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Abstract
(243/150-250 words)
The use of antibiotics during a disease outbreak presents a critical tradeoff between immediate
treatment benefits to the individual and the long-term risk to the population. Typically, the ex-
tensive use of antibiotics has been thought to increase selective pressures, leading to resistance.
This study explores scenarios where expanded antibiotic treatment can be advantageous for both
individual and population health. We develop a mathematical framework to assess the impacts
on outbreak dynamics of choosing to treat moderate infections not treated under current guide-
lines, focusing on cholera as a case study. We derive conditions under which treating moderate
infections can sufficiently decrease transmission and reduce the total number of antibiotic doses
administered. We identify two critical thresholds: the Outbreak Prevention Threshold (OPT),
where expanded treatment reduces the reproductive number below 1 and halts transmission, and
the Dose Utilization Threshold (DUT), where expanded treatment results in fewer total antibiotic
doses used than under current guidelines. For cholera, we find that treating moderate infections
can feasibly stop an outbreak when the untreated reproductive number is less than 1.424 and will
result in fewer does used compared to current guidelines when the untreated reproductive num-
ber is less than 1.533. These findings demonstrate that conditions exist under which expanding
treatment to include moderate infections can reduce disease spread and the selective pressure for
antibiotic resistance. These findings extend to other pathogens and outbreak scenarios, suggest-
ing potential targets for optimized treatment strategies that balance public health benefits and
antibiotic stewardship.

Keywords: Antibiotic Resistance, Dynamical Modeling, Epidemiology, Public Health Interven-
tions, Cholera, Threshold Analysis, Reproductive number

1 Introduction

The global rise in antibiotic resistance poses a significant public health threat, leading the World
Health Organization (WHO) to issue a warning that the world is “running out of antibiotics”. [10;27]

The emergence of antibiotic resistance adds complexity to the clinical challenge of ensuring that
the right antibiotic is prescribed to the right patient at the right dose for the right duration, to
maximize benefits and minimize harm. [12;16] Antibiotic resistance necessitates balancing the po-
tential benefits and risks of antibiotic use for individual patients alongside broader implications
for public health. In some cases, antibiotic prescribing has clear benefits for patients that out-
weigh any public health concerns (e.g., life-threatening bacterial sepsis). In other cases, antibiotic
prescribing has no benefits for patients (e.g., viral infections) while the potential individual harms
are multi-fold: 1 in 5 patients experience side effects from antibiotics [34;31]; antibiotics have been
shown to disrupt the gut microbiome, particularly in children where it can lead to conditions
such as obesity [21]; and may increase an individual’s risk of developing future antibiotic-resistant
infections [25;23]. For these situations, individual and public health benefits align and it is easy to
strongly recommend antibiotic avoidance. The complexity arises in less clear-cut scenarios where
the benefits to individuals are unclear. For example, in travelers’ diarrhea most patients recover
without antibiotics; however, antibiotics can reduce the duration of symptoms, which, for some
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individuals, may be important [8]. In these cases, it is necessary to balance the individual bene-
fit of reducing the duration of symptoms against the potential individual harms associated with
broad-spectrum antibiotics, as well as public health harms including the development of antibiotic
resistance. We propose that there may be scenarios under which prescribing antibiotics benefits
public health; an idea absent from most antibiotic discourse (Figure 1). We suggest that pre-
scribing antibiotics to an individual reduces disease transmission enough to reduce the overall size,
duration, or existence of an outbreak. In this scenario, individual level harms are reduced as well
the overall number of antibiotic doses used at the population level.

Here, we demonstrate a mechanism by which antibiotic use can offer population-level benefits
through reduced transmission as a result of antibiotic treatment. That is, treating highly infectious
individuals who may not require treatment to recover can reduce overall disease transmission,
resulting in fewer total cases and/or fewer total antibiotic doses over the course of an outbreak.
We explore this using cholera as a case study. Cholera, caused by the bacterium Vibrio cholerae,
is a significant public health concern responsible for 1.3-4 million cases and 21,000-143,000 deaths
annually worldwide [2;4]. Although most people infected with cholera do not develop symptoms,
cholera can cause catastrophic diarrhea leading to potentially lethal dehydration. Since 2020,
there has been a large increase in the number of cholera outbreaks, and these outbreaks have
higher fatality rates than previously observed [3].

