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Abstract: Wastewater-Based Epidemiology (WBE) has become a powerful tool for assessing disease 13 

occurrence in communities. This study investigates the coronavirus disease 2019 (COVID-19) epidemic 14 

in the United States during the 2023-2024 season using wastewater data from 189 wastewater treatment 15 

plants in 40 states and the District of Columbia. Severe acute respiratory syndrome coronavirus 2 16 

(SARS-CoV-2) and pepper-mild mottle virus normalized SARS-CoV-2 concentration data were 17 

compared with COVID-19 hospitalization admission data at both national and state levels. We further 18 

investigate temporal features in wastewater viral abundance, with peak timing and cross-correlation lag 19 

analyses indicating that wastewater SARS-CoV-2 concentrations precede hospitalization admissions by 20 

2 to 12 days. Lastly, we demonstrate that wastewater treatment plant size, assessed by number of 21 

population served, has a significant effect on the variability of measured SARS-CoV-2 concentrations. 22 

This study highlights the effectiveness of WBE as a non-invasive, timely and resource-efficient disease 23 

monitoring strategy, especially in the context of declining COVID-19 clinical reporting.  24 

 25 

1. Introduction 26 
On 30 January 2020, the World Health Organization (WHO) declared the coronavirus disease 2019 27 

(COVID-19) outbreak a public health emergency of international concern [1]. Three years and three 28 

months later, the WHO declared the end of the public health emergency, despite Severe acute 29 

respiratory syndrome coronavirus (SARS-CoV-2) infections remaining a leading cause of death 30 

worldwide and in the United States (US). Even with the availability of vaccines and therapeutic 31 
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treatments in the US, SARS-CoV-2 was responsible for a reported 49,931 deaths in 2023, 32 

highlighting the need to understand COVID-19 disease burden to inform public health policies [2]. 33 

While clinical data remain the standard for tracking disease burden, maintaining testing on a large 34 

scale is resource intensive, fails to detect asymptomatic cases and relies on the compliance of the 35 

public [3]. Wastewater-based epidemiology (WBE) provides a supplementary monitoring option 36 

that helps fill knowledge gaps such as undetected community spread, asymptomatic cases, and the 37 

lag in clinical reporting [4–6]. Human shedding of pathogens and chemicals into wastewater 38 

provides an important source of information on the health of the entire community living in a 39 

catchment area [7]. As an established surveillance method, WBE contributed to the management of 40 

the COVID-19 pandemic early on. Medema et al. [8], Ahmed et al. [9] among others ([10–14]) laid 41 

out the foundational work for SARS-CoV-2 surveillance using wastewater. While clinical testing 42 

efforts have decreased, WBE remains a central technology in monitoring SARS-CoV-2 in the 43 

population, as well as increasing in use for the detection of other pathogens [15–18]. 44 

Timely epidemiological data are crucial for assessing infectious disease outbreaks and 45 

implementing the necessary public health interventions. Both clinical testing data and hospital 46 

admission data correlate strongly to viral concentrations in wastewater, with wastewater leading 47 

both clinical testing and hospitalization data [14, 19–22]. WBE as an early warning system has been 48 

discussed in literature thoroughly [23, 24]. A streamlined process of logistics, sample analysis and 49 

data reporting are critical to leverage the temporal advantages of WBE. Understanding the lead 50 

times of WBE data is critical for the construction of forecasting models. 51 

In this study the 2023-2024 COVID-19 epidemic in the US is investigated by analyzing longitudinal 52 

measurements of SARS-CoV-2 RNA in wastewater from 189 wastewater treatment plants 53 

(WWTPs) throughout the US. The data are aggregated on several spatial levels to compare to data 54 

on COVID-19 hospitalizations in 10 states. This paper's novelty lies in its extensive dataset from 55 

WWTPs across the US, providing a comprehensive nationwide analysis of the 2023-2024 post-56 

pandemic period. We then investigate leading or lagging behavior by comparing peak timings and 57 

computing maximum cross-correlation coefficients. Lastly, we demonstrate that SARS-CoV-2 58 
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RNA concentration variability is a function of WWTP size, offering new insights into the influence 59 

of WWTP size on the underlying dynamics. 60 

 61 
2. Methods 62 

2.1. Viral quantification and data characterization 63 
For this study, wastewater data and hospitalization data are analyzed. COVID-19 hospitalization 64 

data are publicly available from the Centers for Disease Control and Prevention (CDC) [2]. State-65 

aggregated, daily hospitalization data consists of data on COVID-19 occupancy and admission 66 

numbers. The wastewater data used in this study were retrieved through the nucleic acid extraction 67 

of settled solids from WWTPs nationwide. In June 2024 a total of 189 treatment plants were 68 

monitoring SARS-CoV-2 RNA in 40 different states throughout the US using a consistent approach 69 

by a single laboratory. Wastewater composite samples are collected with a sample frequency of 2 70 

to 3 times per week for most plants, while some plants collect samples up to 7 times per week. 71 

