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Abstract 

cfDNA consists of degraded DNA fragments released into body fluids. Its genetic and 

pathological information makes it useful for prenatal testing and early tumor detection. However, 

the mechanisms behind cfDNA biology are largely unknown. In this study, for the first time, we 

conducted a GWAS study to explore the genetic basis of cfDNA features, termed cfGWAS, in 

28,016 pregnant women. We identified 84 significant loci, including well-known cfDNA-related 

genes DFFB and DNASE1L3, and numerous novel genes potentially involved in cfDNA biology, 

including PANX1 and DNASE1L1. The findings were further verified through independent 

GWAS and experimental validation in knockout mice and cell lines. Subsequent analyses revealed 

strong causal relationships of hematological indicators on cfDNA features. In summary, we 

presented the first cfGWAS, revealing the genetic basis of cfDNA biology from genome-wide 

scale. Novel knowledge uncovered by this study keep the promise to revolutionize liquid biopsy 

technology and potential new drug targeted for certain disease. Given exist of the millions cfDNA 

whole-genome-sequencing data generated from clinical testing, the potential of this paradigm is 

enormous. 

 

Keywords: Cell-free DNA, Fragmentomics, End motifs, Genome-wide association study, Liquid 

biopsy, Apoptotic nucleases 
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Introduction 

Cell-free DNA (cfDNA) are DNA fragments released from cells, often originating from 

processes such as apoptosis, necrosis, and active secretion [1]. These DNA fragments circulate 

freely in bodily fluids such as blood, saliva, and urine, reflecting the biological status of cells or 

tissues. CfDNA has extensive applications in non-invasive prenatal testing (NIPT) for detecting 

fetal abnormalities [2]. It has also emerged as a valuable biomarker for early cancer screening and 

monitoring [3, 4], as well as for detecting organ rejection in transplantation [5]. Abnormalities in 

cfDNA has been observed in autoimmune diseases such as systemic lupus erythematosus (SLE) 

[6]. Additionally, cfDNA shows promise in diagnosing and managing infectious diseases [7, 8].  

Commonly used characteristics of cfDNA include cfDNA concentration, fragment length, end 

motifs, jagged ends, as well as nucleosome footprints [9]. In healthy individuals, cfDNA 

concentration is low, but it significantly increases in diseases like cancer, inflammation, and tissue 

damage [10-13]. Therefore, measuring cfDNA concentration can be utilized for disease prediction 

and monitoring. The fragment length of plasma cfDNA fragments typically ranges from 50 to 600 

base pairs; but this may vary due to individual differences, physiological states, and disease 

conditions [9]. Researchers analyzed the fragment lengths to capture the disease signals, such as 

aberrant shortening in cfDNA from cancer patients [14, 15]. End motifs refer to the nucleotide 

composition at the 5' end of cfDNA, generated during cfDNA digestion. Analyzing these motifs 

helps trace cfDNA origin and provides insights into physiological and pathological states [16].  

These cell-free DNA features arise from the degradation of DNA both inside and outside of 

cells, and some may correlate due to shared biological processes [9, 17, 18]. Identifying the genes 

involved in cfDNA fragmentation and their roles is crucial for understanding the mechanisms 

behind physiological and pathological changes in cfDNA fragmentomic characteristics. However, 

previous studies have been limited to targeted analysis strategy on limited number of genes  [19-

22]. To date, only three nucleases, DFFB, DNASE1, and DNASE1L3 have been proven to affect 

cfDNA digestion and fragment characteristics [23]. Studies on nuclease-deficient mice have 

revealed their role in cfDNA degradation and shaping fragmentomics [10, 24, 25]. It has been 

demonstrated that cfDNA is first generated intracellularly with DFFB, DNASE1L3, and other 

nucleases, followed by extracellular fragmentation with circulating DNASE1L3 and DNASE1 [26]. 

However, the genome-wide genetic basis and other key genes involved in regulating the formation 

of cell-free DNA are still unknown. 
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Genome-wide association study (GWAS) is a research method used to identify genetic locus 

that are statistically associated with specific traits or diseases [27]. Over the past two decades, 

GWAS have successfully identified hundreds of thousands of variants linked to numerous human 

traits and diseases, including height, weight, cardiovascular diseases, tumors, and autoimmune 

diseases [28-30]. As the most comprehensive repository of genotype-trait associations, by May 

2024, the GWAS catalog has contained nearly 7,000 publications and over 600,000 association 

signals, serving as a valuable resource for exploring the genetic background of phenotypes [31].  

In previous works, our group has proven that with appropriate algorithms and methodology, 

cfDNA could be utilized as a resource for high-quality genetic analysis, including variant detection, 

allele frequency estimation, genetic structure analysis and GWAS [32-36]. In this study, we 

leveraged genetic and phenotypic data from 28,016 Chinese pregnant women to conduct the first 

cell-free DNA based genome-wide association study, termed cfGWAS. We used the same copy of 

whole-genome sequencing data from cfDNA to extract both genotype information and cell-free 

DNA features, identifying genetic loci associated with these cfDNA molecular characteristics. A 

comprehensive overview figure has been provided to illustrate the overall design of this work 

(Figure 1). 

Key findings from our study include the identification of 84 genome-wide significant loci 

linked to 218 cell-free DNA end motifs, majority of them were novel associations to cfDNA 

features, with rediscovery of well-known cfDNA-related genes such as DFFB and DNASE1L3, 

and the discovery of novel genes like PANX1 and DNASE1L1. These results were validated 

through independent replication studies and experimental validation in knockout mice and cell 

lines. Furthermore, our one-sample integrative analysis revealed strong genetic correlations 

between cfDNA features and phenotypes such as BMI, weight, white blood cell count, and 

neutrophil count. Given the widespread clinical use of cfDNA whole-genome sequencing, our 

work underscores the paradigm-shifting potential of cfGWAS in medical research and practice. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

5 

 

Results 

Genome-wide association study  

GWAS results summary. Following the protocol we previously developed, we detailed the 

genotype imputation performance [34]. To summarize, we utilized NIPT data from 38,668 samples 

for genotype imputation, achieving an imputation accuracy with an R2 value close to 0.8. 

Covariates included the pregnant woman's age, gestational week during NIPT screening, 

sequencing depth, and the first 10 principal components (PCs) of the genotype data. After adjusting 

for these covariates, the effective sample size was reduced to 28,016, subsequently utilized in the 

GWAS analysis of cfDNA molecular signatures, focusing on the 4-mer end motifs. At the genome-

wide significance threshold of 5e-08, we identified a total of 672 significant locus-motif 

associations, involving 84 unique loci and 218 end motifs (Table S1). While at the stricter study-

wide significance threshold of 1.95e-10 (=5e-8/256), there were 382 significant associations, 

involving 23 loci and 180 motifs. Note that, all associations that passed the genome-wide 

significance threshold were maintained for subsequent analyses to ensure the inclusion of all 

potentially meaningful findings. To assess the reliability of our GWAS results, we drew the 

Quantile-Quantile plots (QQ-plots) and calculated the genomic inflation factor (GIF) of each motif 

(Figure S1). Specifically, the GIF values were consistently around 1 across all 256 motifs, 

indicating no substantial inflations and suggesting well-conducted GWAS analyses.  

GWAS results visualization. To improve the informative visualization of our GWAS results, we 

synthesized the summary statistics for the 256 motifs by selecting the minimum p-value for each 

SNP across all motifs, thereby generating an integrated GWAS summary dataset. This integrated 

GWAS summary data was then used to generate a Manhattan plot, providing a comprehensive 

overview of the results (Figure 2a). The most significant locus identified is PANX1, with the lead 

SNP rs76201528 (p-value = 3.93e-350). Following PANX1 is DFFB, with lead SNP rs74752626 

(p-value = 5.14e-281). The subsequent two most significant loci were DNASE1L3 (rs12633655, 

p-value = 4.82e-31) and DNASE1L1 (rs2283762, p-value = 1.47e-24). For more details of each 

signal, we provided the regional plots (Figure S2). Other significant loci include PSMD3, FXYD5, 

PADI4, ABO, FCHO2, MSR1, and so on. For each locus, we counted the number of its associated 

motifs and presented a list of loci with more than five associated motifs (Figure 2b). The top five 

loci with the largest number of associated motifs were PANX1 (145), DFFB (143), ANKRD26P1 

(39), DNASE1L3 (34), and PSMD3 (29). From the perspective of end motifs, we summed up the 

number of significant loci for motifs with the same starting nucleotide. The counts for ‘A’, ‘T’, 
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‘C’, and ‘G’ were 175, 143, 213, and 141, respectively. Furthermore, we used a Venn diagram to 

visualize the shared and unique significant loci associated with four motif groups (A, T, C, and G) 

(Figure 2c). This analysis revealed seven loci common to all motif groups, including PANX1, 

DFFB, DNASE1L3, and PADI4. The numbers of exclusively associated loci for ‘A’, ‘T’, ‘C’, and 

‘G’ were 16, 3, 31, and 8, respectively. 

