enrollment. The Oregon Health & Science University 
(OHSU) Institutional Review Board approved the trial (IRB #18504). The study adhered to the ethical 
principles of the Declaration of Helsinki and followed the International Council on Harmonization 
guidelines on Good Clinical Practice, in compliance with all applicable laws, regulatory requirements, 
and conditions mandated by regulatory authorities and/or institutional review boards.  
 
PARTICIPANTS 
Eligible participants must have biopsy-proven mTNBC defined as ER <10%, PR <10%, and HER2 non-
amplified per ASCO/CAP guidelines60. Participants with ≤2 prior chemotherapy regimens in the 
metastatic setting were eligible. Other inclusion criteria include: ECOG PS ≤1, tumor amenable to serial 
biopsies, and no prior treatment with PARPi or ICB in the metastatic setting. Key exclusion criteria include 
active autoimmune disease requiring steroid therapy or disease-modifying agents; history of HIV; active 
Hepatitis B or C infection; and/or symptomatic central nervous system metastases or carcinomatous 
meningitis. Of the seventeen enrolled participants, two were replaced on the trial and were thus excluded 
from the resulting set of fifteen in the primary endpoint ORR analysis: one did not receive durvalumab 
due to rapid disease progression, and the other had an orthopedic procedure unrelated to trial therapy that 
precluded continuation of durvalumab beyond a single dose. 
 
ENDPOINTS 
The primary endpoint is to assess overall response rate (ORR), defined as complete response (CR) and 
partial response (PR), for the combination of olaparib and durvalumab, determined by imaging using 
RECISTv1.1 criteria33. Secondary efficacy endpoints include clinical benefit rate (CBR) defined as CR, 
PR, or stable disease (SD) for ≥6 months, duration of response, progression free survival (PFS), and 
overall survival (OS). Safety endpoints include incidence of Grade 3 or higher toxicities per Common 
Terminology Criteria for Adverse Events version (CTCAE) 5.0.  
 
STATISTICAL ANALYSIS 
This study follows a Simon 2-stage Minimax design61. The null (ICB alone) and alternative (Olaparib + 
Durvalumab) hypotheses are: H0: π = 0.15 and Ha: π = 0.35. For the primary endpoint, a total sample size 
of 28 participants will achieve 80% power to detect the ORR difference of 0.20 using the 2-stage Minimax 
design, with one-sided type I error =0.05. The trial enrolled 15 evaluable participants in stage 1, defined 
as all individuals who received at least one dose of the combination of olaparib and durvalumab (Extended 
Data Fig. 1a). The trial was designed such that it would be stopped for futility if ≤2 of 15 participants 
respond, otherwise, the trial was to continue into stage 2 until a total of 28 participants were enrolled. All 
participants enrolled in stage 1 (n=15) needed to complete at least 1 post-baseline disease restaging 
assessment before the interim analysis could be completed. The investigational treatment was to be 
considered promising and worth further investigation if there were ≥8 responses among 28 participants.  
 
SAMPLE AVAILABILITY  
Pre-treatment and on-olaparib biopsies were obtained from the 15 participants evaluable for the primary 
endpoints. Samples were placed in appropriate preservative (FFPE or flash frozen for RPPA) within 3 
minutes to preserve post-translational modification, particularly phosphoproteins (Johnson 2022). As 
indicated in Extended Data Fig. 1b, the success of different assays varied across samples and assay 
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platforms. Neither the pre-treatment nor the on-olaparib biopsy for Participant A had adequate tumor 
content for analysis, so Genetrails and IHC data from a biopsy obtained 90 days previously was used for 
analysis. The pre-therapy biopsy from Participant I had insufficient tumor content for assays other than 
IHC. RNAseq failed in both samples from Participants A and I. NanoString DSP was successful on most 
samples as it requires limited tumor content. DSP was run in several batches using multiple versions of 
the assay platform. Not every antibody was included from every platform version: in particular, the 
immune markers were included from only the two most recent platform versions. mIHC and cycIF failed 
in a subset of samples that became detached from the matrix, a known problem with these assay 
platforms62. RPPA requires larger amounts of materials and was only run on a subset of participant 
samples. 
 
CLINICAL IMMUNOHISTOCHEMISTRY (IHC) 
Tissue is formalin-fixed for ~12 h based on ASCO/CAP guidelines60. ER, PR, AR, HER2, and Ki-67 IHC 
stains were performed in the OHSU Knight Diagnostic Laboratories on formalin-fixed, paraffin-
embedded tissue, using pre-diluted antibodies intended for diagnostic use in a biotin-free protocol on a 
Ventana Benchmark instrument. All antibodies were sourced from Roche. Staining was interpreted and 
scored by a pathologist. ER, PR, and AR: Antibodies include anti-ER (CONFIRM clone SP1), #790-4324; 
anti-PR (CONFIRM clone 1E2), #790-2223; and anti-AR (Cell Marque clone SP107), # 760-4605. ER, 
PR, and AR stains are considered negative if there is nuclear staining in < 10% of the tumor cells. HER2: 
Staining was performed with Anti-HER2/neu (PATHWAY clone 4B5), #790-2991. HER2 scoring and 
interpretation are per the Ventana scoring guide as expanded by the ASCO/CAP 2013 guidelines. Ki-67: 
Staining was performed with anti-Ki-67 (CONFIRM clone 30-9) and reported out as percent positive cells. 
PD-L1: Anti-PD-L1 staining was performed by PhenoPath Laboratories (Seattle, WA) using clone 22C3 
pharmDx (Agilent). Positive cells were scored by Tumor Proportion Score. 
 
NGS: GENETRAILS® COMPREHENSIVE SOLID TUMOR PANEL 
Targeted DNA sequencing was conducted at the CLIA-certified and CAP-accredited OHSU Knight 
Diagnostic Laboratories using the GeneTrails Solid Tumor Panel assay. DNA was extracted from tumor-
rich regions that were macro-dissected from FFPE tissue. Library preparation utilized custom QiaSeq 
chemistry (QIAGEN) with multiplexed PCR, and sequencing was performed on an Illumina NextSeq 
500/550. The DNA library was created with 9,228 custom-designed primer extension assays, covering 
613,343 base pairs across 125 to 225 cancer-related genes. The panel is routinely sequenced at an average 
read depth exceeding 2,000 to ensure highly sensitive detection of SNVs, short insertions/deletions, and 
copy number alterations.  
 