Settled solids were extracted after dewatering by centrifugation at 24,000 x g for 30 minutes [25]. 72 

Solids were resuspended in DNA/RNA shield to a concentration of 75 mg/mL. Bovine coronavirus 73 

(BCoV) was used as a positive recovery control in all samples. Extraction was performed using a 74 

Chemagic Viral DNA/RNA 300 kit H96 in conjunction with a Perkin Elmer Chemagic 360 75 

(Chemagic #CMG-1033-S). Inhibitor removal was performed using a Zymo OneStep-96 PCR 76 

Inhibitor removal kit (Zymo Research #D6035). Extraction negative controls and positive controls 77 

were extracted simultaneously. SARS-CoV-2 digital droplet RT-PCR was performed using primers 78 

and probes previously described [25]. BCoV and pepper-mild mottle virus were quantified in a 79 

duplex assay in each sample as controls. Each sample was run in 6 to 10 replicate wells and merged 80 

before analysis [26]. In the study period between 1st of May 2023 and 1st of June 2024, a total of 81 

29,364 daily samples were examined. Readers are directed to a Data Descriptor for a full description 82 

of the SARS-CoV-2 measurements methods [27]. 83 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.28.24312739doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

 84 

Figure 1: Map of the US. Shading indicates the number of WWTPs contributing to WBE in each state. 85 

Figure 1 illustrates a map of the US, highlighting the number of WWTPs participating in SARS-86 

CoV-2 RNA wastewater surveillance for the project. California, Texas, and Florida are the states 87 

with the highest number of contributing WWTPs, with 57, 14, and 13 plants respectively. Overall, 88 

40 states have at least one WWTP monitoring SARS-CoV-2. Table 1 provides a detailed list of the 89 

states in the US, including the number of WWTPs contributing to the study. It also includes the total 90 

population served and the percentage of population coverage in each state. 91 

Table 1: Number of WWTPs by state and percentage of population covered. 92 

State #WWTPs Pop. 
served/103 

Pop. 
coverage % State #WWTPs Pop. 

served/103 
Pop. 

coverage % 
CA 57 20,511 52.6 UT 2 715 20.9 
TX 14 2,425 7.9 TN 2 700 9.8 
FL 13 3,650 16.1 OH 2 539 4.6 
GA 8 1,109 10.1 LA 2 383 8.4 
NJ 6 1,882 20.3 NE 2 300 15.2 
HI 6 858 59.8 IL 2 149 32.7 
MI 6 482 4.8 MD 2 145 1.2 
AL 5 627 12.3 NY 2 120 2.3 
IN 5 322 4.7 CO 2 60 0.6 
KS 5 267 9.1 MS 2 53 1.0 
ME 5 185 13.3 NV 1 990 1.8 
IA 5 129 4.0 KY 1 423 31.0 
MN 4 326 5.7 AK 1 220 9.4 
PA 3 361 2.8 CT 1 140 3.9 
ID 3 345 17.6 WV 1 100 5.6 
NC 3 167 3.1 WI 1 44 0.7 
VA 3 153 1.8 SD 1 20 2.2 
NH 3 79 5.6 AR 1 15 0.5 
VT 3 56 8.7 DE 1 13 1.3 
MA 2 2,650 37.8 WA 1 10 0.1 
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 93 
2.2. Data Pretreatment 94 
SARS-CoV-2 (SC2) RNA and pepper-mild mottle virus (PMMoV) RNA concentrations were 95 

measured with digital droplet RT-PCR and reported as gene copies per gram dry weight. PMMoV 96 

is shed by humans in great abundance following the consumption of bell pepper and other pepper 97 

products [28]. Dividing SC2 by PMMoV concentrations compensates for the diversity of fecal 98 

strength of waste stream. This concept follows the mass balance model that relates concentrations 99 

of SARS-CoV-2 RNA in wastewater solids to incident infections of individuals in the sewershed 100 

[29]. The PMMoV normalized SC2 concentration is computed as follows: 101 

𝑆𝐶2!""#$ =
𝑆𝐶2

𝑃𝑀𝑀𝑜𝑉
 (1) 