Biological implications. To explore the biological implications of our findings, we examine the 

functions of four prominent loci: PANX1, DFFB, DNASE1L3, and DNASE1L1. The gene PANX1 

encodes Pannexin-1, a protein that forms channels within the cell membrane, facilitating the 

exchange of molecules between the intracellular and extracellular environments [37]. These 

channels play diverse roles in various cellular processes, encompassing cell signaling, apoptosis, 

inflammation, and development [38]. On the other hand, the gene DFFB, also referred to as DNA 

fragmentation factor subunit beta, encodes a protein integral to apoptosis, or programmed cell 

death. Specifically, DFFB is a pivotal component of the DNA fragmentation complex, crucial for 

cleaving DNA into fragments during apoptosis [26]. 

Moving on to the gene DNASE1L3, it encodes deoxyribonuclease 1-like 3, belonging to the 

deoxyribonuclease I family. DNASE1L3 is predominantly expressed in the spleen and lymph nodes 

and plays a pivotal role in DNA degradation from apoptotic cells, thereby aiding in the clearance 

of cellular debris [26]. This process is paramount for maintaining tissue homeostasis and averting 

autoimmune responses triggered by the release of self-DNA. Similarly, the gene DNASE1L1 

encodes deoxyribonuclease 1-like 1, another member of the deoxyribonuclease I family. 

DNASE1L1 is instrumental in the degradation of DNA from apoptotic cells and extracellular DNA, 

facilitating the clearance of cellular debris and maintaining tissue homeostasis [39].  

Both DFFB and DNASE1L3 are well-established apoptotic nucleases, highlighting their 

significant roles in cellular homeostasis, apoptosis and cfDNA fragmentation [26]. As novel 

discoveries, our primary attention shifts towards investigating the genes PANX1 and DNASE1L1 

for further analysis. To verify our findings of the potential genetic effects of these four genes on 

cfDNA molecular signatures, we conducted a GWAS replication study utilizing an independent 

cohort of natural populations and also performed experimental verifications using both knockout 

mice and knockout cell lines.  

 

Replication study with independent samples 
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To validate our GWAS findings of cfDNA end motifs, we conducted a replication analysis 

using an independent cohort of 442 subjects. This analysis successfully replicated two significant 

signals: DFFB and PANX1 (Figure S3). For the DFFB locus, the lead SNP, rs35265408, exhibited 

a p-value of 7.07e-13 in the replication study. We note that this SNP was removed due to Hardy–

Weinberg equilibrium filtration in our discovery study. Furthermore, the lead SNP identified in 

the discovery study for the DFFB locus was also found to be significant in the replication study 

(p-value = 7.37e-10). In the PANX1 locus, the lead SNP identified was rs1946143444 (p-value = 

6.31e-10). However, this SNP is an insertion-deletion (INDEL) and was not analyzed in the 

discovery study. The successful replication of the DFFB and PANX1 loci in an independent cohort 

provides strong evidence for their association with cfDNA molecular signatures. Although the 

small sample size limited our ability to fully replicate the findings for DNASE1L3 and DNASE1L1, 

this study contributes valuable insights and further strengthens the reliability of our cfGWAS 

results.  

 

Experimental verifications 

CfDNA concentration in PANX1 knockout mice and cell lines. To validate the role of the newly 

identified genes in the generation and clearance of cell-free DNA, we homozygously knocked out 

(KO) the Panx1 gene in mice. The plasma cfDNA concentrations in Panx1 KO mice (n=6) were 

compared with those of wild-type (WT) mice (n=6) (STAR Methods). The fold change of cfDNA 

concentration in each mouse relative to the average cfDNA concentration in WT mice was 

calculated. As depicted in Figure 3, we observed a significant increase in the fold change of cfDNA 

concentration in Panx1 KO mice (median: 1.63, range: 1.30-2.90) compared to WT mice (median: 

0.94, range: 0.69-1.43, p-value=0.019), suggesting the knockout of Panx1 gene influenced the 

release of cfDNA into plasma (Figure 3a). 

Furthermore, we knocked out the PANX1 gene in Jurkat Cell line. The cfDNA concentration 

in the cell culture supernatant of the PANX1 KO cells (5 replicates) was compared to that of WT 

Jurkat cells (5 replicates). Although the difference did not reach statistical significance, we do 

observe a trend of increased cfDNA concentration of PANX1 KO cells (median fold change: 1.10, 

range: 1.05-1.15) compared to the WT cells (median fold change: 0.99, range: 0.86-1.10, p-

value=0.08, Wilcoxon test) (Figure 3b). The results of both in vivo and in vitro KO experiments 

suggest that the PANX1 gene plays a crucial role in the generation of cfDNA, and the knockout of 

the PANX1 gene leads to an increased release of cfDNA. 
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CfDNA concentration in DNASE1L1 knockout mice and cell lines. Similarly, we conducted 

knockout of the Dnase1l1 gene in mice and quantified the plasma cfDNA concentration in both 

WT and KO mice. Since the Dnase1l1 gene is located on the X chromosome, we generated three 

types of Dnase1l1 KO mice: homozygous KO mice (Dnase1l1 -/-, n=5), heterozygous KO mice 

(Dnase1l1-/+ n=5), and hemizygote KO mice (Dnase1l1 -, n=5). The plasma cfDNA concentration 

in these KO mice was compared to that in WT mice (n=5). As shown in Figure 3c, a consistent 

decrease in the fold change of cfDNA concentration was observed in Dnase1l1 -/- mice (median: 

0.80, range: 0.76-1.17, p-value=0.47), Dnase1l1 -/+ mice (median: 0.94, range: 0.49-1.23, p-

value=0.75), and Dnase1l1- mice (median: 0.82, range: 0.64-1.08, p-value=0.29) compared to WT 

mice (median: 1.08, range: 0.54-1.16). Furthermore, we homozygously knocked out the 

DNASE1L1 gene in HEK293 cells and compared the cfDNA concentration in the supernatant with 

that of wild-type HEK293 cells (5 replicates). Significantly decreased fold change of cfDNA 

concentration was observed in DNASE1L1 KO cells (median: 0.91, range: 0.87-0.95) compared to 

WT cells (median: 1.00, range: 0.92-1.06, p-value=0.014) (Figure 3d). The results obtained from 

both in vivo and in vitro knockout experiments provide compelling evidence supporting the crucial 

role of the DNASE1L1 gene in the generation of cfDNA, and the knockout of the DNASE1L1 gene 

leads to a decreased release of cfDNA. 

 

Post-GWAS analyses of motif summary statistics 

Heritability. Heritability measures the proportion of phenotypic variance explained by genotypes, 

thus quantifying the genetic influence on phenotypes. We calculated the heritability of each motif 

using LD score regression (Table S2, Figure S4). Notably, among the 256 motifs, 14 motifs 

exhibited a heritability exceeding 10%, while 69 motifs fell within the range of 5% to 10%, 

suggesting a substantial genetic component in their variation. We also provide the number of 

significant loci associated with each motif (Table S2, Figure S4). As expected, the heritability is 

generally positively proportional to the number of associated loci. 

Heritability partition. Our partitioning heritability analysis revealed significant contributions of 

cell type-specific elements to the heritability of cfDNA end motifs. At a suggestive significance 

threshold of 1e-2, we identified 290 significant cell-type-motif associations, involving 87 unique 

cell types and tissues (Tables S3-S4, Figure S5a). Interestingly, the most frequently implicated cell 

types in these associations were phagocytes (23 motifs), followed by neutrophils (18 motifs), bone 
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marrow cells (13 motifs), and synovial fluid (10 motifs), all belonging to the blood/immune 

category. The most prominent association is observed between the GATC motif and neutrophils 

(p-value=7.32e-5), and others include CTCA motif and phagocytes (p-value= 5.68e-4), and GACC 

and neutrophils (p-value= 8.65e-4) (Figure S5b). These findings align with the known role of 

phagocytes (including neutrophils and monocytes) as both sources and clearers of cfDNA during 

immune responses [40]. Our analysis identified an enrichment of hematological cell types, 

particularly immune cells, in the heritability of cfDNA motif features, indicating their active 

involvement in cfDNA processing. 

Pathway-based association analysis. The pathway-based analysis results of all 256 end motifs 

were provided in Supplementary Table S5. At a suggestive significance threshold of 1e-3, a total 

of 732 motif-pathway pairs demonstrated significance, and they were distributed among four motif 

groups starting with ‘A’, ‘T’, ‘C’, and ‘G’, associating with 190, 311, 148, and 83 pathways, 

respectively (Table S6, Figure S6a). These significant relationships encompassed 101 unique 

pathways, categorized into groups such as cell death and apoptosis, immune response, cancer-

related pathways, among others. 

Among the identified pathways, the top four with the most significant motifs included the 

Biocarta SET pathway leading with 80 associated motifs, followed by Biocarta DNA fragment 

pathway (75 motifs), Reactome apoptosis-induced DNA fragmentation (62 motifs), and Biocarta 

Mitochondria pathway (42 motifs). Specifically, the Biocarta SET pathway is vital in regulating B 

cells by providing crucial survival signals that prevent inappropriate apoptosis [41]. Both the 

Biocarta DNA fragment pathway and Reactome apoptosis-induced DNA fragmentation are 

implicated in DNA breakdown, a pivotal process in apoptosis regulation and cell death [42]. 

Furthermore, the Biocarta Mitochondria pathway sheds light on how mitochondria contribute to 

cellular functions like metabolism and apoptosis. 