PI3K-AKT pathway genes include the following genes from the GeneTrails panel: AKT1, AKT2, PIK3CA, 
PIK3CB, PIK3R1, or PTEN. RTK-MAPK pathway genes include the following genes: HRAS, KRAS, 
NRAS, ARAF, BRAF, RAF1, MAP2K1, MAP2K2, MAPK1, EGFR, ERBB2, ERBB3, or MET. HR genes 
include the following: ARID1A, ATM, ATR, ATRX, BAP1, BARD1, BRCA1, BRCA2, BRIP1, CDK12, 
CHEK1, CHEK2, FAM175A, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCM, MRE11A, 
NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, and RECQL. Immune 
genes include the following: B2M, CD274, HLA-A, HLA-B, HLA-C, IDO1, IDO2, IFNGR1, IFNGR2, 
IRF1, JAK1, JAK2, and PDCD1LG. Only alterations reported to be of Strong Clinical Significance (Tier 
1) or Potential Clinical Significance (Tier 2), or with gene copy number gains ≥ 7 or losses £ 0.5 were 
reported in this study. 
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WHOLE EXOME SEQUENCING (WES) 
Preparation of DNA was described as above at the Knight Diagnostic Laboratories. Total nucleic acid 
from FFPE or buffy coat was sent to Tempus Labs Inc. (Tempus Labs, Inc., Chicago, IL, USA) for exome 
sequencing using the Tempus xE panel. Raw sequence reads were reprocessed at OHSU following the 
GATK Best Practices for Somatic Variant Calling. Briefly, raw sequence FASTQ reads were aligned to 
the UCSC GRCh37/hg19 human genome build using BWA-MEM (0.7.12, GATK, Broad Institute) 63,64, 
followed by marking duplicate reads (Mark Duplicates, GATK) and base recalibration (BQSR, GATK). 
Somatic variants were called using MuTect2 (4.0.4.0, GATK, Broad Institute) between the FFPE (tumor) 
and the participant’s matched normal from buffy coat. A panel of normal (PON) and the gnomAD (2.0.1) 

65 germline reference resource were used to filter out technical sequencing artifacts and common 
polymorphisms, respectively. All analysis tools were run using an OHSU Galaxy instance (v19.01) 66. On-
olaparib WES was not performed for most participants, given the short duration between biopsies.  
 
MUTSIG3 ANALYSIS 
COSMIC mutation signatures (v2) were calculated from the somatic variants (VCF) using the 
MutationalPatterns R package with the hg19 genome reference (BSgenome.Hsapiens.UCSC.hg19) 43,67. 
The Signature 3 (MutSig3) scores were discretized into High or Low using a threshold of 40. 
 
RNA TRANSCRIPTOME SEQUENCING 
Preparation of RNA and transcriptome sequencing was performed at the Knight Diagnostic Laboratories. 
Total nucleic acid was extracted and purified from macrodissected, tumor-rich areas of FFPE sections. 
Libraries were prepared using a TruSeq RNA Access library preparation kit and sequenced on an Illumina 
NextSeq500/550. Approximately 100 million reads were generated per sample. Gene expression was 
quantified relative to Gencode v24 transcripts using Kallisto68,69.  
 
GENE SET VARIATION ANALYSIS (GSVA)  
GSVA, a non-parametric unsupervised method to calculate gene set or pathway scores on a per-sample 
basis, was conducted on the RNAseq data using the GSVA package (v1.44.5) with the 1) Molecular 
Signatures DataBase (MSigDB) Cancer Hallmarks (v7.5.1) and 2) 16 immune cell types gene sets70-72. 
GSVA scores values were discretized into High or Low using a threshold of 0.   
 
REVERSE PHASE PROTEIN ARRAY (RPPA) 
Protein extracts from tumor samples were analyzed with a panel of 480 proteins and phosphoproteins as 
previously described73,74. To scale the protein expression values, the RPPA data from each participant 
sample was merged within the TCGA primary breast cancer and SMMART-program metastatic breast 
cancer RPPA datasets, using the replicate-based normalization method58,75. The protein expression values 
were then z-scored by the Median Absolute Deviation (MAD) from a Basal classified subset of TCGA 
samples.  
 
RPPA PROTEIN PATHWAY SCORES 
Pathway scores were calculated from RPPA data as previously described26,58. To determine the pathway 
score for each sample, all predictors associated with positive activity of the pathway were summed 
minus the predictors associated with pathway inhibition. The total was then divided by the numbers of 
predictors in the pathway. Pathway scores values were discretized into High or Low using a threshold of 
0.   
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NANOSTRING GEOMX DIGITAL SPATIAL PROFILING (DSP) 
DSP was performed by the OHSU Knight Diagnostic Laboratories. A single FFPE slide per sample was 
used for DSP protein panel analysis. FFPE sections (4-5 micron) were deparaffinized and subjected to 
antigen retrieval in Citrate buffer, pH 6.0 for 15 minutes using a pressure cooker. The slides were then 
incubated with a cocktail of oligonucleotide-tagged antibodies together with two fluorescent-tagged 
morphological markers, pan-CK (Alexa 532nm) and CD45 (Alexa 594nm) at 4°C overnight, followed by 
blocking for 1 hour with Buffer W. After antibody incubation, slides were washed with TBS-T and post-
fixed with 10% neutral buffered formalin for 30 minutes. Following a brief wash with TBS-T, the sections 
were incubated with SYTO-13 (FITC 525nm) for 30 minutes and then placed on the DSP instrument for 
sample collection. Slides were scanned and tumor regions were identified based on nuclei staining and 
visualization markers.  
 
A minimum of three regions of interest (ROIs; 660 micron diameter) were selected for each sample under 
the guidance of a board-certified pathologist in accordance with recommended practices76. ROIs were 
chosen with the goal of maximizing tumor cell content, avoiding any areas of necrosis or sectioning 
artifacts on the slide. UV-released oligonucleotide barcodes were collected automatically in a 96-well 
plate, then hybridized with GeoMx hyb codesets at 67°C for 16 hours and quantitated using the MAX 
nCounter system.   
 
Assays were run on three versions of the assay platform: 1.1, 1.2, and 2.0. Antibodies differed among the 
three platform versions (see Supplementary Table 1 for antibody list), but the same analysis pipeline was 
used for all. A control tissue microarray was included in every run, the signals from which were used to 
correct for batch effects. Based on comparison with normalized signals from a 19-sample mixed breast 
cancer cohort, sample values were discretized with z-score percentiles above 25 as “High” for the immune 
proteins and AR, and above 75 as “High” for the PI3K-AKT and RTK-MAPK pathways. We considered 
the PI3K-AKT pathway to be activated if at least two of three pathway phosphoproteins (p-AKT1, p-
GSK3B, and p-PRAS40) were above the 75th percentile. We considered the RTK-MAPK pathway to be 
activated if at least two of three pathway phosphoproteins (p-MEK1, p-ERK1/2, and p-p90RSK) were 
above the 75th percentile.  
 