Before the spatial aggregation of WBE data, raw data were examined for outliers. Wastewater data 102 

are marked by random and systematic errors. Random errors are immanent to the technique of WBE 103 

and are caused with heterogeneities in the environmental sample and processes that affect 104 

concentrations in the sample; these can be difficult to reduce. Systematic errors are caused by a 105 

failure in the measurement process. With the outlier removal approach in this work, systematic 106 

errors are targeted. Concentrations larger than 3 standard deviations above the log10 transformed 107 

mean of the entire dataset (n=29,364) are discarded. 108 

 109 
2.3. Spatial data aggregation 110 
In order to compare wastewater data with hospitalization levels on a state by state basis (or on 111 

national scale), the SC2 concentration measurements were spatially aggregated. The spatial 112 

aggregation for WBE data in a state is performed by computing weighted daily averages of all 113 

WWTPs that provided data at a given date in that state, where the weighting factor is the population 114 

size that each plant serves. This computation results in a representative daily average of the SC2 115 

circulation in the state, where the size of the plant is taken into consideration accordingly. The state 116 

aggregated daily weighted averages are calculated by  117 

𝑆𝐶2!""#$,&(𝑑) = ,-𝑆𝐶2!""#$,'

!

'()

(𝑑) ∗ 𝑝𝑜𝑝'0/-𝑝𝑜𝑝'

!

'()

 (2) 

where the summation over the P indicates the plants in state S and popi denotes the population served 118 

by plant i. Analogous to the spatial aggregation on a state level, national weighted daily averages 119 
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are computed by utilizing all available plants in the US. To obtain gapless time-series for the 120 

temporal analysis of the data, linear interpolation is performed if no datapoint is available at a given 121 

day after spatial aggregation. 122 

 123 
2.4. Temporal analysis 124 
The temporal features of SC2 normalized by PMMoV concentrations in wastewater are investigated 125 

in this study and compared on a state by state basis to hospitalization admission. The association 126 

between WBE data and hospitalization admission is determined using two approaches. First, cross-127 

correlation function analysis (CCF) and second by examining the peak timing of the waves. Waves 128 

are periodic surges or peaks in the concentration of SC2PMMoV over time. These waves represent 129 

fluctuations in SARS-CoV-2 RNA concentrations in wastewater. Furthermore, Spearman 130 

correlation r is examined to outline the qualitative relation between the time series. 131 

Peak timing in time series provides a good reference point for comparison. The COVID-19 epidemic 132 

in the US in the season 2023-2024 is characterized by two local peaks. A smaller peak in fall 2023 133 

and a more pronounced peak in December/January. In this work the peak timings for hospitalization 134 

admission and SC2PMMoV in wastewater are compared relative to one another on a state by state 135 

basis. Peaks are determined by locating the highest values of the 7-day moving mean of the 136 

SC2PMMoV concentrations in wastewater and hospitalization admission time-series. The peaks are 137 

determined for both occurring waves, where the 1st of November is the date of separation between 138 

first and second wave. This date was chosen by visual inspection of the data and allows for a good 139 

separation of the two peaks for all states. The average time differential 𝛥𝑡444 is than calculated by 140 

averaging the difference between peak occurrences of the two peaks for each state. 𝛥𝑡444 is calculated 141 

by 142 

𝛥𝑡*4444 =
𝛥𝑡+,-._),& 	+ 	𝛥𝑡+,-._0,&

2
 (3) 

where 𝛥t+,-._),& and 𝛥𝑡+,-._0,& denote the time difference in days between the peaks of 143 

hospitalization admission and SC2PMMoV concentrations for the two respective waves one and two. 144 

The subscript S denotes the state. The hospitalization peak date thosp is subtracted from the 145 

wastewater peak date tww, so that negative days signify an earlier peak date in wastewater 146 
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𝛥𝑡+,-.,& =	 𝑡11 − 𝑡2#*+ (4) 
The emphasis in this analysis is on states with a population coverage of 15% or more (10 states). 147 

We assume that this constraint ensures the representativeness of wastewater data for SARS-CoV-2 148 

circulation. All analyses are performed with MATLAB 2023b, The MathWorks Inc.  149 