Moreover, we provided the distribution of pathway-based analysis p-values for all motifs 

through Boxplots, sorted by the median (Figure S6b). Notably, the top pathways are consistent 

with the above observations, including the Biocarta SET pathway, Biocarta DNA fragment 

pathway, Biocarta Mitochondria pathway, Biocarta caspase pathway, and Reactome apoptosis-

induced DNA fragmentation. In conclusion, the pathway-based association analysis illuminated 

the biological processes such as DNA fragmentation, apoptosis, and Mitochondria pathway in 

governing cfDNA generation and clearance. 
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Post-GWAS analyses with one-sample pregnancy phenotypes 

Genetic correlation. In a parallel study with the same group of pregnant women, we have 

performed genetic analysis on their 104 pregnancy phenotypes, including laboratory tests during 

pregnancy (e.g., hematology, liver-function), maternal information (e.g., height, BMI), and 

neonatal outcomes (e.g., birthweight, birth length) [34]. We conducted a genetic correlation 

analysis between the 256 end motifs and the 104 pregnancy phenotypes to assess the overall 

genetic similarity between each pair (Tables S7-S8, Figure 4a). At the suggestive significance 

threshold of 1e-3, a total of 61 motif-phenotype pairs exhibit significant correlations (Table S9, 

Figure S7). These pairs involve 37 unique cfDNA end motifs and 9 pregnancy phenotypes. The 

A-, T-, C-, and G-end motifs have 9, 27, 15, and 10 significant pairs, respectively. The 9 

phenotypes are maternal BMI (19 motifs), maternal weight (14 motifs), white blood cell count (7 

motifs), neutrophils count (6 motifs), uric acid (6 motifs), neutrophils percentage (5 motifs), 

lymphocytes percentage (2 motifs), aspartate transferase levels (1 motif), and platelet count (1 

motif).  

The relationship between BMI, weight, and cfDNA during pregnancy has been extensively 

researched. Multiple studies have identified an association between increasing maternal weight 

and a decrease in cell-free fetal DNA levels [43-46]. Additionally, other studies have shown that 

total cfDNA levels are elevated in obese pregnant women, primarily due to increased necrosis and 

apoptosis of adipose tissue [47-49]. Uric acid (UA), a byproduct of purine metabolism, is generated 

from the breakdown of nucleic acids (DNA and RNA) and ATP [50]. Elevated UA levels are 

closely linked to oxidative stress, playing a significant role in renal tubular epithelial cell injury 

and apoptosis [51, 52]. A recent study also suggests that uric acid may induce mitochondrial 

dysfunction and apoptosis through the downregulation of mitochondrial phosphatidylserine 

decarboxylase [53]. We will discuss the relationship between hematological indicators and cfDNA 

in the next section. 

 

Mendelian randomization. We conducted bi-directional Mendelian randomization analyses to 

explore the potentially causal relationships between pregnancy phenotypes and end motifs. 

Initially, we treated pregnancy phenotypes as exposures and motifs as outcomes (denoted as P->M) 

and subsequently reversed the roles (denoted as M->P). At the suggestive significance threshold 

of 1e-3 based on both MR-Egger method and inverse variance weighted method, our P->M 

analysis identified 346 potentially causal associations involving 14 pregnancy phenotypes, all 
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belonging to the hematological category (Tables S10-11, Figure 4b). In detail, 307 out of 346 

(88.7%) of the identified causal relationships was found between leukocytes (e.g., neutrophils, 

lymphocytes, and monocytes) and end motifs, followed by thrombocytes (23 causalities) including 

platelet larger cell ratio and mean platelet volume, as well as erythrocytes (16 causalities) including 

mean corpuscular hemoglobin and mean corpuscular volume.  

The release of cfDNA and its relationship with leukocytes has been extensively studied and 

can be understood through the context of cellular apoptosis, infection and inflammatory responses, 

and DNA clearance mechanisms [54, 55]. The leukocytes, particularly neutrophils, are the major 

contributors to cfDNA in cancer samples, accounting for approximately 76% of cfDNA [56]. 

Specifically, activated neutrophils can undergo a specialized form of cell death called NETosis, a 

program for formation of neutrophil extracellular traps (NETs), significantly raising cfDNA levels 

[57]. Moreover, cfDNA released during exercise mainly originates from extramedullary 

polymorphonuclear neutrophils, influenced by physical impact, low oxygen levels, and elevated 

core body temperature [58].   

Additionally, a recent study discovered that thrombocytes contain genomic DNA fragments 

from megakaryocytes, and as precursors of thrombocytes, megakaryocytes contribute significantly 

to cfDNA, accounting for approximately 26% in healthy individuals [59]. Furthermore, the 

elevated levels of plasma cfDNA have been observed in venous thromboembolism (VTE) patients 

[60]. The relationship between erythrocytes and cfDNA has been explored. First, the discarded 

DNA resulting from the maturation process of erythrocytes is a major source of homeostatic 

cfDNA [61]. Second, a recent study revealed that mature erythrocytes contain long DNA 

fragments [62]. Consequently, the origin of erythrocytes may also contribute cfDNA to the plasma. 

Together, these processes shed light on the dynamic regulation of cfDNA by different blood cell 

types.  

For motifs starting with ‘A’, ‘T’, ‘C’, and ‘G’, they were causally affected by 80, 150, 97, and 

19 phenotypes, respectively. We additionally provided the fitted linear graphs for causal pairs of 

phenotypes and motifs based on the MR-Egger method (Figure S8). The lines exhibit intercepts 

close to zero, suggesting the absence of pleiotropic effects and reliable causal effects in MR 

analysis. 

To ensure the validity of our P->M MR results, we performed reversed M->P analysis, in 

which the cfDNA motifs as exposures and the phenotypes as outcomes. At the same suggestive 

significance threshold of 1e-3, we found no causal effects of motifs on phenotypes, with the 
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smallest p-value being 1.32e-3 (ACTT->total protein). This phenomenon is consistent with our 

prior knowledge that cfDNA features are often considered as consequences rather than causes; the 

occurrences of some biological or physiological processes (e.g., immune response) may result in 

alteration of hematological tests (e.g., neutrophils count), causing the change of cfDNA molecular 

signatures (e.g, concentration, motifs). To further ensure the robustness of the 346 causal 

associations, we performed genetic pleiotropy and heterogeneity tests (Table S11). At the 

significance threshold of 1e-3, all the causal relationships are not affected by genetic pleiotropy, 

with the smallest p-value being 4.81e-3. Even though five associations show potential 

heterogeneity effects (p-value<1e-3), these effects appear to be driven by a small subset of the 

genetic variants and do not substantially impact the overall findings. 

Our bi-directional MR analysis, which controlled for both genetic pleiotropy and 

heterogeneity effects, highlighted the causal effects of hematological indicators, especially 

immune cells, on cfDNA molecular features.  

Colocalization analysis. To identify shared causal genetic effects on both end motifs and 

pregnancy phenotypes, we conducted GWAS-GWAS colocalization analysis. This analysis 

revealed 163 colocalized motif-phenotype pairs at a posterior probability of H4 (one common 

causal variant) greater than 0.75, distributed across six loci: PSMD3 (104 pairs), FCHO2 (19 pairs), 

ZFPM2 (18 pairs), ABO (14 pairs), ZNF787 (6 pairs), and GCKR (2 pairs) (Table S12, Figure 4c, 

Figure S9). Notably, the phenotypes with the highest number of colocalized signals were primarily 

related to hematological traits (leukocytes, thrombocytes, and erythrocytes) and protein levels 

(globulin and prealbumin).  

The most frequent colocalizations appear in locus PSMD3 linking cfDNA motifs and 

leukocytes cells. The gene PSMD3 (proteasome 26S subunit, ATPase, 3) plays critical roles in 

process of protein degradation, in maintaining cellular health, and in regulating various cellular 

processes. Silencing of PSMD3 inhibits cell proliferation and induces apoptosis, as evidenced by 

the significant reduction in breast cancer cell proliferation and colony formation following Psmd3 

knockdown [63]. Previous GWAS studies have extensively reported its associations with 

leukocytes cells [64-67] and immune diseases (e.g., asthma, allergic disease) [68, 69].  

Additionally, from the perspective of end motifs, T-end exhibited the largest number of 

colocalized signals (81), followed by A-end (38), C-end (34), and G-end (10). These findings 

provide evidence for shared genetic background influencing both cfDNA end motifs and 
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pregnancy phenotypes. The significant enrichment of hematological and protein-related traits in 

the colocalized signals suggests their close relationship with cfDNA molecular features.  

 

Pleiotropy analyses with public databases 

GWAS catalog. We further compared our results with the GWAS catalog containing all reported 

genome-wide significant associations with all possible phenotypes to date. For each trait, we 

defined a ratio as number of associated loci shared with cfGWAS result in this study over total 

number of associated loci in GWAS catalog (Table S13). We provided a bubble plot to present the 

pleiotropic results with GWAS catalog (Figure 5a). Overall, traits with large ratios are mainly 

belong to hematology and lipid/lipoprotein measurements. Specifically, among traits with more 

than 50 associated loci, uric acid has the largest ratio, followed by platelet counts, cholelithiasis, 

and basophils counts. Other traits include height, BMI, asthma, allergic rhinitis, and thrombosis. 

The relationships between most of these traits and cfDNA molecular features have been discussed 

in earlier sections.  