The development of antibiotic resistance in cholera is a major concern that governs current antibi-
otic treatment recommendations [1] which reserve antibiotics for patients with severe illness who are
at highest risk of death without antibiotic treatment [2]. Patients with moderate illness generally
experience self-limited symptoms that resolves with appropriate supportive care, and receive only
a modest benefit from antibiotics primarily through reduction in symptom duration [1;7;13;19;20]. Al-
though individuals with moderate infection may not individually be more infectious than severe
cases, collectively, they can significantly contribute to onward transmission of the disease [37]. In
these patients, antibiotic treatment can reduce shedding duration by up to 90% [1;19]. Without
antibiotic treatment, an infected individual can shed cholera for up to 10 days [2]. Consequently,
cholera provides an important opportunity to explore the tradeoffs between antibiotic utilization
at both individual and population levels.

In this paper, we analytically solve for two thresholds to characterize these tradeoffs and use sim-
ulation to identify the conditions under which expanded antibiotic treatment to include moderate
cholera infections presents a population-level benefit by reducing cholera transmission, outbreak
persistence, and total antibiotic use.
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Figure 1: Schematic of individual and population-level harms and benefits of antibiotic use. The
horizontal axis describes the individual (patient-level) and population-level impacts and the vertical
axis describes the benefits (positive impacts) and harms (negative impacts) of antibiotic usage.

2 Methods

2.1 Model

The authors declare that there is no associated data and code is available on GitHub (https:
//github.com/UT-IDDynamics/Cholera_Threshold).

To examine the tradeoffs between the individual- and population-level impacts of expanding antibi-
otic treatment, we analytically evaluate an extension of a Susceptible-Exposed-Infected-Recovered
(SEIR) model (Figure 2). Here we explore the effectiveness of expanded antibiotic treatment at
the population-level and assume that the individual-level benefit arises from reduction in symptom
severity and duration. To do this, we compare the final size of the outbreak and the total number of
doses given under different treatment scenarios, as well as the impact of these treatment decisions
on outbreak emergence and spread.

We model disease dynamics by dividing the population into the following compartments: Suscepti-
ble (S), Exposed (E), Infected (I), and Recovered (R); and further subdivide these compartments
to capture the structure essential for our questions. To track disease outcomes more effectively,
we differentiate the recovered class (indicated by a purple hashed box in Figure 2) by treatment
status and death: Recovered untreated (Run), Recovered treated with antibiotics (Rabx), or Dead
(D).

We subdivide the infected compartment by symptom class, treatment seeking behavior, and shed-
ding (Table 1). We split the infected compartment into three groupings by symptom classification,
denoted with the following subscripts: Asymptomatic infections (A), Moderately symptomatic in-
fections (which we call moderate infections) (M), and Severely symptomatic infections (which we
call severe infections) (S). Asymptomatic infections do not cause noticeable symptoms but patients
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may still transmit. Moderate infections cause mild symptoms and patients may know that they
are infected, but in the case of cholera, do not experience high fluid loss. Severe infections cause
more serious symptoms, like heavy fluid loss, with an associated high risk of death if not treated
promptly with re-hydration and/or antibiotics.

We subdivide the moderate and severe infectious compartments based on whether or not they
present to healthcare: seeking treatment (T ) or not seeking treatment (untreated) (U). Because
asymptomatic individuals do not experience symptoms, we assume that they never seek treatment
and thus do not subdivide this compartment by treatment. We assume that those with severe
infections are much more likely to seek treatment due to the dire nature of their symptoms, while
only some individuals with moderate infections seek treatment.

Individuals shed at different rates based on symptom severity. Asymptomatic individuals shed
less overall, whereas individuals who are untreated or have not yet received treatment shed at a
higher rate (sy). Once symptoms resolve, moderate and severe infections maintain shedding for up
to 10 days without antibiotic treatment (sh).