 150 
2.5. Data dispersion analysis 151 
SC2 and PMMoV concentrations - and as a result therefrom the normalized SC2PMMoV - in 152 

wastewater are characterized by substantial amounts of variability. Herein, data dispersion and 153 

variability characteristics are examined to quantify WBE data attributes. Data variability is explored 154 

for different sizes of WWTPs, where the proxy for plant size is given by the number of populations 155 

that each plant serves. The population served by the plants varies significantly, with the smallest 156 

plant serving approximately 5,000 individuals and the largest, a plant in Los Angeles, California, 157 

serving 4 million individuals. This analysis aims to investigate whether there are significant 158 

differences in data properties between small and large plants. It is hypothesized that differences in 159 

concentration variability may be observed due to the substantial variation in plant size, spanning 160 

three orders of magnitude. 161 

To investigate the potential differences in concentration behavior between small and large 162 

wastewater treatment plants, the WBE dataset is partitioned into five groups. The partitioning 163 

regime is determined by quantile intervals of the population served. Data groups corresponding to 164 

the five quantile intervals are denoted as Q0-0.2, Q0.2-0.4, …, Q0.8-1 (from smallest 20% of plants to 165 

largest 20% of plants). Table 2 outlines the quantile intervals and data partitioning regime used for 166 

this analysis. The grouping in the described manner is designed to partition plants into groups that 167 

have similar sizes. 168 

Table 2: Data partitioning into quantile ranges of plant sizes. 169 

Quantile 
ranges Population served #WWTPs SC2 

data points 
Q0-0.2 0-30,000 42 6278 
Q0.2-0.4 30,001-64,000 34 4697 
Q0.4-0.6 64,001-102,125 38 5632 
Q0.6-0.8 102,126-227,238 38 6324 
Q0.8-1 227,239-400,0000 38 6433 

 170 
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For each of the five data groups standard deviation (SD) and interquartile-ranges (IQR) are 171 

computed of the log10 SC2 concentrations. This enables a comparison of the degree of variability 172 

as a function of plant size. To test that the five data groups stem from different statistical populations, 173 

two-sided Wilcoxon rank sum tests are performed between adjacent data groups.  174 

 175 
3. Results 176 

The COVID-19 epidemic in the timeframe May 2023 to June 2024 showed seasonal waves, similar 177 

to previous years [30]. This is shown in figure 2, plotting national aggregated daily SC2PMMoV 178 

concentrations (and its 7-day moving average) along with hospitalization admissions in the US. This 179 

figure outlines the general development of the epidemic in the US in the studied timeframe. The two 180 

peaks are well pronounced in the national aggregated data. Reporting of SC2 hospitalization data is 181 

discontinued from the beginning of May 2024 and therefore truncated in time in figure 2. The bottom 182 

bar chart outlines the number of WWTPs that are monitored at a particular day. On the right of the 183 

figure, a scatter plot depicts WBE and hospitalization admission data with a simple ordinary least 184 

squares (OLS) regression line. 185 

186 
Figure 2: National aggregation of SC2PMMoV and COVID-19 hospitalization admissions (top left), number of WWTPs 187 

measured per day (bottom) and OLS regression between the datasets. 188 

Figure 3 displays the histogram of all SC2PMMoV data in the timeframe May 2023 to June 2024. 189 

Values above 3 standard deviations above the mean are discarded as systematic errors (27 data 190 

points out of 29,364). The mean normalized concentration is 0.00052 and the outlier threshold is 191 

0.012. Three standard deviations above the mean on the log10 transformed data corresponds to a 24-192 

fold higher concentration on linear scale in relation to the mean of the data.  193 
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 194 
Figure 3: SC2PMMoV data distribution and QQ-plot. 195 

 196 
In addition to the histogram on figure 3, a normal distribution fit is computed to outline the 197 

resemblance of the SC2PMMoV data with a log-normal distribution. To test the log10 transformed data 198 

for normality, Shapiro-Wilk and Kolmogorov-Smirnov tests are performed with a 5% significance 199 

level each. Both tests reject the null hypothesis and suggest that the data are not normally distributed. 200 

Compared to an ideal log-normal distribution, the measured data are characterized by a fat tail on 201 

the left. Unlike the right side of the distribution, the left side is not truncated with a lower bound for 202 

outlier removal. Low/very low concentration values are not considered outliers. On the right graph 203 

of figure 3, the quantile-quantile (QQ) plot is depicted. It can be seen that both tails of the 204 

distribution deviate from the normal line. The data are characterized by a slight negative skew 205 

(skewness=-0.16).  206 

 207 
3.1. Temporal analysis results 208 
In epidemiological surveillance, early detection and rapid information processing are critical. 209 