A large number of traits with less than 50 associated loci have one or two significant loci that 

all shared with the cfGWAS signals, resulting in the ratio of 1, such as a wide spectrum of 

glycerophospholipids in the lipid/lipoprotein measurement, hemostasis in hematology, and fatty 

acids and metabolites in other measurement. Some studies have reported that elevated maternal 

lipid levels during pregnancy, such as increased triglycerides, may reduce the fetal fraction of 

cfDNA while increasing the total cfDNA levels [70, 71]. Our findings support aforementioned 

discoveries that cfDNA molecular features may have close correlation with traits like BMI, 

hematology, and immune responses from the perspective of genetics.  

OMIM compendium. Of the 144 mapped genes with significant SNPs associated with cfDNA 

end motifs, 48 have documented disease associations according to the OMIM database (Table S14, 

Figure 5b). These associated diseases are distributed across nine organ systems, with 

musculoskeletal and connective tissue disorders (14 diseases), nervous system and developmental 

disorders (7 diseases), blood and immune system disorders (6 diseases), and cardiovascular and 

circulatory system disorders (4 diseases) being the most prevalent categories.  

Among these diseases, we noticed that some are associated with cfDNA characteristics, 

including systemic lupus erythematosus (SLE, DNASE1L3), Barrett's esophagus (BE, MSR1), 

tetralogy of Fallot (TOF, ZFPM2), autism (RPL10), congenital nongoitrous hypothyroidism 

(CHNG, THRA), amyotrophic lateral sclerosis (ALS, TIA1), and neurodevelopmental disorder 
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with dysmorphic facies and distal skeletal anomalies (NEDDFSA, ZMIZ1). In detail, SLE is an 

autoimmune disease characterized by inflammation with the production of autoantibodies. There 

is increasing evidence that failure in the clearance of cfDNA by deoxyribonucleases (DNASES), 

particularly DNASE1L3, can lead to the generation of anti-DNA antibodies and SLE [72-74]. The 

plasma cfDNA levels are closely related to the disease severity of SLE and can potentially be used 

as a biomarker for SLE diagnosis. The gene MSR1, macrophage scavenger receptor 1, plays an 

essential inflammatory role in multiple processes, including immunity, lung and liver disease, and 

cancer [75]. Previous studies have reported that mutations in MSR1 are associated with the 

presence of BE [76]. The cfDNA analysis becomes a promising approach for monitoring the 

neoplastic progression of BE [77]. The TOF is a congenital heart disease and the cfDNA 

technology can be used for disease screening by NIPT [78]. The autism and ALS are associated 

with inflammatory processes related to immune system dysfunctions and the cfDNA is becoming 

a potential diagnostic tool for these diseases [79-81]. 

The identification of these associations between motif-associated genes and genetic disorders 

suggests a complex interplay between cfDNA end motifs, genetic variations, and human health.  
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Methods 

Experimental model and study participant details 

Subjects. The participants were recruited from Wuhan Children’s Hospital during their routine 

pregnancy examinations from 2017 to 2020. A variety of tests were conducted throughout the 

entire duration of pregnancy, including non-invasive prenatal testing (NIPT), biochemistry 

assessments, oral glucose tolerance tests, ultrasound screenings, and more. Each pregnant 

participant provided informed consent before enrollment. This study received approval from the 

Institutional Review Boards (IRB) of both Wuhan Children’s Hospital (2021R062-E03) and the 

Bioethics and Biosafety of BGI (BGI-IRB 21088-T2). Additionally, authorization was obtained 

from the National Human Genetic Resources Management Office (Approval No. [2021] CJ2002). 

Our sole inclusion criterion was the availability of NIPT genotype data. In total, we included 

38,668 pregnant women after quality control based on sequencing depth and mapping rate. These 

individuals were then used for genotype imputation. 

Pregnancy phenotypes. Throughout the approximately 40-week gestation period, pregnant 

women undergo a range of examinations including blood routine, liver function, kidney function, 

and more. In our prior investigation, we curated 104 biochemical examination metrics and birth 

outcome indicators, conducting a comprehensive genome-wide association analysis [34]. A 

detailed list for providing the information of these phenotypes, including full name, abbreviation, 

and phenotypic category is provided in Table S7. 

Independent cohort for replication study. To verify our GWAS findings of cfDNA molecular 

features, we performed a replication study in an independent cohort with 442 healthy participants. 

In detail, these participants were recruited in an outpatient department during their health 

examinations from 2021 to 2022 in the city of Shenzhen. Each participant provided informed 

consent before enrollment. This study received ethnical approval from the Institutional Review 

Boards of the Bioethics and Biosafety of BGI (BGI-IRB 21157-T2). The plasma cfDNA was used 

for whole genome sequencing, using DNBSEQ platform with paired-end 100 bp mode and an 

average sequencing depth of ~35X. 

Murine models. The animal study was approved by the Institutional Review Boards of Bioethics 

and Biosafety of BGI (BGI-IRB A24009) and the Institutional Animal Care and Use Committee 

(IACUC) of Cyagen (GACU24-SY028). The Panx1-deficient mice model (C57BL/6JCya) and 

Dnase1l1-deficient mice model (C57BL/6JCya) were created by CRISPR/Cas-mediated genome 

engineering at Cyagen. The knockout of genes was confirmed by PCR and sequencing. Housing 
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conditions include a 12-hour light-dark cycle, controlled temperature and humidity, and pelleted 

rodent chow. 8-week-old male and female mice were used for the experiment. Gender differences 

were not analyzed for Panx1-deficient mice. Dnase1l1 exists on the X chromosome. Dnase1l1-

deficient mice were compared among groups of female homozygous, male hemizygous, and 

female heterozygous. 

Cell line models. PANX1 knockout Jurkat cell line model and DNASE1L1 knockout HEK293 cell 

line model were created by CRISPR/Cas-mediated genome engineering at Cyagen. 

 

Method details 

Whole-genome sequencing. The DNA samples used for sequencing were obtained from 

peripheral blood collected from pregnant women for NIPT testing, which contains both maternal 

and fetal cell-free DNA. Since NIPT testing is typically conducted around 16 weeks of gestation 

when the fetal DNA content is approximately 10%, with half of it being identical to maternal DNA, 

we did not differentiate between maternal and fetal DNA in subsequent analyses. Instead, we 

treated all DNA as maternal for analysis purposes. Using the BGISEQ 500 sequencing platform, 

we employed a combination of probe anchoring and polymerase sequencing for single-end 

sequencing, with reads length of 35 bp. 

We employed the fastp software [82] to conduct quality control analysis on the sequencing 

data stored in FASTQ format. This involved the removal of adapter sequences and elimination of 

low-quality sequence fragments (reads). Following this, we utilized BWA [83] to align the quality-

controlled reads to the hg38 reference genome [84], subsequently converting the aligned reads into 

BAM format and sorting them. Duplicate reads were subsequently eliminated from the sorted 

BAM files using the Samtools rmdup tool [85]. Additionally, we utilized the GATK [86] 

BaseRecalibrator to recalibrate base quality scores (BQSR) on the sorted BAM files using known 

site information. The GATK ApplyBQSR tool was then utilized to perform further base quality 

score recalibration and sorting on the sorted BAM files, thereby generating index files. Finally, 

Samtools stats was employed to generate comprehensive statistics for the calibrated BAM files. 

Variant detection and Genotype imputation. Given the ultra-low nature of NIPT sequencing 

data, traditional analysis workflows designed for high-depth sequencing, such as variant detection, 

are inadequate. To ensure precise variant discovery, we used BaseVar [87], which was developed 

for calling variants in ultra-low-pass (<1.0x) sequencing data. Additionally, for inferring missing 

genotypes, we used the STITCH software [88] with entering the sequence bam files as input. 
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CfDNA end motifs. In accordance with the previous definition. Four mer 'end motif' in this study 

refers to the initial 4 nucleotides at the 5' end of each strand of plasma DNA molecules [16]. The 

occurrence of each of the 256 motifs was calculated to determine motif frequency.  

Murine sample collection. Mice were killed by removing eyeballs and blood was collected in 

EDTA tubes (KANGJIAN). In the Panx1 module, 6 Panx1-/- mice (3 males and 3 females) and 6 

WT mice (3 males and 3 females) were used. In the Dnase1l1 module, 5 homozygous female, 5 

heterozygous female, and 5 hemizygous male mice were used. The blood was first centrifuged at 

1600 g for 10 min at 4 ◦C to collect the upper layer of plasma, and then the plasma was centrifuged 

at 16,000 g for 10 min at 4 ◦C to remove cellular debris. The supernatant plasma samples were 

stored at -80 ◦C before cfDNA extraction.  

Cell line culture. Gene knockout cell lines were confirmed by sequencing. WT and PANX1 

knockout cells were cultured in RPMI 1640 medium, and DNASE1L1 knockout cells were cultured 

in DEME medium at 37 ◦C in a humidified atmosphere with 5% CO2. 10% fetal bovine serum 

was added to the medium. The cell culture supernatant was first centrifuged at 1,600 g for 10 min 

at 4 ◦C, and then centrifuged again at 16,000 g for 10 min at 4 ◦C to remove cells and cellular 

debris during sample preparation. 