[2] We assume that all severely infected individuals
receive antibiotic treatment (abx) and remain in a cholera treatment facility until shedding has
resolved before they are discharged; thus we assume they do not contribute to transmission after
treatment. On the other hand, because moderate infections do not require hospitalization alongside
re-hydration, we assume they are able to transmit to others, although we assume that when treated
(abx), moderate infections shed at a far lower rate per unit time than untreated severely infected
individuals.
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Figure 2: Compartmental model of cholera transmission dynamics. Each compartment represents
a different epidemiological class. All individuals begin in the susceptible class (S), and become
exposed (E) at rate λ. From E, individuals become infectious (I) and, based on their symptoms,
follow one of five different paths (Supplement 4 further describes rates pAσ, pMUσ, pMTσ, pSUσ,
pSTσ). Post-infection, individuals are removed in one of three ways (purple hatching: Run, Rabx,
D). Breaking down the transition from exposure to infectiousness, exposed individuals become
asymptomatically infected (IAsh) at rate pAσ, are never eligible for treatment, and recover at rate
γA to the recovered, untreated compartment (Run). Exposed individuals become infected with
moderate symptoms (IMsyT or IMsyU) at rate pMTσ or pMUσ depending on whether or not they
seek treatment. Moderately infected individuals who do not seek treatment (IMsyU) recover from
symptoms at rate αM and continue to shed (IMsh) until they fully recover at rate γM to the re-
covered, untreated compartment (Run), or they die at rate µM , moving to the dead compartment
(D). Moderately infected individuals who seek treatment (IMsyT ) may or may not receive treat-
ment based on the model scenario. Treatment seeking patients with moderate infections receive
treatment and recover from symptoms at rate qδθ or do not receive treatment and recover from
symptoms at rate (1− q)αM . Moderate infections who receive treatment continue to shed (IMabx)
for a shorter duration than those not receiving treatment, and fully recover at rate γMabx

to the
recovered, treated compartment (Rabx). Treatment seeking patients with moderate infections who
do not receive treatment recover from symptoms and continue to shed (IMsh) until they fully re-
cover at rate γM to the recovered, untreated compartment (Run), or they die at rate µM , moving
to the dead compartment (D). Exposed individuals become severely infected (ISsyU or ISsyT ) at
rate pSUσ or pSTσ depending on whether or not they seek treatment. Severely infected individ-
uals who do not seek treatment (ISsyU) recover from symptoms at rate αS and continue to shed
(ISsh) until they fully recover at rate γS to the recovered, untreated compartment (Run), or they
die at rate µS, moving to the dead compartment (D). All individuals with severe infections who
seek treatment (ISsyT ) receive treatment with antibiotics at rate θ. Those with severe infections
who receive treatment continue to shed (ISabx); however, they remain hospitalized until symptoms
resolve and therefore do not contribute to transmission. They then fully recover at rate γSabx

to
the recovered, treated compartment (Rabx). Full model equations can be found in Supplement 4.6
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Table 1: Summary of infected states and their properties. This study focuses on states denoted with
(*). The shedding column includes the associated term in the force of infection in Equation (1),
illustrating the reductions in transmission relative to the shedding caused by severely symptomatic
untreated infections (β).

State Symptoms Treatment Shedding

IAsh Asymptomatic Not seeking care, not treated Full Asymptomatic (νAβ)

IMsyU Moderate Not seeking care, not treated Full Moderate (νMβ)

IMsyT Moderate Seeking care, may receive Full Moderate (νMβ)

antibiotic (*)

IMsh Moderate, May have sought care, but do Reduced Moderate (νMνshβ)

Post-symptom not receive antibiotic (*)

IMabx Moderate Seen and treated with Minimal Moderate (νMνabxβ)

antibiotic

ISsyU Severe Not seeking care, not treated Full Severe (β)

ISsyT Severe Seeking care, will be treated Full Severe (β)

with antibiotic

ISsh Severe, Not seeking care, not treated Reduced Severe (νshβ)

Post-symptom

ISabx Severe Seen and treated with None

antibiotic
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Table 2: Model parameters and definitions, grouped by related parameters with subscripts to
differentiate among symptom classifications, treatment, and shedding status. See Supplemental
Table S1 (Supplement 4) for parameter values used in the simulations.

Parameter Description

λ force of infection

β transmission rate

N population size (use 1 to study proportion)

pA, pMU , pMT , proportion of exposed who become asymptomatic,

pSU , pST moderately symptomatic, or severely symptomatic

– these sum to 1 (Supplement 4)