Temporal features of WBE SC2 monitoring, such as peak timing, cross-correlation lag and general 210 

wave development are analyzed. While other diseases like influenza or respiratory syncytial virus 211 

are characterized by clear onset/offset dates, SC2 is consistently circulating in the population since 212 

its outbreak in 2020 [31]. Therefore, peak occurrence timing is considered as the temporal feature 213 

for comparison. The COVID-19 epidemic in the US in the timeframe 2023-2024 was characterized 214 

by two waves. The peak of the first wave was less pronounced in SC2 concentration and 215 

hospitalization magnitude and occurred for most states in September 2023. The second wave 216 
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occurred around January 1st 2024. Figure 4 shows the cumulative occurrence of peaks in wastewater 217 

and hospitalization data for each state and for both waves. 218 

 219 
Figure 4: Cumulative number of States by peak occurrence, WBE and hospitalization admission. The abbreviation for 220 

each state is provided next to its data point. 221 

It can be seen in figure 4 that the WBE peak generally occurs earlier than the hospitalization peak. 222 

The peak timings between hospitalization admission and SC2 concentrations visually decrease 223 

between the first and second wave. The second wave peaks across the US over a shorter time period. 224 

Reasons for this could be an increased infectivity of the COVID-19 variant and/or a rise in 225 

transmission due to more population mixing during the holiday travel. Spearman rank correlation 226 

of the order in which the states occur is 0.91 for the first wave and 0.56 for the second wave. This 227 

means that generally the order of occurrence of peaks is respected between the two data sets, 228 

especially in the first wave. The first wave occurs earliest in the Southeastern region including the 229 

states Kentucky, Georgia, Florida and Alabama, followed by Nevada, Hawaii and California among 230 

others. The second wave peaks earliest in midwestern states including Iowa, South Dakota, 231 

Minnesota, accompanied by Oklahoma, California and Nevada. 232 

Figure 5 displays the state aggregated SC2PMMoV concentrations and superimposed hospitalization 233 

admission per 100k population (gray bars) for states with a population coverage of 15% or more. 234 

SC2PMMoV is shown on the left axis on log scale and hospitalization is shown on the right axis on 235 

linear scale. 236 
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 237 

Figure 5: State aggregated SC2PMMoV (black line) and hospitalization admission (gray bars). 238 

Table 3 outlines the results of the temporal analysis. CCF lag between the time series (state 239 

aggregated SC2PMMoV and hospitalization admission) and the time differential 𝛥𝑡444 of the relative peak 240 

occurrence are listed. Negative values of CCF lag and 𝛥𝑡444  indicate that the WBE peak occurred 241 

before the hospitalization peak. Furthermore, Spearman correlation r values are listed as a 242 

comparative analysis between SC2 hospitalization admission and wastewater data for states with 243 

population coverage above 15%. 244 

Table 3: SC2PMMoV and hospitalization temporal quantitative feature comparison by state. Negative lag values indicate a time 245 
lead in wastewater over hospitalizations. 246 

State 𝛥𝑡444 (d) CCF lag Spearman r 
CA -12 -3 0.88 
FL -6.5 -5 0.86 
HI -7.5 -10 0.62 
NJ -7.5 -4 0.93 
ID 7.5 -3 0.86 
MA -12 -4 0.83 
NE 3.5 4 0.85 
UT -9.5 -5 0.86 
AK -11 -9 0.67 
NV -2 -2 0.76 

 247 
SC2 in wastewater leads hospitalization admission in 8 out of 10 states, following the results of peak 248 

timing 𝛥𝑡444. For the CCF lag, 9 out of 10 states show this characteristic. A median time lead of 4 and 249 

7.5 days is observed for CCF lag and 𝛥𝑡444 respectively among states with 15% or more population 250 

coverage. The correlation metrics r and R2 suggest a close agreement between hospitalization 251 

admission and SC2PMMoV in wastewater (median r=0.85). 252 

 253 
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3.2. Data dispersion results 254 
Differences in data dispersion characteristics for different plant sizes are observed. To examine the 255 

influence of plant size, the wastewater data are partitioned into 5 groups. The partitioning is 256 

governed by the quantiles of the population served by each plant and carried out as described in 257 

section 2.5.  258 

Data dispersion results are listed in table 4 and visualized in figure 6. Table 4 describes data mean, 259 

median, standard deviation (SD) and interquartile range (IQR) of the partitioned data. The main 260 

measures of variability, SD and IQR, are observed to decrease with increasing plant size. This 261 

observation is in line with expectations, considering the more stochastic behavior of small plants 262 

and the law of large numbers. An intuitive explanation can be provided by considering a case 263 

prevalence of 0.1%. In a small plant serving 10,000 people, 10 individuals would be infected. Due 264 

to the size of the sewer system and the stochastic shedding behavior of these 10 infected individuals, 265 