MULTIPLEX IMMUNOHISTOCHEMISTRY (mIHC)  
Multiple immunohistochemistry (mIHC) was performed as previously described77 and following 
(https://www.protocols.io/view/mihc-staining-ohsu-coussens-39-lab-sop-3i6gkhe). Antibody 
information is listed in Supplementary Table 2. Briefly, FFPE human tissues were sectioned at 5 microns 
and mounted on positively charged slides (Tanner Adhesive Slides, Mercedes Medical, TNR WHT45AD). 
Slides were baked overnight at 55 °C followed by an additional baking step for 30 minutes at 58-60 °C. 
They were then deparaffinized in xylene and graded ethanol (Xylene 2 x 5 min, 100% EtOH 2 x 2 min, 
95% EtOH 2 x 2 min, 70% EtOH 2 x 2 min, 50% EtOH 1 x 2 min, diH2O 2 x 2 min). Slides were 
counterstained in Hematoxylin (Dako S3301), underwent heat-mediated antigen retrieval in pH 6.0 Citra 
solution (BioGenex, Fremont, CA, USA), blocked in Dako Dual Endogenous Enzyme Block (S2003, 
Dako, Santa Clara, CA, USA), and subjected to protein blocking with 5% normal goat serum and 2.5% 
bovine serum albumin (BSA) in tris-buffered saline-0.1% Tween (TBST). Slides were incubated with 
primary antibodies for 1 hour at room temperature or 16–17 hours at 4 °C. Primary antibody was washed 
off in TBST, and either anti-rat, anti-mouse, or anti-rabbit Histofine Simple Stain MAX PO horseradish 
peroxidase-conjugated polymer (Nichirei Biosciences, Tokyo, Japan) was applied for 30 min at room 
temperature, followed by AEC chromogen (Vector Laboratories, Burlingame, California, USA). 
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Images were acquired using the Aperio ImageScope AT (Leica Biosystems) at ×20 magnification. 
Following acquisition, coverslips were gently removed in 1×TBST while agitating. Removal of AEC and 
HRP inactivation was accomplished by incubating the slides in 0.6% fresh H2O2 in methanol for 
15 minutes. AEC removal and stripping of antibodies was accomplished by ethanol gradient incubation 
and heat-mediated antigen retrieval such as described above between cycles. After washing and protein 
blocking, samples were subjected to the next round of staining. Some samples failed due to tissue loss 
during staining and image acquisition. Cell phenotypes were assigned with hierarchically gating and 
quantified to cell densities (cells/mm2). Cell phenotype densities were log10 transformed and z-centered 
as continuous variables that were discretized as “High” for samples ≥ 0 and “Low” for < 0. 
 
HR DETECTION ASSAY 
HR efficiency was assessed by a modification of a published protocol39,41 whereby RAD51 foci, which 
represent functional HR repair complexes, are assessed in cells that are both Geminin positive (G2 phase) 
and gH2AX foci positive (double strand DNA breaks). For IF staining of formalin-fixed, paraffin-
embedded (FFPE) tissue samples, 5 µm sections were deparaffinized using xylene twice for 10 minutes, 
100% ethanol twice for 10 minutes, 95% ethanol for 5 minutes, 70% ethanol for 5 minutes, and 50% 
ethanol for 5 minutes, and then left in PBS. Tissues were antigen retrieved in a pressure cooker using 
Citrate (pH 6) and DAKO antigen retrieval (pH 9) buffers. Tissues were washed twice in PBS and then 
were further permeabilized with 0.4% Triton X-100 in PBS for 1 hour. The excess permeabilization 
solution was removed by washing three times in PBS, and then a hydrophobic barrier was placed around 
the mounted tissue. Tissues were blocked with 3% BSA in PBS prior to antibody labeling. The tissues 
were then incubated with primary antibodies Rad51 (1:1500; Abcam #ab133534), Geminin (1:15, #NCL-
L, Leica), and γH2AX (1:400; EMD #05-636) on a rocker for 2 hours at room temperature in a humidity 
chamber. After three PBS washes, secondary antibodies (1:500, Invitrogen #A21428, 1:500, Biotium 
#20253-1, 1:1000, Invitrogen #A21131) were applied. After three final PBS washes, all tissue samples 
were postfixed with 4% PFA for 10 minutes at room temperature. Hoechst staining solution (1:5000) was 
used and mounted in Prolong Gold Antifade mounting media. Sample images were acquired using a 
spinning disk confocal microscope with a 40x dry objective. Raw image files from Zen (.czi) were 
imported into custom ImageJ macro software for image segmentation. WEKA machine learning plugin 
was used for both nuclei and foci segmentation. HRC nuclei were defined as having ≥ 5 RAD51 foci, 
while HRD cells were defined as RAD51 negative nuclei with ≥ 3 gH2AX+ foci. The relative contributions 
of both HRC and HRD nuclei were used to stratify participants.  
 
TNBC SUBTYPE CALLING 
CLIA TNBC subtypes were computed using a refined list of 77 genes using a novel algorithm48,50. Sample 
gene expression was batch corrected using Removal of Unwanted Variation (RUVg)78. Spearman’s 
correlation was computed between the gene expression values and each centroid. Patient samples were 
assigned to the centroid with the highest correlation. Calls were considered indeterminate (IND) if the 
difference between the top two centroids was less than 0.1. Tumors were classified as immune activated 
(BLIA), basal immune suppressed (BLIS), luminal androgen receptor (LAR), or mesenchymal (MES) 
subtypes.  
 
IMMUNE CONSENSUS 
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For the RNAseq-based Immune Consensus “IMMUNE RNA SUMMARY”, “Positive” is defined as 
having at least 4 of 6 High Immune RNA Signatures derived from the GSVA of the RNA transcriptome 
sequencing shown in Extended Data Fig. 1b.  
 
For the mIHC-based Immune Consensus “IMMUNE mIHC SUMMARY”, “Positive” is defined as having 
a predictor score of least 6 for the number of all positively associated mIHC Cell Types shown in Extended 
Data Fig. 1b minus the number of negatively associated mIHC Cell Types. Positively-associated mIHC 
cell types had a statistically significant association with a favorable best response, PFS, or OS and include 
“Immune Cells”, “Ki-67+ Immune Cells”, “Ki-67+ CD8+ T Cells”, “CD8+ T Cells”, “Ki-67+ Exhausted 
CD8+ T Cells”, “Ki-67+ TBET/EOMES/PD-1- CD8+ T Cells”, “PD-1+ CD8+ T Cells”, “T regulatory CD4 
Cells”, “CD20+ B Cells”, “CCR2+ Cells”, “CD163- Macrophages”, “CD68+ CD163- Monocytes”, “Other 
Immune Cells”, and “Macrophages” (on-olaparib only). Negatively associated mIHC cell types had a 
statistically significant association with an unfavorable best response, PFS, or OS, and include “CD163+ 
Macrophages” and “Macrophages” (pre-treatment only).  
 
For the DSP-based Immune Consensus “IMMUNE DSP SUMMARY”, a “Positive” summary is defined 
as having at least 4 of 6 High NanoString DSP Immune proteins shown in Extended Data Fig. 1b.   
 
For the “MULTI-OMIC IMMUNE CONSENSUS”, the “IMMUNE RNA SUMMARY”, the “IMMUNE 
mIHC SUMMARY”, and the “IMMUNE DSP SUMMARY” data set summaries were combined and 
assigned “Positive”, “Negative”, or “Intermediate” values using the following criteria: 1) for samples with 
3 complete data sets, “Positive” is defined as having either 2 or 3 positive data set summaries and 
“Negative” as either 0 or 1; 2) for samples with 2 complete data sets, “Positive” is defined as having 2 
positive data set summaries, “Indeterminate” as 1, and “Negative” as 0; and 3) samples with only 1 
complete data set are “Indeterminate”. Only “Positive” and “Negative” samples from the listed Immune 
Consensus summaries in Extended Data Fig. 1b were included in these analyses. 
 