Cell-free DNA extraction and quantification. The blood plasma and cell culture supernatant 

samples were used for cell-free DNA extraction using MagPure Circulating DNA KF Kit 

(MD5432-02, Magen). 100 μL plasma from each mouse and 500 μL cell culture supernatant for 

each sample were used for cfDNA extraction. The cfDNA concentrations were measured by 

Qubit™ 4.0 Fluorometer (Invitrogen) using Qubit dsDNA High Sensitivity Assay Kit (Q32854, 

Invitrogen). 

 

Quantification and statistical analysis 

Genome-wide association study. We utilized the genotype dosage (a quantitative value between 

0 and 2) imputed by STITCH as genotype data, and 256 cfDNA end motifs served as phenotypes 

for the genome-wide association analysis. To control for population stratification, we performed 

principal component analysis (PCA) on the population genetic variation identified by BaseVar 

using PLINK2 [89], selecting the top 10 principal components as covariates. Furthermore, 

maternal age, gestational age at NIPT testing, and sequencing depth were included as additional 

covariates. The GWAS analysis was performed by using PLINK2, which is capable of handling 

dosage data. We filter in SNPs with minor allele frequency (MAF) greater than 0.05, p-value for 
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testing Hardy-Weinberg equilibrium (HWE) greater than 1e-6, and genotype missingness less than 

10%. We set the significance threshold at 5e-8 for genome-wide significance and 1.95e-10 (=5e-

8/256) for study-wide significance. In the independent replication study, we used PLINK2 to 

perform the GWAS analysis by adjusting age, gender, and the first 10 PCs of genotype as 

covariates. The SNPs with MAF > 0.01 and HWE p-value > 1e-6 were filtered in the GWAS 

analysis. 

Heritability partition. To further understand the genetic architecture of the cfDNA molecular 

features and the polygenic contributions to heritability of different genetic components, including 

cell type–specific elements, we performed a heritability partition analysis. Specifically, to partition 

heritability from GWAS summary statistics of the 256 end motifs, we used stratified LD score 

regression (stratified LDSC) [90], which can account for linkage disequilibrium (LD). The cell 

type-specific expression data are referred to the Genotype-Tissue Expression (GTEx) project [91] 

and Franke lab dataset [92]. In total, there are 205 tissues and cell types from nine categories, 

including adipose, blood/immune, cardiovascular, central nervous system, digestive, endocrine, 

liver, musculoskeletal/connective, and others. The LD reference data is the 1000 Genomes Phase 

3 East Asian populations.  

Pathway-based analysis. Pathway enrichment analysis assists in highlighting pathways enriched 

with candidate genes pivotal for biological functions, thereby facilitating in unraveling 

mechanistic insights into the underlying traits. Leveraging summary statistics from GWAS 

conducted on 256 motifs, we performed pathway enrichment analysis using PASCAL (Pathway 

scoring algorithm) software—an intuitive tool designed for gene scoring and pathway analysis 

from GWAS results [93]. The databases include Reactome [94], Biocarta database 

(http://www.biocarta.com/), and KEGG [95]. For each of the 256 motifs, we computed the median 

pathway score and prioritized pathways in ascending order based on their scores, with special 

attention to those with higher rankings. 

Genetic correlation. Genetic correlation is defined as an informative metric to quantify the overall 

genetic similarity between two complex traits. In this section, we investigated the genetic 

correlation between 256 end motifs and 104 pregnancy phenotypes measured in the same group of 

individuals. Specifically, we used LD score (LDSC) regression to perform the genetic correlation 

analysis with reference panel being East Asian population from the 1000 Genomes Project [96].  

Mendelian randomization. Mendelian randomization (MR) is a methodological approach used 

in epidemiology and genetics to investigate causal relationships between exposure factors and 
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outcomes. In this study, we propose performing bi-directional MR analysis using end motifs and 

pregnancy phenotypes as either exposure or outcome variables. Specifically, we conducted LD 

clumping to select only independent SNPs within a 10,000 kb window and a clumping r2 threshold 

of 0.1. LD was calculated based on the East Asian population from the 1000 Genomes Project. To 

infer causality, we employed the inverse variance weighted (IVW) method [97] and MR-Egger 

method [98] using the R function TwoSampleMR:mr [99]. It is worth noting that we only selected 

exposure variables with more than three significant SNPs after LD clumping to ensure the 

reliability of the MR analysis. We used a suggestive significance threshold of 1e-3 based on both 

IVW method and MR-Egger method.  

Colocalization analysis. Colocalization analysis is a statistical method used to determine whether 

two or more traits share the same causal genetic variant(s) within a specific genomic region. This 

approach is essential when different GWAS identify overlapping signals, suggesting a potential 

shared genetic architecture between traits. To investigate whether the cfDNA end motifs and 

pregnancy phenotypes have overlapped genetic effects due to the same causal variant, we 

performed colocalization analysis using R package coloc [100]. The prior probability of a SNP is 

associated with either end motif or phenotype is set to be 1e-4 and with both traits is 1e-5. For 

visualizations of the colocalized regions between end motifs and phenotypes, we used R package 

locuscomparer [101]. 

Pleiotropy analysis with public databases. In this section, we investigated the pleiotropic effects 

of motif-associated genes based on GWAS catalog [31] and OMIM compendium [102]. First, we 

download SNP-trait association data from the GWAS catalog and proceed to process and analyze 

them through a series of steps, ultimately visualizing the distribution of traits. Initially, we 

download the latest association data from the GWAS catalog and perform initial filtering, retaining 

only statistically significant SNPs at the whole-genome level, with associations having a p-value 

less than 5e-8. Following this, we define a search region based on predefined loci associated with 

cfDNA motifs, extending 100 kb upstream and downstream. For each identified search region, we 

identify all significant SNPs and remove duplicates based on the PubMed ID and associated trait 

to ensure each trait is recorded only once per study. Then, for each trait, we count the total number 

of their associated loci in GWAS catalog and the number of loci shared with end motifs, and 

calculated the ratio. Finally, we visualize the distribution of traits using bubble plots. 
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OMIM (Online Mendelian Inheritance in Man) is a comprehensive database of human genes 

and genetic disorders. We created a list for all mapped genes of SNPs associated with cfDNA end 

motifs and searched their related diseases in the OMIM database. 
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Discussion 

cfDNA molecular features, such as fragment size, end motifs, and methylation patterns, are 

vital for understanding various biological processes and disease states. These characteristics of 

cfDNA molecules have also revolutionized liquid biopsy technology, allowing for non-invasive 

diagnosis, monitoring disease progression, and predicting patient outcomes. Uncovering novel key 

genes involved in cfDNA generation and shaping of cfDNA characteristics offers valuable insights 

into cfDNA biology and potential therapeutic targets for cfDNA-related diseases. However, there 

are only a very limited number of studies investigating the genetic mechanisms underlying cfDNA 

molecular signatures.  

In this study, we retrieved the sequencing data from the NIPT of 28,016 Chinese pregnant 

women. We utilized whole-genome sequencing data of cfDNA to extract both genotype 

information and cell-free DNA features. For the first time, we conducted a genome-wide 

association study to explore the genetic basis of cfDNA molecular features. In total, we identified 

84 genetic loci associated with 218 motifs. The most significant loci include PANX1, DFFB, 

DNASE1L3, DNASE1L1, and PSMD3. These findings were further validated through independent 

GWAS analyses and experimental designs, strengthening their biological significance. By in-depth 

comparison of the cfGWAS results with our parallel pregnancy phenotype GWAS study and the 

GWAS catalog, we observed genetic correlations between BMI, weight, uric acid, and cfDNA. 

Additionally, we revealed a strong causal relationship between hematological factors, especially 

leukocytes, and cfDNA features.  

Although the sample size in our study does not reach the scale of hundreds of thousands, 

cfDNA screenings such as NIPT, tumor liquid biopsies, and pathogen liquid biopsies have 

generated vast amounts of genomic data. Consequently, the potential of our cfGWAS paradigm is 

enormous. For example, by June 2023, over 40 million pregnant women worldwide had undergone 

NIPT testing, resulting in a substantial amount of sequence data. This sample volume far exceeds 

that of participants with general WGS data [103]. In addition, understanding the biology of cfDNA 

generation and clearance could highlight potential applications in the field of liquid biopsy. For 

instance, circulating tumor DNA (ctDNA) is often present in low quantities, making it challenging 

to collect sufficient blood for accurate detection, particularly in cases with small tumors. Therefore, 

strategies to protect circulating DNA from degradation or to reduce its clearance could ensure 

adequate concentrations of ctDNA, enabling sensitive and robust liquid biopsy tests even with 
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small blood volumes [104]. Furthermore, our research could contribute to the discovery of 

therapeutic targets for diseases influenced by abnormal DNA concentrations, such as SLE and 

gout. This includes insights into drug targets that accelerate the clearance of circulating DNA. 