SC2 concentrations may exhibit significant variability. Conversely, in a large WWTP serving a 266 

population of 1 million, 0.1% prevalence would correspond to 1,000 infected individuals. With a 267 

significant number of individuals shedding the virus, a more consistent discharge of the virus into 268 

the sewer system is likely. These findings align with the results from Nauta et al. [32], who 269 

performed Monte-Carlo simulations to estimate SC2 concentrations and data variability. 270 

Table 4: Data dispersion properties log10(SC2) mean, median, standard deviation and interquartile range by plant size. 271 

Quantil
e 

mean 
log10(SC2) 

median 
log10(SC2) 

SD 
log10(SC2) 

IQR 
log10(SC2) 

Q0-0.2 4.846 4.862 0.569 0.781 
Q0.2-0.4 4.875 4.877 0.538 0.735 
Q0.4-0.6 4.858 4.854 0.504 0.687 
Q0.6-0.8 4.947 4.942 0.477 0.643 
Q0.8-1 5.001 5.026 0.457 0.612 

 272 
Figure 6 visualizes the data dispersion as a function of plant size. On the left, a boxplot diagram 273 

displays data median, upper and lower quartiles and minimum/maximum values by whiskers. The 274 

graph shows consistent decrease of data range and variability with the increase in plant size. On the 275 

right of figure 6 aggregated time-series are graphed, corresponding to Q0-0.2 (top, small plants) and 276 

Q0.8-1 (bottom, big plants). The ordinate axes are scaled equally for comparison. 277 
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 278 

Figure 6: Data variability by quantile grouped data of different WWTPs sizes. 279 

 280 
To test the hypothesis that the partitioned wastewater groups based on plant size originate from 281 

statistically different data populations, two-sided Wilcoxon rank sum tests are performed. Four tests 282 

are carried out among the five groups between the adjacent groups. All tests reject the null 283 

hypothesis (that they stem from the same data population). All tests recommended to accept the 284 

alternative hypothesis (that they stem from different data populations) supports the thesis that there 285 

are underlying differences in data variability as a function of plant size. These findings can help 286 

public health officials interpret the significance of changes in WBE signals by taking into 287 

consideration the underlying population size contributing to the sewershed.  288 

 289 
4. Conclusion 290 

The COVID-19 epidemic in the US showed seasonality characteristics, that is periods of high and 291 

periods of low viral abundance in the population. The epidemic burden on the general population 292 

was lower – considering that case fatality was 60% lower in the studied timeframe, compared to the 293 

same season one-year earlier [2]. Since the initial outbreak in 2020, an average of two peak seasons 294 

per year have occurred [2]. The waves are observable in case data, hospitalization data and the 295 

SARS-CoV-2 RNA concentration in wastewater [30]. With the exception of the peak in January 296 

2022 (which is the highest in the US), the weekly hospital admissions show decreasing peak 297 

amplitude over time for each consecutive occurring wave [2]. The increasing population 298 

contamination, the rise in vaccination levels and the changing SARS-CoV-2 variants with less 299 

severe symptoms led to greater resilience of society to the impacts of the epidemic. 300 
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This work investigates the SARS-CoV-2 RNA concentration data in US wastewater in the 2023-301 

2024 season. Periodical waves characterizing the epidemic are observable. Clinical COVID-19 case 302 

reporting has largely been discontinued as of March 2024 [2, 33, 34]; hospitalization data reporting 303 

has been discontinued in early May 2024. In contrast, SARS-CoV-2 wastewater surveillance 304 

endeavors (among other pathogens) are well established and provide valuable information. 305 

The work at hand examines statistical attributes of SARS-CoV-2 concentrations derived from 306 

wastewater surveillance. Firstly, temporal features, such as peak timing and CCF lag in the data are 307 

analyzed and compared to hospitalization admissions. The observations show that viral abundance 308 

in wastewater leads hospitalization admission between 2 and 12 days, in states with a population 309 

coverage of 15% or more. Data variability is analyzed and the influence of plant size on data 310 

dispersion has been observed, with the results demonstrating that smaller plants are subject to 311 

significantly more data variability. By partitioning the data into five batches based on plant size, a 312 

decrease in data variability with increased plant size is observed. 313 

 314 
Acknowledgement: 315 

We acknowledge all the wastewater treatment plant staff who provided samples for this project.  316 