STASTICAL TESTING 
Feature selection within each data type was performed using Boruta and Bonferroni multiple comparison 
adjustment to identify confirmed and tentative features of importance for predicting best response. 
Progression free survival and overall survival estimates were calculated using a Kaplan-Meier estimator 
with plain or log confidence intervals. Reported unadjusted p-values are indicated for both the logrank 
score test and Cox proportional hazards model. Comparisons of continuous datasets were performed with 
two-sided student’s t-test; comparisons of discrete datasets were performed with Fisher’s exact test. 
 
SINGLE-CELL RNA SEQUENCING (scRNAseq) 
Thirteen biospecimens were collected from participants with metastatic breast cancer under an IRB-
approved MMTERT observational study79 (OHSU IRB #16113). Fresh core needle biopsies were 
disaggregated using gentleMACS kits (Miltenyi Biotec, #130-095-929) following the manufacturer’s 
instructions and filtered through a 70-µm cell strainer. Cells were collected by centrifuging (300g for 
7 min at 4 °C) and resuspended at 700–1200 cells/µl. Live cells were isolated with a EasySep Dead Cell 
Removal (Annexin V) Kit (STEMCELL Technologies, #17899). Single cell suspensions of viable cells 
were processed using a Chromium Next GEM Single Cell 3' Kit v3.1 (10xGenomics) following the 
manufacturer’s protocol. The entire mixed cell population was analyzed without sorting or enriching 
specific cell subtypes. Briefly, viable single cells were encapsulated into GEMs containing barcoded 
oligonucleotides. 5,000-10,000 GEMs were then subjected to cell lysis, reverse transcription, and cDNA 
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amplification. Libraries were constructed from the amplified cDNA, and sequencing was performed on 
the Illumina NovaSeq platform. Raw sequencing data were aligned to GRCh38 genome reference using 
10X software CellRanger (Version 6.1.2) with default parameters. 
 
To ensure high-quality data, we used Scanpy80 to implement three quality control measures on the raw 
gene-cell-barcode matrix for each cell: 1) the proportion of mitochondrial genes (≤20%), 2) unique 
molecular identifiers (UMIs, ranging from 400 to 120,000), and 3) gene count (ranging from 200 to 
10,000). Doublets were identified and removed from each sample using Scrublet81. Normalization of total 
counts per cell was performed using the normalize_total function in Scanpy, followed by log-
normalization with the log1p function. Clustering was conducted using the Leiden algorithm at a 
resolution of 1 in Scanpy. 
 
Marker genes for each cluster were identified using a t-test implemented in Scanpy. These marker genes 
were then used to annotate each cluster using publicly available databases including CellMarker82 and 
PanglaoDB83 to determine cell identities. These annotations were later refined using the CellTypist84 
package with the celltypist.annotate function. The model 'Immune_All_High.pkl' was specified, with 
majority voting enabled. Through this process, seven major cell type clusters were annotated: epithelial 
cells, natural killer cells, myeloid cells, T cells, B cells, fibroblasts, and endothelial cells. To distinguish 
malignant cells, we calculated and identified large-scale chromosomal copy number variation (CNV) 
using inferCNV85 and CaSpER86 tools for each sample based on transcriptomes. T cells and myeloid cells 
were used as reference cells, and epithelial cells with differing CNV patterns and higher CNV score were 
annotated as malignant cells.  
 
Datasets were merged across different samples using SCVI87 based integration. The top 4,000 highly 
variable genes were used to train the VAE models, with each biopsy as covariate key. After training the 
initial VAE model, the annotated cell types were used to build an extended model with scANVI88 for 
better integration. 
 
After integration, NK cells, myeloid cells, T cells, B cells, and fibroblasts were further classified using 
the following publicly available scRNAseq datasets: NK cells (GSE21289089); T cells, myeloid cells, and 
B cells (GSE16942690) and fibroblasts (GSE103322, GSE132465, GSE154778, and GSE21296691). The 
label transfer method was performed using the scArches92 algorithm, following the best practices 
described previously93. 
 
Dot plots were generated using the Scanpy DotPlot function to visualize the expression patterns of a panel 
of previously defined TNBC subtype markers50 across various cell types. 
 
VISUALIZATIONS 
Visualizations of boxplots, and bar plots, swimmer, Kaplan-Meier curves were plotted with R using 
ggplot2, ggpubr, and ggstatsplot, or in Python using matplotlib. The CoMut plot was generated using 
Python library CoMut94.  
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FIGURE LEGENDS 

 
MAIN 
 
Table 1.  Summary of clinical features of AMTEC trial participants at baseline. 
 
Figure 1.  Description of the AMTEC trial. 
a) Schematic of AMTEC trial design, key eligibility criteria, timing of treatment and biopsy collections, 
treatment discontinuation, and post-treatment follow-up. 
b) Swimmer plot of participant time on treatment (x-axis) in months for 15 trial participants A through O 
(see Extended Data Fig. 1a). Best response based on Response Evaluation Criteria in Solid Tumors 
(RECIST), version 1.133, is labeled adjacent to treatment duration bars. Treatment durations for 
participants with best response of SD or PR is in orange and PD is in purple. Participant B * = deceased 
from trial-unrelated accident; Participant M ** = voluntarily withdrew from study by personal choice. SD 
= Stable Disease; PR = Partial Response; PD = Progressive Disease.  
c) Best percentage change from baseline in the sum of all target lesions for 14 trial participants. Lesions 
from Participant N were not evaluable. The dashed lines at 20% and −30% indicate progressive disease 
and partial response, respectively, based on RECIST. * = new lesions. 
d) Kaplan-Meier curves of Overall Survival (left) and Progression Free Survival (right) in months for 14 
trial participants, excluding Participant M (see Extended Data Fig. 1a). Median survival is indicated as 
dashed line. Upper and lower 95% confidence intervals are based on plain survival probability.  
e) Kaplan-Meier curve of Overall Survival (left) and Progression Free Survival (right) for 14 trial 
participants, stratified by RECIST best response PD (purple) and PR or SD (PR/SD, orange). Median 
survival per strata is indicated as dashed line. P-values based on log-rank test. Upper and lower 95% 
confidence intervals are based on plain survival probability. 
 