σ rate of symptom development – inverse of latent period

νsh, νA, νM , νabx infectiousness relative to untreated severe symptoms

of natural recovery, asymptomatic, moderate symptoms,

and antibiotic treatment

γA, γM , γMabx
, recovery rate for asymptomatic, moderate,

γS, γSabx
moderate treated with antibiotics, severe,

severe treated with antibiotics

µM , µS death rate for moderate, severe

θ treatment rate – inverse of time to treatment

δ relative reduction of θ for moderate infection

relative to severe

αM , αS rate at which symptoms resolve without antibiotic

treatment (moderate, severe)

q moderate infection treatment effort

2.1.1 Force of Infection

In this model, we define β as the rate of transmission by severely symptomatic infections and
describe the transmission potential of all other infectious compartments relative to severely symp-
tomatic infections. We do this because for cholera, untreated, severely symptomatic individuals
shed the most per unit time and are thus the most infectious. As previously described, we as-
sume that treatment with antibiotics, natural recovery, or infections with lower symptom severity
all reduce transmissibility. We use different values of the parameter ν to represent the relative
modification of infectiousness for individuals in these groups compared to untreated, severely
symptomatic infections (Table 2). While each ν can take on any positive value dependent on the
disease of interest, for cholera, we assume that ν ∈ [0, 1] to represent a proportional reduction in
transmission. Individuals belonging to multiple groups multiply the values for each group.

The force of infection, λ, sums the contributions to transmission of all of the infected classes,
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except severely infected individuals who have received treatment (ISabx
), and is given by:

λ =β(ISsyU + ISsyT ) + νshβISsh
+ νAβIAsh

+ νMβ(IMsyU + IMsyT ) + νshνMβIMsh

+ νMνabxβIMabx
.

(1)

2.1.2 Proportion of Moderate Infections Treated

To study the impact of treating moderate infections, we define the proportion of moderate infections
that receive treatment as Mabx. Mabx is the fraction of departure rates from IMsyT to the treatment
states and depends on the treatment effort (q), recovery rate with antibiotic treatment (αM), and
recovery rate without antibiotic treatment (δθ) (Table 2). Mabx is given by

Mabx =
qδθ

(1− q)αM + qδθ
. (2)

Because q, defined as the relative effort in treating moderate infections compared to treating severe
infections, is difficult to measure in an outbreak setting, we rearrange for q in terms of the more
easily measured Mabx to present model outputs. Rearranging, we find:

q =
αMMabx

αMMabx + δθ(1−Mabx)
(3)

Both q and Mabx range from 0 to 1, where treating no moderate infections with antibiotics cor-
responds to q = Mabx = 0 (status quo), and treating all moderate infections that seek care
corresponds to q = Mabx = 1.

2.1.3 Cholera-specific assumptions

Several specific assumptions follow from our focus on cholera. First, the current guideline for
treating cholera cases is to reserve antibiotics for severely symptomatic individuals who would
be likely to die without such treatment. [1] Under these guidelines, no moderately symptomatic
infections are treated with antibiotics (Mabx = 0). Our study question explores the effects of
increasing the proportion of moderates treated, Mabx, between 0 and 1.

Next we assume that treatment with antibiotics reduces the transmission potential of an infected
individual by reducing the duration of shedding in stool by 80-90%. [1;7;13;19;20] Additionally, since
symptoms severity is correlated with shedding volume, we assume lower severity infections are
less transmissible. [13;20] We use νsh (0.450) and νabx (0.500) to capture the reductions in shedding
after symptoms resolve from natural recovery and from antibiotic treatment, respectively. For a
comprehensive list of parameter values, see Table S1. These reductions apply to moderate and
untreated severe infections, as we assume severe infections remain hospitalized until symptoms
and shedding has resolved and therefore do not shed in the community. Finally, we denote the
reduction in infectiousness of asymptomatic and moderate infections relative to severe infections
by νA and νM , respectively.

9

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.28.24312731doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312731
http://creativecommons.org/licenses/by-nc/4.0/


2.2 Reproductive Numbers

The reproductive number for a disease provides a population-level threshold for transmission.
When the reproductive number is above 1, a disease will invade and persist and below 1 it will
die out. We use this threshold condition to explore when expanded treatment may result in an
outbreak dying out, by reducing the reproductive number below 1. Because we are interested in
comparing the current treatment guidelines with expanded treatment guidelines, we calculate two
reproductive numbers: the reproductive number under the current treatment guidelines, which we
call, R(q = 0), and the reproductive number under the expanded treatment guidelines, which we
call, R(q). Both are measures of transmission potential for an infectious disease, capturing the
average number of secondary infections from a single infected individual. [32]

From equation (SI 1), R(q) sums the contribution from each infection class (labelled in equation
(4)) to the number of new infections in each generation, proportional to the total population
(N) [11]. We find