Given the widespread clinical use of cfDNA, the significant discoveries from cfGWAS and 

their potential applications will not only revolutionize our understanding of cfDNA biology but 

also open new avenues for future clinical applications. 
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Limitations of study 

Limited by the sequencing strategy of NIPT technology (single-end 35bp), we only used end 

motifs as a snapshot for cfDNA features. Although different cfDNA features were strongly 

correlated, a cfGWAS of other features, including fragment length, concentration, jagged ends, 

and nucleosome footprints, would provide a more comprehensive investigation. Furthermore, our 

discovery set relied on a cohort of pregnant women, so it’s unclear how many findings are general 

for all people or specific to pregnancy. Independent studies on non-pregnant cohorts are necessary 

to resolve this uncertainty. In addition, our discovery GWAS study had a relatively small sample 

size of 20,000 pregnant women. The statistical power of GWAS is heavily dependent on sample 

size, with larger samples yielding higher powers to detect genetic signals. We acknowledge the 

importance of amassing larger sample sizes for more robust and comprehensive genetic 

investigations in the future. We anticipate uncovering even more novel genetic associations that 

can further illuminate the complex genetic basis of cfDNA features. In this study, we only 

validated the impact of PANX1 and DNASE1L1 genes on cfDNA concentration using knockout 

mouse models and cell lines. Further studies are needed to fully uncover the biological mechanisms 

of these genes on cfDNA. Validation of other candidate genes in knockout models would also be 

necessary. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

24 

 

Acknowledgment 

This study was supported by National Natural Science Foundation of China (No.32171441), 

National Key Research and Development Program of China (No.2023YFC2605400, 

No.2022YFC2502402), Guangzhou Basic and Applied Basic Research Foundation 

(No.202201010189), Open Project of State Key Laboratory of Respiratory Disease (No.SKLRD-

OP-202309), the Innovation Platform for Academicians of Hainan Province (No.YSPTZX202118), 

Key-Area Research and Development Program of Guangdong Province (No.2023B0303040001), 

the Shenzhen Key Laboratory of Genomics (No.CXB200903110066A), Guangdong Provincial 

Key Laboratory of Human Disease Genomics (No.2020B1212070028), Guangdong Provincial 

Key Laboratory of Genome Read and Write (No.2017B030301011), and the China National 

GeneBank.  

 

Author contribution 

X.J., H.Q.Z. and A.Z. conceived the study, designed the research program, and managed the 

project. 

H.X., M.Y., and A.Z. collected the data. 

L.L., J.Z. and Y.W. preprocessed the data and finished the quality control. 

H.H.Z., L.L., R.O., X.Z., Yu L., Ying L., L.W., G.Z., L.G.L. performed the statistical analysis and 

results visualization. 

H.Q.Z., Y.Z., S.Z., F.L., and C.X. analyzed the experimental data. 

X.J., H.H.Z., H.Q.Z, Y.Z., S.Z., L.L., R.O., X.Z. and Ying L. wrote the manuscript. 

All authors participated in revising the manuscript. 

 

Declaration of Interests 

The authors declare no competing interests. 

 

Resource availability 

Data and code availability. The data that support the findings of this study have been deposited 

into CNGB Sequence Archive (CNSA) [105] of China National GeneBank DataBase (CNGBdb) 

[106] with accession number CNP0005734. Any additional information required to reanalyze the 

data reported in this paper is available from the lead contact upon request.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

25 

 

 

References 
1. Wan, J.C.M., et al., Liquid biopsies come of age: towards implementation of circulating 

tumour DNA. Nat Rev Cancer, 2017. 17(4): p. 223-238. 

2. Chiu, R.W., et al., Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal 

plasma DNA sequencing: large scale validity study. Bmj, 2011. 342: p. c7401. 

3. Cisneros-Villanueva, M., et al., Cell-free DNA analysis in current cancer clinical trials: a 

review. Br J Cancer, 2022. 126(3): p. 391-400. 

4. Medina, J.E., et al., Cell-free DNA approaches for cancer early detection and interception. 

J Immunother Cancer, 2023. 11(9). 

5. Knight, S.R., A. Thorne, and M.L. Lo Faro, Donor-specific Cell-free DNA as a Biomarker 

in Solid Organ Transplantation. A Systematic Review. Transplantation, 2019. 103(2): p. 

273-283. 

6. Chan, R.W., et al., Plasma DNA aberrations in systemic lupus erythematosus revealed by 

genomic and methylomic sequencing. Proc Natl Acad Sci U S A, 2014. 111(49): p. E5302-

11. 

7. Nomura, J., et al., Rapid detection of invasive Mycobacterium chimaera disease via a novel 

plasma-based next-generation sequencing test. BMC Infect Dis, 2019. 19(1): p. 371. 

8. Zheng, Y., et al., Development and clinical validation of a droplet digital PCR assay for 

detecting Acinetobacter baumannii and Klebsiella pneumoniae in patients with suspected 

bloodstream infections. Microbiologyopen, 2021. 10(6): p. e1247. 

9. Qi, T., et al., Cell-Free DNA Fragmentomics: The Novel Promising Biomarker. Int J Mol 

Sci, 2023. 24(2). 

10. Zhou, Z., et al., Fragmentation landscape of cell-free DNA revealed by deconvolutional 

analysis of end motifs. Proc Natl Acad Sci U S A, 2023. 120(17): p. e2220982120. 

11. Koukourakis, M.I., et al., Circulating Plasma Cell-free DNA (cfDNA) as a Predictive 

Biomarker for Radiotherapy: Results from a Prospective Trial in Head and Neck Cancer. 

Cancer Diagn Progn, 2023. 3(5): p. 551-557. 

12. Li, L., et al., Serum Cell-Free DNA-based Detection of Mycobacterium avium Complex 

Infection. Am J Respir Crit Care Med, 2024. 209(10): p. 1246-1254. 

13. Lehmann, J., et al., Plasma mtDNA as a possible contributor to and biomarker of 

inflammation in rheumatoid arthritis. Arthritis Res Ther, 2024. 26(1): p. 97. 

14. Lapin, M., et al., Fragment size and level of cell-free DNA provide prognostic information 

in patients with advanced pancreatic cancer. J Transl Med, 2018. 16(1): p. 300. 

15. Thierry, A.R., Circulating DNA fragmentomics and cancer screening. Cell Genom, 2023. 

3(1): p. 100242. 

16. Jiang, P., et al., Plasma DNA End-Motif Profiling as a Fragmentomic Marker in Cancer, 

Pregnancy, and Transplantation. Cancer Discov, 2020. 10(5): p. 664-673. 

17. Moser, T., et al., Bridging biological cfDNA features and machine learning approaches. 

Trends Genet, 2023. 39(4): p. 285-307. 

18. Zhu, G., et al., Tissue-specific cell-free DNA degradation quantifies circulating tumor DNA 

burden. Nat Commun, 2021. 12(1): p. 2229. 

19. Jacobson, M.D., M. Weil, and M.C. Raff, Programmed cell death in animal development. 

Cell, 1997. 88(3): p. 347-54. 

20. Mannherz, H.G., et al., A new function for an old enzyme: the role of DNase I in apoptosis. 

Curr Top Microbiol Immunol, 1995. 198: p. 161-74. 

21. Rodriguez, A.M., et al., Identification, localization, and expression of two novel human 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

26 

 

genes similar to deoxyribonuclease I. Genomics, 1997. 42(3): p. 507-13. 

22. Widlak, P., et al., Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-

activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem, 2000. 

275(11): p. 8226-32. 

23. Han, D.S.C. and Y.M.D. Lo, The Nexus of cfDNA and Nuclease Biology. Trends Genet, 

2021. 37(8): p. 758-770. 

24. Sin, S.T., et al., Effects of nucleases on cell-free extrachromosomal circular DNA. JCI 

Insight, 2022. 7(8). 

25. Chen, M., et al., Fragmentomics of urinary cell-free DNA in nuclease knockout mouse 

models. PLoS Genet, 2022. 18(7): p. e1010262. 

26. Han, D.S.C., et al., The Biology of Cell-free DNA Fragmentation and the Roles of DNASE1, 

DNASE1L3, and DFFB. Am J Hum Genet, 2020. 106(2): p. 202-214. 

27. Uffelmann, E., et al., Genome-wide association studies. Nature Reviews Methods Primers, 

2021. 1(1): p. 59. 

28. Zhang, H., et al., Genome-wide association study identifies 32 novel breast cancer 

susceptibility loci from overall and subtype-specific analyses. Nat Genet, 2020. 52(6): p. 

572-581. 

29. Tcheandjieu, C., et al., Large-scale genome-wide association study of coronary artery 

disease in genetically diverse populations. Nat Med, 2022. 28(8): p. 1679-1692. 

30. Borrego-Yaniz, G., et al., Risk loci involved in giant cell arteritis susceptibility: a genome-

wide association study. Lancet Rheumatol, 2024. 6(6): p. e374-e383. 

31. Sollis, E., et al., The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. 

Nucleic Acids Res, 2023. 51(D1): p. D977-d985. 

32. Liu, S., et al., Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic 

Associations, Patterns of Viral Infections, and Chinese Population History. Cell, 2018. 

175(2): p. 347-359.e14. 

33. Liu, S., et al., Utilizing Non-Invasive Prenatal Test Sequencing Data Resource for Human 

Genetic Investigation. bioRxiv, 2023: p. 2023.12.11.570976. 

34. Xiao, H., et al., Genetic analysis of 104 pregnancy phenotypes in 39,194 Chinese women. 

medRxiv, 2023: p. 2023.11.23.23298979. 

35. Huang, Q., et al., Association between genetic predisposition and disease burden of stroke 

in China: a genetic epidemiological study. Lancet Reg Health West Pac, 2023. 36: p. 

100779. 

36. Li, Z., et al., CMDB: the comprehensive population genome variation database of China. 

Nucleic Acids Res, 2023. 51(D1): p. D890-d895. 