Figure 2.  Tumor-intrinsic signatures of response to olaparib and durvalumab. 
a) Boxplot of PAR protein levels (RPPA; y-axis) in pre-treatment (Pre-) and on-olaparib (On-) biopsies 
(x-axis), separated by best response PD (purple, left) and PR/SD (orange, right). P-values are based on 
paired Student’s t-test comparison of pre-treatment vs. on-olaparib. * = p-value less than 0.05; ns = not 
significant. 
b) Survival curve using Kaplan-Meier of Overall Survival in months, stratified by High (red) and Low 
(blue), for the Mutation Signature 3 (MutSig3) based on WES from the pre-treatment biopsy. Hazard 
Ratios (HR) and p-values for the Cox proportional hazard (CoxPH) model and Log-rank tests are labeled. 
Upper and lower 95% confidence intervals are based on log survival probability. 
c) Survival curve using Kaplan-Meier of Overall Survival in months, stratified by presence (Positive, blue) 
or absence (Negative, red) of mutated or copy-number altered genes in the PI3K-AKT pathway or PI3K-
AKT pathway activation by DSP or both. The pre-treatment biopsyis shown on the left and the on-olaparib 
biopsy is shown on the right. See Methods for gene and phosphoprotein inclusions and sequencing panel 
details. Hazard Ratios (HR) and p-values for the CoxPH model and Log-rank tests are labeled. Upper and 
lower 95% confidence intervals are based on log survival probability. Insets: Stacked bar plot of the 
percent of samples (y-axis) with (Positive) or without (Negative) PI3K-AKT pathway mutations (x-axis). 
The percent of samples from participants with best response PD are indicated in purple and PR/SD in 
orange. P-values are from the Fisher’s exact test. 
d) Survival curve using Kaplan-Meier of Overall Survival in months, stratified by presence (Positive, 
blue) or absence (Negative, red) of RTK-MAPK pathway activation as measured by NanoString DSP. See 
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Methods for phosphoprotein inclusions and pathway activation criteria. Hazard Ratios (HR) and p-values 
for the CoxPH model and Log-rank tests are labeled. Upper and lower 95% confidence intervals are based 
on log survival probability. 
e) Survival curve using Kaplan-Meier of Overall Survival, stratified by presence (Positive, blue) or 
absence (Negative, red) of either RTK-MAPK or PI3K-AKT pathway activation as measured by 
NanoString DSP. Hazard Ratios (HR) and p-values for the CoxPH model and Log-rank tests are labeled. 
Upper and lower 95% confidence intervals are based on log survival probability. Insets: Stacked bar plot 
of the percent of samples (y-axis) with (Positive) or without (Negative) RTK-MAPK or PI3K-AKT 
pathway activation (x-axis). The percent of samples from participants with best response PD are shown 
in purple and PR/SD in orange. P-values are from the Fisher’s exact test. 
 
Figure 3.  Microenvironment signatures of response to olaparib and durvalumab:  RNA signatures. 
Survival curve using Kaplan-Meier of Overall Survival in months, stratified by High (red) or Low (blue) 
gene set enrichment of the indicated RNA signatures, in the pre-treatment (left) and on-olaparib biopsies 
(right). Enrichment scores (as a continuous variable) were discretized as High for scores ≥ 0 and Low for 
< 0. Hazard Ratios (HR) and p-values for the CoxPH model and Log-rank tests are labeled. Upper and 
lower 95% confidence intervals are based on log survival probability. Insets show boxplots of the gene 
signature enrichment score (y-axis) for samples from participants with best response (x-axis) PD are 
indicated in purple and PR/SD in orange for each RNA signature for the pre-treatment (left inset) and on-
olaparib (right inset) biopsies. P-values from the Student’s t-test are labeled: * = p £ 0.05; ** = p £ 0.01; 
ns = not significant (p > 0.05). 
a) High vs. Low Hallmark Angiogenesis RNA signature. 
b) High vs. Low Hallmark IL6/JAK/STAT3 Signaling RNA signature. 
c) High vs. Low Activated CD8 T Cells RNA signature. 
d) High vs. Low T Helper Cells RNA signature. 
 
Figure 4.  Microenvironment signatures of response to olaparib and durvalumab:  protein 
signatures. 
Survival curves using Kaplan-Meier of Overall Survival (OS) or Progression Free Survival (PFS) for the 
indicated immune cell lineages/state densities (mIHC) or protein levels (DSP) in the pre-treatment (left) 
and on-olaparib biopsies (right), stratified by High (red) and Low (blue). Hazard Ratios (HR) and p-values 
for the CoxPH model and Log-rank tests are labeled. Upper and lower 95% confidence intervals are based 
on log survival probability. Insets show boxplots of sample scores from participants with best response of 
PD (purple) and PR/SD (orange) for pre-treatment (left inset) and on-olaparib (right inset). Boxplot P-
values are from the Student’s t-test.  
a) Progression Free Survival, High vs. Low CD20+ B Cells as measured by mIHC. Scaled density of 
mIHC-derived immune cell lineages as continuous variables were discretized as High for samples ≥ 0 and 
Low for < 0.  
b) Overall Survival, High vs. Low Ki-67+ Exhausted T Cells (CD45+/CD3+/EOMES+/PD-1+) as measured 
by mIHC and scaled as in a). 
c) Overall Survival, High vs. Low CD45 protein in the Tumor (PanCK+) compartment as measured by 
NanoString DSP. Z-scored, scaled percentiles of protein levels as quantitative variables were discretized 
into High for samples with scaled expression ≥ 25th percentile or Low for < 25th percentile.   
d) Overall Survival, High vs. Low CD3 protein in the Tumor (PanCK+) compartment as measured by 
NanoString DSP and scaled as in c). 
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Figure 5.  Microenvironment signatures of response to olaparib and durvalumab:  Immune 
Consensus signatures. 
Survival curves using Kaplan-Meier of Overall Survival (OS) and Progression Free Survival (PFS) in 
months for the indicated Immune Consensus signatures, stratified by signature Negative (red) and Positive 
(blue) in the pre-treatment (left) and on-olaparib biopsies (right). Hazard Ratios (HR) and p-values for the 
CoxPH model and Log-rank tests are labeled. Upper and lower 95% confidence intervals are based on log 
survival probability. Insets show stacked bar plots of the percent of samples that are Negative or Positive 
for each Immune Consensus signature, with samples from participants with best response PD indicated in 
purple and PR/SD in orange. P-values are labeled from the Fisher’s exact test. See Methods for Immune 
consensus design and assignment. Individual sample assignment is summarized in Extended Data Fig. 1b. 
a) Overall Survival and Fisher’s exact test for the RNAseq-based Immune Consensus.  
b) Progression Free Survival and Fisher’s exact test for the mIHC-based Immune Consensus.  
c) Overall Survival and Fisher’s exact test for the DSP-based Immune Consensus.   
d) Overall Survival and Fisher’s exact test for the Multi-Omic Immune Consensus, which combines the 
Immune RNA, mIHC, and DSP protein predictors. 
 