R(q) = βN

pAνA
γA︸ ︷︷ ︸
IAsh

+
pMUνM
αM︸ ︷︷ ︸
IMsyU

+
pMTνM

(1− q)αM + qδθ︸ ︷︷ ︸
IMsyT

+

(
pMU + pMT

(1− q)αM

(1− q)αM + qδθ

)
νshνM

γM + µM︸ ︷︷ ︸
IMsh

+ pMT
qδθ

(1− q)αM + qδθ

νabxνM
γMabx︸ ︷︷ ︸

IMabx

+
pSU
αS︸︷︷︸

ISsyU

+
pST
θ︸︷︷︸

ISsyT

+ pSU
νsh

γS + µS︸ ︷︷ ︸
ISsh

+ pST
νabx
γSabx︸ ︷︷ ︸

ISabx



(4)

To find the reproductive number for the special case of no treatment, we substitute q = 0 into
equation (4) and find R(q = 0) to be

R(q = 0) = βN

(
pAνA
γA

+ (pMU + pMT )

(
νM
αM

+
νshνM

γM + µM

)
+

pSU
αS

+
pST
θ

+ pSU
νsh

γS + µS

+ pST
νabx
γSabx

)
(5)

2.3 Outbreak Final Size

We compare the effectiveness of expanded antibiotic treatment on the final outbreak size, defined
as the total proportion of infections over the course of the outbreak (i.e., the asymptotic state of
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the system). [17;24] To do this, we separate the final size based on disease outcome and treatment
status. We compare the number of untreated infections (Run∞), infections treated with antibiotics
(Rabx∞), and people who die (D∞) as well as the proportional final sizes run∞ = Run∞/N , rabx∞ =
Rabx∞/N , and d∞ = D∞/N . These can be summed to find the overall final size of the outbreak,
r∞ = run∞ + rabx∞ + d∞ .

Using the proportion of the population that remain susceptible at the completion of the outbreak
(s∞), we derive equations (details in SI § 4) for the proportion of infections that were untreated
(run∞), the proportion of infections that were treated (rabx∞), and the proportion of infections
that died (d∞).

run∞ =

(
αMγM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+ σpA +

σpSUγS
γS + µS

)
1

R
(− ln(s∞)) (6)

rabx∞ =

(
qδθ

(
σpMT

(1− q)αM + qδθ

)
+ σpST

)
1

R
(− ln(s∞)) (7)

d∞ =

(
αMµM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+

σpSUµS

γS + µS

)
1

R
(− ln(s∞)) (8)

To understand the impact of treating moderate infections on the total proportions of infections and
doses used in an outbreak, we numerically solve these final size equations (Equations 6 – 8) and
vary the proportion of moderately infected individuals treated (Mabx) from 0 to 1 and calculate
the final size (r∞) using R Statistical Software [30].

3 Results

Our analysis reveals two critical two-dimensional thresholds in the parameters R(q = 0) and Mabs

that summarize the relationship between antibiotic treatment and outbreak control. The first
threshold occurs when expanded antibiotic treatment reduces the effective reproductive number
(R(q)) below 1, thereby halting the outbreak. We call this the Outbreak Prevention Threshold
(OPT). The second threshold occurs when expanded treatment to include treating moderate in-
fections reduces the number of antibiotic doses used over the course of the outbreak below that
with the current treatment guidelines. We call this the Dose Utilization Threshold (DUT).

3.1 Outbreak Prevention Threshold (OPT)

To derive the OPT, we identify the conditions where expanded treatment reduces R(q) below
1, stopping transmission. We define the OPT as the values of R(q = 0) and Mabx for which an
outbreak can be stopped with treatment of some proportion of moderate infections. For sufficiently
large R(q = 0), even treating all moderate infections will not reduce R(q) below 1. We define Ropt

to be the maximum value of R(q = 0) for which an outbreak can be feasibly stopped. To do
this, we solved Equation (4) for R(q) = 1, since Ropt occurs when R(q = 1) = 1. We then used
Equation (2) to find values of Mabx from q.

With the parameter values for cholera,Ropt = 1. 424. That means that for outbreaks withR(q = 0) ≤
Ropt = 1. 424, expanding antibiotic treatment to include moderate infections from the onset of the
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outbreak would prevent the outbreak from emerging and spreading. Because Ropt describes the
maximum value of R(q) for which treating all moderate infections contains the outbreak, for lower
values ofR(q), outbreak containment can be achieved by treating a smaller proportion of moderate
infections.