References 317 
[1] WHO, https://www.who.int/: Date of retrieval 06-01-2024. 318 
[2] CDC, https://covid.cdc.gov/covid-data-tracker/#datatracker-home: Date of retrieval 06-01-2024. 319 
[3] CDC, https://www.cdc.gov/covid/hcp/testing/index.html: Date of retrieval 06-01-2024. 320 
[4] C. G. Daughton, "Wastewater surveillance for population-wide Covid-19: The present and 321 

future," The Science of the total environment, vol. 736, p. 139631, 2020, doi: 322 
10.1016/j.scitotenv.2020.139631. 323 

[5] A. B. Boehm, M. K. Wolfe, B. White, B. Hughes, and D. Duong, "Divergence of wastewater 324 
SARS-CoV-2 and reported laboratory-confirmed COVID-19 incident case data coincident with 325 
wide-spread availability of at-home COVID-19 antigen tests," PeerJ, vol. 11, e15631, 2023, doi: 326 
10.7717/peerj.15631. 327 

[6] J. S. McClary-Gutierrez et al., "SARS-CoV-2 Wastewater Surveillance for Public Health 328 
Action," Emerging infectious diseases, vol. 27, no. 9, pp. 1–8, 2021, doi: 329 
10.3201/eid2709.210753. 330 

[7] R. Wölfel et al., "Virological assessment of hospitalized patients with COVID-2019," Nature, 331 
vol. 581, no. 7809, pp. 465–469, 2020, doi: 10.1038/s41586-020-2196-x. 332 

[8] G. Medema, L. Heijnen, G. Elsinga, R. Italiaander, and A. Brouwer, "Presence of SARS-333 
Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the 334 
Early Stage of the Epidemic in The Netherlands," Environmental science & technology letters, 335 
vol. 7, no. 7, pp. 511–516, 2020, doi: 10.1021/acs.estlett.0c00357. 336 

[9] W. Ahmed et al., "First confirmed detection of SARS-CoV-2 in untreated wastewater in 337 
Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community," 338 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.28.24312739doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 
 

The Science of the total environment, vol. 728, p. 138764, 2020, doi: 339 
10.1016/j.scitotenv.2020.138764. 340 

[10] G. La Rosa et al., "First detection of SARS-CoV-2 in untreated wastewaters in Italy," The 341 
Science of the total environment, vol. 736, p. 139652, 2020, doi: 342 
10.1016/j.scitotenv.2020.139652. 343 

[11] W. Lodder and A. M. de Roda Husman, "SARS-CoV-2 in wastewater: potential health risk, but 344 
also data source," The lancet. Gastroenterology & hepatology, vol. 5, no. 6, pp. 533–534, 2020, 345 
doi: 10.1016/S2468-1253(20)30087-X. 346 

[12] W. Randazzo, P. Truchado, E. Cuevas-Ferrando, P. Simón, A. Allende, and G. Sánchez, "SARS-347 
CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area," Water 348 
research, vol. 181, p. 115942, 2020, doi: 10.1016/j.watres.2020.115942. 349 

[13] K. E. Graham et al., "SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with 350 
COVID-19 Cases in a Large Urban Sewershed," Environmental science & technology, vol. 55, 351 
no. 1, pp. 488–498, 2021, doi: 10.1021/acs.est.0c06191. 352 

[14] J. Peccia et al., "Measurement of SARS-CoV-2 RNA in wastewater tracks community infection 353 
dynamics," Nature biotechnology, vol. 38, no. 10, pp. 1164–1167, 2020, doi: 10.1038/s41587-354 
020-0684-z. 355 

[15] E. M. G. Chan, A. Bidwell, Z. Li, S. Tilmans, and A. B. Boehm, "Public health policy impact 356 
evaluation: A potential use case for longitudinal monitoring of viruses in wastewater at small 357 
geographic scales," PLOS Water, vol. 3, no. 6, e0000242, 2024, doi: 358 
10.1371/journal.pwat.0000242. 359 

[16] M. K. Wolfe et al., "Detection of Hemagglutinin H5 Influenza A Virus Sequence in Municipal 360 
Wastewater Solids at Wastewater Treatment Plants with Increases in Influenza A in Spring, 361 
2024," Environmental science & technology letters, 2024, doi: 10.1021/acs.estlett.4c00331. 362 

[17] M. K. Wolfe et al., "Wastewater Detection of Emerging Arbovirus Infections: Case Study of 363 
Dengue in the United States," Environmental science & technology letters, vol. 11, no. 1, pp. 9–364 
15, 2024, doi: 10.1021/acs.estlett.3c00769. 365 