Figure 6.  Olaparib-induced response signatures and markers. 
Boxplots of signature and marker changes between pre-treatment and on-olaparib biopsies for participants 
with a best response of PD in purple dots and PR/SD in orange. Each dot represents the difference in assay 
score between the on-olaparib and pre-treatment values for paired samples from the same participant, 
where a positive score indicates a feature was higher on the on-olaparib biopsy and a negative score 
indicates it was lower. Only features with statistically significant difference for paired change between 
paired PD and PR/SD (p < 0.05) based on Student’s t-test are shown: * = p <= 0.05; ** = p <= 0.01; *** 
= p <= 0.001. 
a) Signature changes from pre-treatment to on-olaparib for mIHC cell lineages or functional states. 
b) Protein marker changes from pre-treatment to on-olaparib for DSP immune proteins in the tumor 
(PanCK+) compartment.  
c) Signature changes from pre-treatment to on-olaparib for the Activated CD8 T Cells RNA Signature. 
 
Figure 7.  TNBC subtype correlates of response to olaparib and durvalumab. 
a) and b) Survival curves using Kaplan-Meier of a) Overall Survival (OS) and b) Progression Free 
Survival (PFS) in months for RNAseq-computed TNBC subtypes, stratified by BLIS or LAR (BLIS/LAR, 
red) and BLIA or Indeterminate (Non-BLIS/LAR, blue) in the pre-treatment (left) and on-olaparib 
biopsies (right). Hazard Ratios (HR) and p-values for the CoxPH model and Log-rank tests are labeled. 
Upper and lower 95% confidence intervals are based on log survival probability. Insets show stacked bar 
plots of the percent of samples that are classified as BLIS/LAR or Non-BLIS/LAR, with the percent of 
samples from participants with best response of PD indicated in purple and PR/SD in orange. P-values 
from the Fisher’s exact test are labeled.  
c) Swimmer plot for 15 AMTEC trial participants showing participant time on treatment in months (x-
axis) and best response RECIST (adjacent to treatment duration bars). TNBC Subtype is annotated to the 
left of the participant IDs, with BLIA in pink, BLIS in green, indeterminate in blue, and LAR in yellow. 
TNBC subtyping was performed on the on-olaparib biopsy for all participants, except for Participant A 
where the pre-treatment biopsy was used and Participant I where no RNA was available.  * = deceased 
from trial-unrelated accident; ** = voluntarily withdrew from study by personal choice. 
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EXTENDED DATA 
 
Table 1.  Clinical summary of AMTEC trial participants.   
a) Summary of clinical metadata. Data are for each biopsy from the 15 participants included in the efficacy 
analysis (received both study drugs and had best response determined by imaging using RECISTv1.1 
criteria33; SD = stable disease, PR = partial response, PD = progressive disease). Progression free survival 
and overall survival are calculated from the beginning of the first cycle of olaparib. Percent tumor content 
was the fraction of tumor within pathologist-determined tumor-rich regions that were macro-dissected 
from FFPE tissue. TNBC subtypes were computed from RNAseq data using a list of 77 genes and 
classified as immune activated (BLIA), basal immune suppressed (BLIS), luminal androgen receptor 
(LAR), or indeterminate (IND).  
b) Adverse Events. Safety analysis was performed on data from 17 participants who received at least one 
dose of either drug. Most treatment-related adverse events (91%) were Grades 1 or 2. Of the 38 Grade 3 
or higher events, 14 (37%) were treatment-related.  
c) Grades 3, 4, and 5 Adverse Events. Data are from 10 of 17 participants. The two immune-related events 
were resolved with a dose hold. The two Grade 5 events were unrelated to protocol therapy:  one was from 
pain due to disease progression and one (Investigations – other*) was due to a motor vehicle accident. 
d) Summary of statistically significant features correlating with response to olaparib and durvalumab, p < 
0.05. The biopsy in which each feature was observed (pre-treatment or on-olaparib) is noted for Significant 
best response, Progression Free Survival (PFS), and Overall Survival (OS).  
 