The relationship between the proportion of moderate infections treated and the percent of the
population infected (Figure 3A) is shown in Figure 3. Each curve that intersects the horizontal
axis represents an R(q = 0) value that can be reduced below 1 by treating some proportion of
moderates. The proportion of moderates needed to contain the outbreak is given by the value
where the curve intersects the horizontal axis. For curves that do not intersect the horizontal axis,
even treating all moderate infections with antibiotics will not reduce R(q) below 1.

Figure 3: The final size (A) and proportion of total population treated (B) plotted against Mabx

in a cholera outbreak for different values of R(q = 0). Each curve corresponds to a different value
of R(q = 0), representing different outbreak scenarios of varying severity and transmissibility. (A)
the percent of the population infected, regardless of severity of infection or treatment status, over
an outbreak (r∞). (B) the percent of the population that receive antibiotics, including moderate
and severe infections, over the course of an outbreak (rabx∞). Dots indicate the proportion of
moderates that need to be treated to cross the Dose Utilization Threshold (DUT), for each value
of R(q = 0). Lines without points indicate that R(q = 0) > Rdut.

3.2 Dose Utilization Threshold (DUT)

We define the DUT as the values of R(q = 0) and Mabx for which treating both moderate and
severe cases with antibiotics results in fewer doses used over the course of the outbreak when
compared to treating severe cases alone, where Rdut is the maximum value of R(q = 0) for which
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this occurs. To derive the DUT, we use the final size equations, Equations (6), (7), and (8). We
identify the conditions under which expanding treatment can reduce the total number of doses
used over the course of an outbreak. This can occur even if transmission is not completely halted
and an outbreak still persists.

Mathematically, we solve for when rabx∞ (evaluated when q = 0) is greater than rabx∞ (evaluated
when q ̸= 0). To find the threshold value for where this occurs, we set rabx∞(q = 0) = rabx∞(q ̸= 0),
which results in the following equation

(σpST )
1

R(q = 0)
ln(s∞(R(q = 0))) =

(
qδθ

(
σpMT

(1− q)αM + qδθ

)
+ σpST

)
1

R(q)
ln(s∞(R(q))).

(9)

We numerically solve for Rdut, because this equation is not analytically tractable, as Equation (9)
is an implicit function of R(q = 0). For cholera we found Rdut = 1.533. Like the OPT, for lower
values of R(q) a reduction in doses can be achieved by treating a smaller proportion of moderate
infections. The relationship between the proportion of moderates treated and the number of doses
of antibiotics used is shown in 4B.

While treating more cases (high Mabx) will always reduce the number of cases in the outbreak
(Figure 3A), the non-monotonic relationship between proportion of moderates treated and the
number of doses of antibiotics used over the outbreak leads to an increase in the total number
of doses used when when a small proportion of moderate infections are treated. However, as the
proportion of moderate infections treated increases, the number of doses used decreases, and, for
values of R(q = 0) ≤ Rdut = 1.533, drops below the number of doses used when treating no
moderate infections (indicated by the points in Figure 3B). For outbreaks with very high values
of R(q = 0), treating moderate infections substantially increases the total number of doses given
as the reduction in transmission from treatment is insufficient to compensate for the large number
of infected individuals (illustrated by R0 = 2 in Figure 3B).
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Figure 4: Plot of the threshold values for dose reduction (DUT) and outbreak prevention (OPT),
by R(q = 0), for each proportion of moderates treated (Mabx). For a each value of R(q = 0),
the pink curve shows the OPT of R(q = 0) and Mabx, the shaded region above the curve shows
all combinations of R(q = 0) and Mabx in which treating moderate infections reduces the effective
reproductive number, R(q), below 1. The dotted red line indicatesRopt for cholera. The blue curve
shows the DUT of R(q = 0) and Mabx, the shaded region above the curve shows all combinations
of of R(q = 0) and Mabx in which fewer doses are given overall with expanded treatment. The
dotted blue line indicates Rdut for cholera. Outside of these regions, in the white space, there is
no outcome improvement.
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4 Discussion

It has previously been thought that there is an unavoidable tradeoff between the utilization of
antibiotics and the evolutionary risk of developing antibiotic resistance. Here we identify scenarios
where antibiotic use creates a population-level benefit, thus benefiting both the individual and
the population. The key mechanism is that antibiotics reduce the duration of shedding in treated
individuals thereby reducing transmission and the total number of cases. Surprisingly, under
certain circumstances, treating more patients with antibiotics can reduce the total number of doses
used during an outbreak, thus reducing the selective pressures for the development of antibiotic
resistance.