[18] A. Zulli et al., "Prospective study of Candida auris nucleic acids in wastewater solids in 190 366 
wastewater treatment plants in the United States suggests widespread occurrence," mBio, vol. 15, 367 
no. 8, e0090824, 2024, doi: 10.1128/mbio.00908-24. 368 

[19] E. H. Kaplan, D. Wang, M. Wang, A. A. Malik, A. Zulli, and J. Peccia, "Aligning SARS-CoV-2 369 
indicators via an epidemic model: application to hospital admissions and RNA detection in 370 
sewage sludge," Health care management science, vol. 24, no. 2, pp. 320–329, 2021, doi: 371 
10.1007/s10729-020-09525-1. 372 

[20] A. Galani et al., "SARS-CoV-2 wastewater surveillance data can predict hospitalizations and 373 
ICU admissions," The Science of the total environment, vol. 804, p. 150151, 2022, doi: 374 
10.1016/j.scitotenv.2021.150151. 375 

[21] H. Schenk et al., "Prediction of hospitalisations based on wastewater-based SARS-CoV-2 376 
epidemiology," The Science of the total environment, vol. 873, p. 162149, 2023, doi: 377 
10.1016/j.scitotenv.2023.162149. 378 

[22] X. Li et al., "Wastewater-based epidemiology predicts COVID-19-induced weekly new hospital 379 
admissions in over 150 USA counties," Nature communications, vol. 14, no. 1, p. 4548, 2023, 380 
doi: 10.1038/s41467-023-40305-x. 381 

[23] Bibby K., A. Bivins, Z. Wu, and D. North, "Making waves: Plausible lead time for wastewater 382 
based epidemiology as an early warning system for COVID-19," Water research, vol. 202, p. 383 
117438, 2021, doi: 10.1016/j.watres.2021.117438. 384 

[24] S. W. Olesen, M. Imakaev, and C. Duvallet, "Making waves: Defining the lead time of 385 
wastewater-based epidemiology for COVID-19," Water research, vol. 202, p. 117433, 2021, doi: 386 
10.1016/j.watres.2021.117433. 387 

[25] A. B. Boehm et al., "Human viral nucleic acids concentrations in wastewater solids from Central 388 
and Coastal California USA," Scientific data, vol. 10, no. 1, p. 396, 2023, doi: 10.1038/s41597-389 
023-02297-7. 390 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.28.24312739doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

[26] WastewaterSCAN, https://data.wastewaterscan.org/: Date of retrieval 06-01-2024. 391 
[27] A. B. Boehm et al., "Human pathogen nucleic acids in wastewater solids from 191 wastewater 392 

treatment plants in the United States.," Submitted. 393 
[28] P. J. Arts et al., "Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper 394 

mild mottle virus, and crAssphage," mSphere, vol. 8, no. 4, e0013223, 2023, doi: 395 
10.1128/msphere.00132-23. 396 

[29] M. K. Wolfe et al., "Scaling of SARS-CoV-2 RNA in Settled Solids from Multiple Wastewater 397 
Treatment Plants to Compare Incidence Rates of Laboratory-Confirmed COVID-19 in Their 398 
Sewersheds," Environmental science & technology letters, vol. 8, no. 5, pp. 398–404, 2021, doi: 399 
10.1021/acs.estlett.1c00184. 400 

[30] C. Duvallet et al., "Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA Wastewater 401 
Concentrations in the United States," ACS ES&T water, vol. 2, no. 11, pp. 1899–1909, 2022, doi: 402 
10.1021/acsestwater.1c00434. 403 

[31] A. Zulli, M. R. J. Varkila, J. Parsonnet, M. K. Wolfe, and A. B. Boehm, "Observations of 404 
Respiratory Syncytial Virus (RSV) Nucleic Acids in Wastewater Solids Across the United States 405 
in the 2022-2023 Season: Relationships with RSV Infection Positivity and Hospitalization 406 
Rates," ACS ES&T water, vol. 4, no. 4, pp. 1657–1667, 2024, doi: 10.1021/acsestwater.3c00725. 407 

[32] M. Nauta et al., "Early detection of local SARS-CoV-2 outbreaks by wastewater surveillance: a 408 
feasibility study," Epidemiology and infection, vol. 151, e28, 2023, doi: 409 
10.1017/S0950268823000146. 410 

[33] John Hopkins University & Medicine, https://coronavirus.jhu.edu/map.html. Date of retrieval 31-411 
07-2024. 412 

[34] New York Times, https://www.nytimes.com/interactive/2021/us/covid-cases.html. Date of 413 
retrieval 31-07-2024. 414 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.28.24312739doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312739
http://creativecommons.org/licenses/by-nc-nd/4.0/