Figure 1.  Description of the AMTEC trial. 
a) CONSORT flow diagram for participant enrollment, exclusions, and analyses in the AMTEC trial. 
b) Multi-omic clinical features and signatures from serial biopsies. Columns are sample identifiers 
(participant identifier appended to biopsy number), and rows are clinical or molecular signature data. 
White space indicates missing data. See Methods for detailed descriptions of each marker or signature. 
Signatures with parenthetical notations were found to be significant in one or more of the following assays: 
B = paired biopsy t-test; R = best response t-test; P = Kaplan-Meier analysis of Progression Free Survival 
(PFS); O = Kaplan-Meier analysis of Overall Survival (OS); * p-value <0.05; ** p-value < 0.005, ns = 
not significant.  
“Best Response” is from RECIST read of tumor imaging.  
“Anatomical Location” is the organ site containing the metastatic lesion from which the biopsy was 
obtained. 
“Tumor Content” is the pathologist-estimated percent tumor content after microdissection of tumor-rich 
regions from FFPE slides used for GeneTrails Comprehensive Solid Tumor Panel targeted DNA 
sequencing. 
“Ki-67 IHC”, “PD-L1 IHC”, and “AR IHC” were assayed by clinical IHC and defined as % positive tumor 
cells (Ki-67), positive or negative for tumor proportion score >1% or >10% (PD-L1), or AR positive with 
a cutoff of >10% AR positive tumor cells.   
“PD-1+ Cells mIHC”, “PD-1+ CD4+ T Cells mIHC”, “PD-L1+ Cells mIHC” are mIHC-derived cell 
phenotypes (see Fig. 6a and MULTIPLEX IMMUNOHISTOCHEMISTRY in Methods), with scaled and 
z-centered values ≥0 defined as “High” and <0 as “Low”. 
“AR DSP” is AR protein measured within tumor cell ROIs by NanoString DSP, with z-score percentiles 
relative to a mixed breast cancer cohort of >25 defined as “High”. 
“MutSig3” is the COSMIC Mutation Signature 3, discretized into “High” or “Low” using a threshold of 
40 (see also Fig. 2b) 
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“RPPA PAR” depicts PAR protein levels for each sample measured by RPPA, with “High” defined as a 
Median Absolute Deviation > 0 relative to a Basal Classified subset of TCGA samples (see also Fig. 2a). 
“HRC/HRC ratio” is defined as the ratio of HRC to HRD nuclei, with ratios <15% defined as “HRD”, 
>65% as “HRC”, and in between as “Intermediate (see also Extended Data Fig. 1c-e). 
“HR & Immune Genes” and “PI3K-AKT & RTK-MAPK Genes” are clinically reported by GeneTrails. 
Copy number gain is defined as at least 7 copies and loss is defined as less than or equal to 0.5 copies. 
Mutations include missense mutations, nonsense mutations, indels, and splice site substitutions. See 
“NGS: GENETRAILS® COMPREHENSIVE SOLID TUMOR PANEL” in Methods for pathway gene 
inclusions. 
“Pathway Gene Alteration” for PI3K-AKT and RTK-MAPK Genes is defined as the presence of least one 
DNA alteration among the PI3K-AKT or the RTK-MAPK pathway genes (see also Fig. 2c and Extended 
Data Fig. 2a, d). 
“DSP Phosphoproteins” is the level of each PI3K-AKT or RTK-MAPK pathway phosphoprotein 
measured within tumor cell ROIs by NanoString DSP. “High” is defined as a phosphoprotein level z-score 
percentile >75 relative to a mixed breast cancer cohort. 
“DSP Pathway Activation” is defined as at least two of three high NanoString DSP phosphoproteins from 
p-AKT1, p-GSK3B, or p-PRAS40 for the PI3K-AKT DSP pathway and at least two of three high from p-
MEK1, p-ERK1/2, or p-p90RSK for the RTK-MAPK DSP pathway (see also Fig. 2d-e and Extended Data 
Fig. 2b-c, e-k). 
“Angiogenesis RNA” and the “Immune RNA Signature” gene set values were derived from GSVA scores 
calculated from RNA transcriptome sequencing analysis and discretized into “High” or “Low” using a 
threshold of zero (see also Fig. 3 and Extended Data Fig. 3). 
“IMMUNE RNA SUMMARY” notes the number of Immune RNA Signatures as “High” and “Low” for 
each sample, with “Positive” defined as at least 4 “High” signatures (see also Fig. 5a and Extended Data 
Fig. 5a).  
“mIHC Cell Type” is the immune cell phenotype assigned by hierarchical gating of protein co-expression 
and quantified to cell densities.  “High” is defined as a logged and scaled z-score ≥0 and “Low” <0 (see 
also Fig. 4a,b and Extended Data Fig. 4a-j, p-u). 
“IMMUNE mIHC SUMMARY” notes mIHC predictor score as described under “IMMUNE 
CONSENSUS” in Methods, with a predictor score of at least 6 (consisting of the sum of all positive 
predictors minus the negative predictors) defined as “Positive”. See also Fig. 5b and Extended Data Fig. 
5b. 
“Immune DSP” notes the levels of each immune protein measured within tumor ROIs by NanoString 
DSP, defining z-scores >25 percentile relative a mixed breast cohort as “High” and <25 as “Low”. See 
also Fig. 4c,d and Extended Data Fig. 4k-o.  
“IMMUNE DSP SUMMARY” notes the overall DSP protein status for each sample, with “Positive” 
defined as at least 4 High “Immune DSP” proteins and “Low as less than 4 (see also Fig. 5c and Extended 
Data Fig. 5c). 
“MULTI-OMIC IMMUNE CONSENSUS” notes the overall immune status in a combined three-platform 
signature as described in “IMMUNE CONSENSUS” in Methods. See also Fig. 5d and Extended Data Fig. 
5d. 
“TNBC Subtype” is described under “TNBC SUBTYPE CALLING” in Methods. See also Fig. 7a,b. 
c) Representative images of Geminin, RAD51 foci, and γH2AX foci from homologous recombination 
deficient (HRD), intermediate, and competent (HRC) samples. RAD51 and γH2AX foci were counted in 
Geminin-positive nuclei. HRD nuclei were defined as having less than five RAD51 foci and more than 
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three γH2AX foci, and HRC nuclei were defined as having more than five RAD51 foci. Scale bar is shown 
as indicated.  
d) Custom machine learning segmentation results from the samples shown in (c) from participants M, G, 
and O. Sample HR calls were defined using the ratio of HRC to HRD nuclei. HRC/HRD ratios less than 
15% are defined as “Deficient”, greater than 65% as “Competent”, and between 15% and 65% as 
“Intermediate”. RECIST best response is shown in orange (PR/SD) and purple (PD). 
e) γH2AX positivity ratios calculated in the samples shown in (c) and represented as horizontal black bars. 
“Deficient” samples exhibited greater than 95% γH2AX+/Geminin+ co-positive nuclei as highlighted in 
green, while “Competent” samples exhibited less than 55% as highlighted in red. The middle 
“Intermediate” population (blue shading) tended toward higher γH2AX positivity while having a mixture 
of “Competent” and “Deficient” nuclei as highlighted in blue. 
 
Figure 2.  Tumor-intrinsic signatures of response to olaparib and durvalumab. 
Survival curve using Kaplan-Meier of survival probabilities, stratified by presence (Positive, blue) and 
absence (Negative, red) of the indicated feature in the pre-treatment (left) and on-olaparib biopsies (right). 
See Methods for gene and phosphoprotein inclusions and pathway activation criteria. Confidence intervals 
are based on plain survival probability. Insets, where present, show Fisher’s exact test for absence 
(Negative) vs. presence (Positive) of the indicated feature for pre-treatment (left inset) and on-treatment 
biopsies (right inset), with percent of samples from participants with best response PD (purple) and PR/SD 
(orange) noted. Only statistically significant observations (p-value < 0.05) are shown. 
a) Overall Survival and Fisher’s exact test for Negative vs. Positive PI3K-AKT pathway gene alteration 
(mutation or copy number gain/loss).   
b) Progression Free Survival for Negative vs. Positive PI3K-AKT pathway gene alteration (mutation or 
copy number gain/loss).   
c) Progression Free Survival for Negative vs. Positive PI3K-AKT pathway activation as measured by 
DSP. 
d) Progression Free Survival for Negative vs. Positive PI3K-AKT gene alteration or pathway activation. 
e) Progression Free Survival for Negative vs. Positive RTK-MAPK pathway activation. 
f) Progression Free Survival for Negative vs. Positive PI3K-AKT or RTK-MAPK pathway activation. 
Note that some samples were activated for both pathways. 
g) Progression Free Survival and Fisher’s exact test for Negative vs. Positive PI3K-AKT or RTK-MAPK 
gene alteration. No sample had gene alterations in both pathways. 
 
Figure 3.  Microenvironment signatures of response to olaparib and durvalumab:  RNA signatures. 
Survival curve using Kaplan-Meier of survival probabilities, stratified by High (red) and Low (blue) 
expression of the indicated RNA signature in the pre-treatment (left) and on-olaparib biopsies (right). 
Confidence intervals are based on plain survival probability. Insets, where present, show best response t-
test for PD (purple) vs. PR/SD (orange) of each RNA signature for the pre-treatment (left inset) and on-
treatment (right inset) biopsies.  
a) Progression Free Survival for High vs. Low Angiogenesis RNA signature. 
b) Overall Survival for High vs. Low Interferon Gamma Response RNA Signature.  Insets show PD vs. 
PR/SD t-test. 
c) Overall Survival for High vs. Low NK/CD56dim Cells RNA Signature.  Insets show PD vs. PR/SD t-
test. 
d) Overall Survival for High vs. Low Cytotoxic Cells RNA Signature.  Insets show PD vs. PR/SD t-test. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.24312245doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312245
http://creativecommons.org/licenses/by/4.0/