Here, we present a theoretical framework for finding the conditions under which treating moderate
infections with antibiotics reduces the total number of doses used in an outbreak (which we term
the Dose Utilization Threshold, or DUT) as well as when treating moderate infections completely
stops an outbreak before it can take off (the Outbreak Prevention Threshold, or OPT). These
two thresholds depend on two key measurable quantities, R(q = 0) and Mabx. When treating all
moderate infections (Mabx = 1), we specifyRopt andRdut as the maximum value ofR(q) for which
these thresholds occur. When considering other values of Mabx, the OPT and the DUT describe
when these population-level benefits can be achieved by treating a smaller proportion of moderates
for lower values of R(q). However, if R(q = 0) is larger than the DUT, the benefits of treating
moderate infections is lost and the total number of doses given out over the course of the outbreak
increases. This suggests that in some circumstances, it is better to not treat moderate infections
if it is not certain that a threshold can be met due to concerns with public health infrastructure
or compliance, for example.

Using cholera as case study, we found the conditions under which these thresholds occur. For
cholera, we compute R(q) ≤ Ropt = 1. 424, below which treating moderate infections can reduce
the effective reproductive number below 1, stopping the outbreak before it can spread. Similarly,
when R(q = 0) ≤ Rdut = 1.533, treating moderate infections results in fewer doses used over the
course of the outbreak than under current treatment guidelines. Because the range of reproductive
numbers for cholera outbreaks is 1.1-2.7 [26;29], only outbreaks with low to intermediate values of
R(q = 0) can benefit from expanded antibiotic treatment. Further, since the relationship between
the proportion of moderates treated and the number of doses used is non-monotonic, failure to
treat a sufficient proportion of moderates treated may increase the number of doses used over the
outbreak. The relationship between the proportion of moderates treated and the percent of the
population infected is monotonical, any increase in the proportion of moderates treated reduces the
percent of the population infected. Thus, careful evaluation of an outbreak setting, particularly
with respect to community transmission (magnitude of R(q = 0)), is essential prior expanding
antibiotic treatment eligibility.

When R(q = 0) ≤ Rdut, it is imperative to identify and treat sufficient moderate infections, partic-
ularly in the context of cholera, as many moderately infected individuals may not seek treatment.
This is particularly true because the current treatment guidelines of reserving antibiotic treatment
for severe infections may discourage treatment seeking behavior by those with more moderate
cases. Therefore, even giving antibiotics to all moderate infections who present for treatment (as
we do in our model, Table S1) may not be sufficient to achieve the population-level benefits iden-
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tified by our model. However, since individuals with moderate infections do not receive treatment
under current guidelines, it is unknown how many would seek care if they qualified for antibiotic
treatment under expanded access. This strategy may require proactively aiming to treat individ-
uals who may not typically seek care and altering public messaging to encourage them to seek
care. Further study is required to determine how treatment-seeking behavior may change should
the policy change.

Our model relies on several simplifying assumptions, including that there is no heterogeneity in
susceptibility. Our approach also relies on the assumption that severity is not transmitted; cases
derived from moderate infections are equally likely to be severe as those derived from severe
infections. We have also made a simplifying assumption by grouping infections into just three
symptomatic classes. Because symptoms exist on a continuum, exploring a more granular division
may help to further stratify the moderately symptomatic class by shedding and target the most
infectious moderate infections for treatment. In our cholera case study, we used average reported
parameter values. Additional sensitivity analysis could be used to determine which parameters
have the greatest and most consistent influence on the threshold values and highlight them for
future study. Our analysis evaluates only case counts and antibiotic use, neglecting other tradeoffs
due to the economic costs of treatment [35].

While we tailored our analysis to the specifics of cholera, this theoretical framework may be valu-
able for other pathogens. A similar framework has been considered in the context of Carbapenem-
resistant Enterobacterales (CRE) and decolonization in healthcare settings, where surveillance and
testing strategies could be used to treat colonized individuals before they become infected, in par-
allel to the moderately symptomatic cholera patients considered here [35]. Similarly, for viruses such
as influenza, this framework could aid in determining optimal strategies by balancing the tradeoff
between testing and treatment. Here, factors such as cost-effectiveness [33] and the development of
resistance [28] can play significant roles, as treatment strategies rely on individual vulnerability and
susceptibility, as well as timing treatment before suspected symptom onset. This could be modeled
to study scenarios in which it may be more beneficial to treat all cases as opposed to requiring a
positive test for treatment. For HIV, particularly before the development of advanced antiretrovi-
ral therapies, healthcare providers had to balance side effects, patient compliance, and resistance
concerns when trying to prevent HIV transmission prior to positive HIV test results. [9;15] In such
scenarios, our framework could help optimize the balance between side effects and compliance.