37. Whyte-Fagundes, P. and G. Zoidl, Mechanisms of pannexin1 channel gating and regulation. 

Biochim Biophys Acta Biomembr, 2018. 1860(1): p. 65-71. 

38. Santavanond, J.P., et al., The small molecule raptinal can simultaneously induce apoptosis 

and inhibit PANX1 activity. Cell Death Dis, 2024. 15(2): p. 123. 

39. Ueki, M., et al., Evaluation of all nonsynonymous single-nucleotide polymorphisms in the 

gene encoding human deoxyribonuclease I-like 1, possibly implicated in the blocking of 

endocytosis-mediated foreign gene transfer. DNA Cell Biol, 2014. 33(2): p. 79-87. 

40. Blander, J.M., The many ways tissue phagocytes respond to dying cells. Immunol Rev, 

2017. 277(1): p. 158-173. 

41. MSigDB, G., Human Gene Set: BIOCARTA_SET_PATHWAY. 

42. MSigDB, G., Human Gene Set: BIOCARTA_DNAFRAGMENT_PATHWAY. 

43. Juul, L.A., et al., Noninvasive prenatal testing and maternal obesity: A review. Acta Obstet 

Gynecol Scand, 2020. 99(6): p. 744-750. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

27 

 

44. Mhatre, M., et al., The Effect of Maternal Obesity on Placental Cell-Free DNA Release in 

a Mouse Model. Reprod Sci, 2019. 26(9): p. 1218-1224. 

45. Stupak, A., et al., The Influence of Maternal Obesity on Cell-Free Fetal DNA and Blood 

Pressure Regulation in Pregnancies with Hypertensive Disorders. Medicina (Kaunas), 

2021. 57(9). 

46. Wang, E., et al., Gestational age and maternal weight effects on fetal cell-free DNA in 

maternal plasma. Prenat Diagn, 2013. 33(7): p. 662-6. 

47. Haghiac, M., et al., Increased death of adipose cells, a path to release cell-free DNA into 

systemic circulation of obese women. Obesity (Silver Spring), 2012. 20(11): p. 2213-9. 

48. Lapaire, O., et al., Significant correlation between maternal body mass index at delivery 

and in the second trimester, and second trimester circulating total cell-free DNA levels. 

Reprod Sci, 2009. 16(3): p. 274-9. 

49. Vora, N.L., et al., A multifactorial relationship exists between total circulating cell-free 

DNA levels and maternal BMI. Prenat Diagn, 2012. 32(9): p. 912-4. 

50. Johnson, R.J., M.A. Lanaspa, and E.A. Gaucher, Uric acid: a danger signal from the RNA 

world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal 

disease: evolutionary considerations. Semin Nephrol, 2011. 31(5): p. 394-9. 

51. Gherghina, M.E., et al., Uric Acid and Oxidative Stress-Relationship with Cardiovascular, 

Metabolic, and Renal Impairment. Int J Mol Sci, 2022. 23(6). 

52. Li, D., et al., Reactive oxygen species induced by uric acid promote NRK‑52E cell apoptosis 

through the NEK7‑NLRP3 signaling pathway. Mol Med Rep, 2021. 24(4). 

53. Liu, N., et al., Phosphatidylserine decarboxylase downregulation in uric acid‑induced 

hepatic mitochondrial dysfunction and apoptosis. MedComm (2020), 2023. 4(4): p. e336. 

54. Moss, J., et al., Comprehensive human cell-type methylation atlas reveals origins of 

circulating cell-free DNA in health and disease. Nat Commun, 2018. 9(1): p. 5068. 

55. Leal, A., et al., White blood cell and cell-free DNA analyses for detection of residual 

disease in gastric cancer. Nat Commun, 2020. 11(1): p. 525. 

56. Mattox, A.K., et al., The Origin of Highly Elevated Cell-Free DNA in Healthy Individuals 

and Patients with Pancreatic, Colorectal, Lung, or Ovarian Cancer. Cancer Discov, 2023. 

13(10): p. 2166-2179. 

57. Kustanovich, A., et al., Life and death of circulating cell-free DNA. Cancer Biol Ther, 2019. 

20(8): p. 1057-1067. 

58. Fridlich, O., et al., Elevated cfDNA after exercise is derived primarily from mature 

polymorphonuclear neutrophils, with a minor contribution of cardiomyocytes. Cell Rep 

Med, 2023. 4(6): p. 101074. 

59. Moss, J., et al., Megakaryocyte- and erythroblast-specific cell-free DNA patterns in plasma 

and platelets reflect thrombopoiesis and erythropoiesis levels. Nat Commun, 2023. 14(1): 

p. 7542. 

60. Medeiros, S.K., et al., Does cell-free DNA promote coagulation and inhibit fibrinolysis in 

patients with unprovoked venous thromboembolism? Thromb Res, 2020. 186: p. 13-19. 

61. Sender, R., et al., What fraction of cellular DNA turnover becomes cfDNA? Elife, 2024. 12. 

62. Liang, N., et al., Mature Red Blood Cells Contain Long DNA Fragments and Could Acquire 

DNA from Lung Cancer Tissue. Adv Sci (Weinh), 2023. 10(7): p. e2206361. 

63. Fararjeh, A.S., et al., Proteasome 26S Subunit, non-ATPase 3 (PSMD3) Regulates Breast 

Cancer by Stabilizing HER2 from Degradation. Cancers (Basel), 2019. 11(4). 

64. Kamatani, Y., et al., Genome-wide association study of hematological and biochemical 

traits in a Japanese population. Nat Genet, 2010. 42(3): p. 210-5. 

65. Astle, W.J., et al., The Allelic Landscape of Human Blood Cell Trait Variation and Links to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

28 

 

Common Complex Disease. Cell, 2016. 167(5): p. 1415-1429.e19. 

66. Chen, M.H., et al., Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 

Individuals from 5 Global Populations. Cell, 2020. 182(5): p. 1198-1213.e14. 

67. Kachuri, L., et al., Genetic determinants of blood-cell traits influence susceptibility to 

childhood acute lymphoblastic leukemia. Am J Hum Genet, 2021. 108(10): p. 1823-1835. 

68. Ferreira, M.A., et al., Shared genetic origin of asthma, hay fever and eczema elucidates 

allergic disease biology. Nat Genet, 2017. 49(12): p. 1752-1757. 

69. Zhu, Z., et al., Shared genetics of asthma and mental health disorders: a large-scale 

genome-wide cross-trait analysis. Eur Respir J, 2019. 54(6). 

70. Cao, J., et al., Lipid Metabolism Affects Fetal Fraction and Screen Failures in Non-invasive 

Prenatal Testing. Front Med (Lausanne), 2021. 8: p. 811385. 

71. Kananen, L., et al., Circulating cell-free DNA in health and disease - the relationship to 

health behaviours, ageing phenotypes and metabolomics. Geroscience, 2023. 45(1): p. 85-

103. 

72. Al-Mayouf, S.M., et al., Loss-of-function variant in DNASE1L3 causes a familial form of 

systemic lupus erythematosus. Nat Genet, 2011. 43(12): p. 1186-8. 

73. Gerovska, D. and M.J. Araúzo-Bravo, Systemic Lupus Erythematosus Patients with 

DNASE1L3·Deficiency Have a Distinctive and Specific Genic Circular DNA Profile in 

Plasma. Cells, 2023. 12(7). 

74. Mathapathi, S. and C.Q. Chu, Contribution of Impaired DNASE1L3 Activity to Anti-DNA 

Autoantibody Production in Systemic Lupus Erythematosus. Rheumatol Immunol Res, 

2022. 3(1): p. 17-22. 

75. Gudgeon, J., J.L. Marín-Rubio, and M. Trost, The role of macrophage scavenger receptor 

1 (MSR1) in inflammatory disorders and cancer. Front Immunol, 2022. 13: p. 1012002. 

76. Orloff, M., et al., Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with 

Barrett esophagus and esophageal adenocarcinoma. Jama, 2011. 306(4): p. 410-9. 

77. Rumiato, E., et al., Detection of genetic alterations in cfDNA as a possible strategy to 

monitor the neoplastic progression of Barrett's esophagus. Transl Res, 2017. 190: p. 16-

24.e1. 

78. Biró, O., J. Rigó, Jr., and B. Nagy, Noninvasive prenatal testing for congenital heart disease 

- cell-free nucleic acid and protein biomarkers in maternal blood. J Matern Fetal Neonatal 

Med, 2020. 33(6): p. 1044-1050. 

79. Mendioroz, M., et al., Liquid biopsy: a new source of candidate biomarkers in amyotrophic 

lateral sclerosis. Ann Clin Transl Neurol, 2018. 5(6): p. 763-768. 

80. Robichaud, P.P., et al., Circulating cell-free DNA as potential diagnostic tools for 

amyotrophic lateral sclerosis. Neurosci Lett, 2021. 750: p. 135813. 

81. Shmarina, G.V., et al., Oxidized cell-free DNA as a stress-signaling factor activating the 

chronic inflammatory process in patients with autism spectrum disorders. J 

Neuroinflammation, 2020. 17(1): p. 212. 

82. Chen, S., et al., fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018. 

34(17): p. i884-i890. 

83. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics, 2009. 25(14): p. 1754-60. 