Figure 4.  Microenvironment signatures of response to olaparib and durvalumab:  protein 
signatures and markers.   
Survival curve using Kaplan-Meier and best response t-tests for indicated proteins and protein signatures.  
Survival probabilities are stratified by High (red) and Low (blue) protein or protein signature expression, 
and confidence intervals are based on plain survival probability. T-tests compare protein expression in 
biopsies from participants with best response of PD (purple) vs. PR/SD (orange). Analyses of the pre-
treatment biopsy are on the left and the on-olaparib biopsy are on the right. Only statistically significant 
observations (p-value < 0.05) are shown. 
a) Progression Free Survival for High vs. Low Ki-67+ Exhausted CD8+ T Cells, as measured by mIHC. 
b) Overall Survival for High vs. Low Exhausted CD8+ T Cells, as measured by mIHC. Insets show PD 
vs. PR/SD t-test. 
c) Progression Free Survival for High vs. Low Exhausted CD8+ T Cells, as measured by mIHC. 
d) Overall Survival for High vs. Low Ki-67+ Immune Cells, as measured by mIHC. 
e) Overall Survival for High vs. Low T Regulatory CD4+ Cells, as measured by mIHC. 
f) Overall Survival for High vs. Low Macrophages, as measured by mIHC. 
g) Progression Free Survival for High vs. Low Macrophages, as measured by mIHC. 
h) Progression Free Survival for High vs. Low CD163+ Macrophages, as measured by mIHC. 
i) Progression Free Survival for High vs. Low CD163- Macrophages, as measured by mIHC. 
j) Progression Free Survival for High vs. Low CD68+ CD163- Monocytes, as measured by mIHC.  Insets 
show PD vs. PR/SD t-test. 
k) Overall Survival for High vs. Low CD68 protein expression, as measured by NanoString DSP. 
l) Progression Free Survival for High vs. Low CD68 protein expression, as measured by NanoString DSP. 
m) Overall Survival for High vs. Low CD56 protein expression, as measured by NanoString DSP. 
n) Progression Free Survival for High vs. Low CD11c protein expression, as measured by NanoString 
DSP. 
o) Overall Survival for High vs. Low PD-L1 protein expression, as measured by NanoString DSP.  Insets 
show PD vs. PR/SD t-test. 
p) PD vs. PR/SD t-test for Immune Cells, as measured by mIHC. 
q) PD vs. PR/SD t-test for Ki-67+ TBET/EOMES/PD-1- CD8+ T Cells, as measured by mIHC. 
r) PD vs. PR/SD t-test for Ki-67+ CD8+ T Cells, as measured by mIHC. 
s) PD vs. PR/SD t-test for PD-1+ CD8+ T Cells, as measured by mIHC. 
t) PD vs. PR/SD t-test for CCR2 Cells, as measured by mIHC. 
u) PD vs. PR/SD t-test for Other Immune Cells, as measured by mIHC. 
 
Figure 5.  Microenvironment signatures of response to olaparib and durvalumab:  Immune 
Consensus signatures. 
Survival curve using Kaplan-Meier of survival probabilities of Immune Consensus signatures, stratified 
by Negative (red) and Positive (blue) in the pre-treatment (left) and on-olaparib biopsies (right). 
Confidence intervals are based on plain survival probability.   
a) Progression Free Survival for Immune RNA. A “Positive” summary is defined as at least 4 of 6 High 
RNAseq-derived Immune RNA Signatures shown in Extended Data Fig. 1b.   
b) Overall Survival for Immune mIHC. See Methods for details on the quantitation of Immune mIHC Cell 
Types for “Positive” and “Negative” consensus categorization. 
c) Progression Free Survival for Immune DSP. A “Positive” summary is defined as having at least 4 of 6 
High NanoString DSP Immune proteins shown in Figure Extended Data Fig. 1b. 
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d) Progression Free Survival for the Multi-Omic Immune Consensus, which combines the Immune RNA, 
mIHC, and DSP protein data set summaries above and as shown in Extended Data Fig. 1b.  For samples 
with 3 complete data sets, “Positive” is defined as having either 2 or 3 positive data set summaries and 
“Negative” as either 0 or 1. For samples with 2 complete data sets, “Positive” is defined as having 2 
positive data set summaries, “Indeterminate” as 1, and “Negative” as 0.  Samples with only 1 complete 
data set are “Indeterminate”. Only “Positive” and “Negative” samples were included in these analyses. 
 
Figure 6.  Olaparib-induced response signatures and markers. 
a) T-test box plots comparing mIHC Cell Type changes between pre- and on-olaparib biopsies for 
participants with a best response of PD (purple dots) versus PR/SD (orange dots). Each dot represents the 
difference in assay score between the on-olaparib and pre-treatment values for paired samples from the 
same participant, where a positive score indicates a feature was higher on the on-olaparib biopsy, and a 
negative score indicates a feature was higher on the pre-treatment biopsy. Only features with statistically 
significant differences for paired change between PD and PR/SD (p < 0.05) based on Student’s t-test are 
shown. All features showed an increase on average in the on-olaparib biopsy in participants with a 
favorable response. 
b) Box plots and paired t-tests comparing mIHC Cell Type scores in the pre-treatment biopsy versus on-
olaparib, separated by best response of PD (purple) and PR/SD (orange). Only features with statistically 
significant differences between the pre-treatment and on-olaparib values in paired samples are shown. PD-
1+ Cells, PD-1+ CD4+ Cells, Ki-67+ Exhausted CD8+ T Cells, and CD68+ CD163+ Monocytes all increased 
on olaparib in samples from participants with a favorable response, while Ki-67+ TBET/EOMES/PD-1- 
CD8+ T Cells decreased on olaparib in samples from participants with an unfavorable response. 
c) Box plots and paired t-tests comparing DSP Immune Protein levels in pre-treatment versus on-treatment 
biopsies, separated by best response of PD (purple) and PR/SD (orange). Only features with statistically 
significant differences between the pre-treatment and on-treatment values in paired samples are shown. 
 
Figure 7.  TNBC subtype correlates of response to olaparib and durvalumab. 
a) Interferon regulated genes associated with the BLIA TNBC subtype. The Interferome web tool, a 
database of genes regulated by interferons (http://www.interferome.org), was used to identify a subset of 
highly ranked, interferon-inducible genes (median Interferome gene change >2, dashed lines, Y-axis) 
associated with the BLIA subtype (>0.5, X-axis). 
b) Dot plot visualizing expression of representative marker genes (x-axis, bottom) within TNBC subtypes 
(x-axis, top) and across distinct cell type clusters (y-axis). Data are from a single-cell RNA sequencing 
breast cancer dataset. Relative gene expression levels are represented by the color scale, and the fraction 
of cells within each cell type group expressing the gene is represented by the dot size.  The plot highlights 
the differential expression patterns of key TNBC markers within each cell cluster, providing insights into 
the heterogeneity and distribution of TNBC-related gene expression profiles at the single-cell level.   
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N = 17 (%)

Median Age (Range) 48.9 (25.3 – 78.9) years

ECOG performance status 0 11 (65%)

1 6 (35%)

Race Caucasian 16 (94%)

African American 1 (6%)

Menopausal status Pre-menopausal 7 (41%)

Post-menopausal 10 (59%)

Lines of therapy in the metastatic setting 0 6 (35%)

1 6 (35%)

2 5 (30%)

Prior platinum chemo in the metastatic setting Yes 7 (41%)

No 10 (59%)

History of brain metastases Yes 4 (24%)

No 13 (76%)

Table 1
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Figure 4
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