84. Schneider, V.A., et al., Evaluation of GRCh38 and de novo haploid genome assemblies 

demonstrates the enduring quality of the reference assembly. Genome Res, 2017. 27(5): p. 

849-864. 

85. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 

25(16): p. 2078-9. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312755


 

29 

 

86. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing 

next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-303. 

87. ShujiaHuang. basevar (GitHub). Available from: https://github.com/ShujiaHuang/basevar. 

88. Davies, R.W., et al., Rapid genotype imputation from sequence without reference panels. 

Nat Genet, 2016. 48(8): p. 965-969. 

89. Chang, C.C., et al., Second-generation PLINK: rising to the challenge of larger and richer 

datasets. GigaScience, 2015. 4(1). 

90. Finucane, H.K., et al., Partitioning heritability by functional annotation using genome-

wide association summary statistics. Nat Genet, 2015. 47(11): p. 1228-35. 

91. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 

regulation in humans. Science, 2015. 348(6235): p. 648-60. 

92. Fehrmann, R.S., et al., Gene expression analysis identifies global gene dosage sensitivity 

in cancer. Nat Genet, 2015. 47(2): p. 115-25. 

93. Alonso-Gonzalez, A., et al., Gene-based analysis of ADHD using PASCAL: a biological 

insight into the novel associated genes. BMC Med Genomics, 2019. 12(1): p. 143. 

94. Milacic, M., et al., The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res, 2024. 

52(D1): p. D672-d678. 

95. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res, 2000. 28(1): p. 27-30. 

96. Bulik-Sullivan, B.K., et al., LD Score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nat Genet, 2015. 47(3): p. 291-5. 

97. Burgess, S., A. Butterworth, and S.G. Thompson, Mendelian randomization analysis with 

multiple genetic variants using summarized data. Genet Epidemiol, 2013. 37(7): p. 658-

65. 

98. Bowden, J., G. Davey Smith, and S. Burgess, Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 

2015. 44(2): p. 512-25. 

99. Hemani, G., et al., The MR-Base platform supports systematic causal inference across the 

human phenome. Elife, 2018. 7. 

100. Giambartolomei, C., et al., Bayesian test for colocalisation between pairs of genetic 

association studies using summary statistics. PLoS Genet, 2014. 10(5): p. e1004383. 

101. Liu, B., et al., Abundant associations with gene expression complicate GWAS follow-up. 

Nat Genet, 2019. 51(5): p. 768-769. 

102. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of 

human genes and genetic disorders. Nucleic Acids Res, 2005. 33(Database issue): p. D514-

7. 

103. Shendure, J., G.M. Findlay, and M.W. Snyder, Genomic Medicine-Progress, Pitfalls, and 

Promise. Cell, 2019. 177(1): p. 45-57. 

104. Martin-Alonso, C., et al., Priming agents transiently reduce the clearance of cell-free DNA 

to improve liquid biopsies. Science, 2024. 383(6680): p. eadf2341. 

105. Guo, X., et al., CNSA: a data repository for archiving omics data. Database (Oxford), 2020. 

2020. 

106. Chen, F.Z., et al., CNGBdb: China National GeneBank DataBase. Yi Chuan, 2020. 42(8): 

p. 799-809. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.28.24312755doi: medRxiv preprint 

https://github.com/ShujiaHuang/basevar
https://doi.org/10.1101/2024.08.28.24312755


 

30 

 

Figures and tables 
 

Figure 1. Overview of the study design 

 

A total of 28,016 pregnant women were included in this study, with clinical phenotypes from 

prenatal care and sequencing data from non-invasive prenatal testing (NIPT) collected. 

Fragmentation characteristics of cell-free DNA (cfDNA) were extracted from the sequencing data 

and, after genotype imputation, genotype data were obtained for genome-wide association studies 

(GWAS). A total of 104 phenotypes and 256 motifs were subjected to GWAS as phenotypic 

variables, discovering the novel associations of PANX1 and DNASE1L1 genes with the cfDNA 
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end motifs. Experiments with gene knockout (KO) mice and cell lines were conducted to validate 

these associations. Additionally, a series of post-GWAS analyses were performed by integrating 

the one-sample 104 phenotypes GWAS results, reported associated loci from the GWAS catalog, 

and diseases reported in the OMIM database, to explore the biological mechanisms, causal 

relationship and gene pleiotropy of cfDNA fragmentation characteristics. 
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Figure 2. The results for GWAS analysis of 256 motifs 

 

a) a comprehensive Manhattan plot integrating the GWAS results for 256 motifs, each dot 

represents the minimum p-value of a SNP associated with the 256 motifs; several gene names are 

annotated at the top of significant loci; the association of motifs beginning with the four nucleotide 

bases A, T, C, and G with these loci indicated by differently colored diamonds, b) a bar plot 

presents the number of associated motifs that hit on each locus, with the frequency of each start 

nucleotide A, T, C and G differed by distinct color, c) the Venn diagram depicting the unique and 

shared loci hit by motifs starting with each nucleotide base (A, T, C and G).  
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Figure 3. The results for experimental validation 

 

The box plots presenting the distribution of cfDNA concentration fold changes for a) plasma 

samples from wild-type (WT) and Panx1 KO mice; b) cell culture supernatant from WT and 

PANX1 KO cell lines; c) plasma samples from wild-type (WT) and Dnase1l1 KO mice; d) cell 

culture supernatant from WT and Dnase1l1 KO cell lines. Since the Dnase1l1 gene is located on 
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the X chromosome, we generated three types of Dnase1l1 KO mice. Significant differences with 

p-value < 0.05 between two groups are marked with asterisks (*). 
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Figure 4. The results for one-sample post-GWAS analyses 

 

a) A heatmap illustrating the pairwise genetic correlation p-values between 104 pregnancy 

phenotypes and 256 motifs, positive and negative genetic correlations are represented in red and 

blue, respectively. The motifs have been hierarchically clustered, and pregnancy phenotypes are 

sorted by category; different phenotype categories are distinguished by color coding on the axes; 

Several regions with strong genetic correlations are magnified and displayed on the right, b) The 

results for Mendelian randomization analysis, highlighting the 14 hematological phenotypes that 

exhibit significant causal relationships with motifs; motifs are categorized into four groups (A, T, 

C and G) according to the start nucleotide; for each motif group, the beta values from the MR-
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Egger analysis are depicted in boxplots on the right side, while the number of significant motifs is 

illustrated in bar charts on the left side, and the total number of significant motifs across each group 

is displayed in bar charts at the top right corner, c) the results for colocalization analysis between 

motifs and pregnancy phenotypes, for each significance locus, if the locus is also present in the 

GWAS results of pregnancy phenotypes, it is denoted by a colored large dot marker; the bar plots 

is used to display the number of co-localized motifs in each phenotype above the dot matrix, with 

different colors distinguishing motifs from different groups (A, T, C and G); on the right side of 

the dot matrix, the total number of motifs co-localized with phenotypes for each locus is shown; 

on the upper left corner of the dot matrix, the total number of co-localized motifs across each 

motifs group is displayed. 
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Figure 5. The pleiotropy analysis results with GWAS catalog and OMIM database 

 

a) the bubble plot illustrating the summary of the motif associated loci that overlap with reported 

association in the GWAS catalog; the top section represents phenotypes with more than 50 variants 

records in the GWAS catalog, while the bottom section represents those with fewer than 50 records; 

the size of each bubble corresponds to the number of overlapping variants, and the absolute value 

of the y-axis coordinate represents the proportion of overlapped variants among all reported 

variants within each phenotype; the full names of the listed abbreviations of the traits are provided 

in Table S13 with the abbreviations in square brackets; b) the Sankey diagram, from left to right, 

sequentially displays the names of significant loci of motifs, the genes contained within each locus, 

and the corresponding relationships between each gene and the diseases and their categories 

recorded in the OMIM database. 
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Figure S1. The QQ-plots and genomic inflation factors of GWAS results for 256 motifs 

Figure S2. The regional plot of the top 4 GWAS signals 

Figure S3. The Manhattan plot and regional plots of the independent validation dataset 

Figure S4. The heritability and number of significant loci of 256 motifs 

Figure S5. The results for partitional heritability analysis 

Figure S6. The significant count and p-value distribution of pathway-based analysis 

Figure S7. The count of significantly genetic correlated motifs of each phenotype 

Figure S8. The MR regression lines of the 14 casually related phenotype 

Figure S9. Colocalization regional plot for 6 loci 

 

Table S1. Aggregated GWAS results of motif-associated loci 

Table S2. The heritability results for each motif 

Table S3. The p-value for partitioned heritability analysis 

Table S4. The significant count for partitioned heritability analysis 

Table S5. The p-value for pathway-based analysis 

Table S6. The significant count for pathway-based analysis 

Table S7. The genetic correlation rg-value between motifs and pregnancy phenotypes 

Table S8. The genetic correlation p-value between motifs and pregnancy phenotypes 

Table S9. The significant count for genetic correlation 

Table S10. The results for Mendelian Randomization analysis 

Table S11. The results of sensitivity tests for causal effects in Mendelian randomization 

Table S12. The colocalization results between motifs and phenotypes 

Table S13. The results for pleiotropy analyses with associations from GWAS catalog 

Table S14. The genes associated with both motifs and diseases from OMIM database 
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