In conclusion, this study provides a new lens through which to view antibiotic use during infec-
tious disease outbreaks, specifically highlighting the population-level benefits that can arise from
expanding antibiotic treatment to include moderate infections. By shifting the emphasis from
individual patient outcomes to broader population impacts, our findings challenge traditional ap-
proaches to antibiotic prescribing and propose a more strategic and context-sensitive framework
for antibiotic stewardship.
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Supplementary Material

Proportion of Exposed Becoming each Infected Type

Here we further describe the pathways for individuals becoming infected after exposure. The five
proportions described in the main text (pA, pMT , pMU , pST , pSU) can be broken down into more
measurable decision-related values:

• ϵA = proportion of individuals exposed that are asymptomatic

• ϵS = proportion of all symptomatic individuals that have severe symptoms (1−ϵS =moderate
symptoms)

• ϵMsyT = proportion of moderately symptomatic individuals who seek treatment

• ϵSsyT = proportion of severely symptomatic individuals who seek treatment

These allow the proportions to sum to 1 and the following equations describe the structure illus-
trated in Figure S1.

pA = ϵA

pMT = (1− ϵA)(1− ϵS)(ϵMsyT )

pMU = (1− ϵA)(1− ϵS)(1− ϵMsyT )

pST = (1− ϵA)(ϵS)(ϵSsyT )

pSU = (1− ϵA)(ϵS)(1− ϵSsyT )
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Figure S1: Model diagram with detailed parameterization of pathways between exposure and
infection.

Model Equations

dS

dt
= −λS

dE

dt
= λS − σE

dIAsh

dt
= σpAE − γAIAsh

dIMsyU

dt
= σpMUE − αMIMsyU

dIMsyT

dt
= σpMTE − ((1− q)αM + qδθ)IMsyT

dIMsh

dt
= αMIMsyU + (1− q)αMIMsyT − (γM + µM)IMsh

dIMabx

dt
= qδθIMsyT − γMabx

IMabx

dR

dt
= γAIAsh

+ γMIMsh
+ γSISsh

dD

dt
= µMIMsh

+ µSISsh

dISsyU

dt
= σpSUE − αSISsyU

dISsyT

dt
= σpSTE − θISsyT

dISsh

dt
= αSISsyU − (γS + µS)ISsh

dISabx

dt
= θISsyT − γSabx

ISabx

dRabx

dt
= γMabx

IMabx
+ γSabx

ISabx

(1)
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Parameter values

Table S1: Model parameters values used in simulation with citations used to generate estimates.
Note that R0 is used to solve for β using equation (5).

Parameter Value Citation

R0 1.150 [26;29]

pA 0.750 [6;14]

pMU 0 [6;14;37]

pMT 0.175 [6;14;37]

pSU 0.023 [6;14;37]

pST 0.052 [6;14;37]

σ 0.695 [5]

νsh 0.450 [13;20;36]

νA 0.250 see below

νM 0.600 see below

νabx 0.500 see below

γA 0.200 [13;18;20;36]

γM 0.144 [13;18;20;36]

γMabx
1 [13;18;20;36]

γS 0.060 [13;18;20;36]

γSabx
1 [13;18;20;36]

µM 0.01 [2]

µS 0.901 [20]

θ 2.664 varies based on policies

δ 0.500 varies based on policies

αM 0.300 [13;20]

αS 0.200 [13;20]

Relative Infectiousness Modifiers

The values of νA and νM are not well characterized in the literature and would benefit from addi-
tional clinical research. For the purposes of this study, we find feasible values for these parameters
(νA = 0.250, νM = 0.600) through a combination of literature review and expert elicitation. We
know that severely dehydrated cholera patients have the longest duration of diarrhea symptoms
(with and without antibiotic treatment), and the longest duration of culture positivity (with and
without antibiotics) [20]. Counter-intuitively, the least dehydrated cholera patients with diarrhea
had the second longest duration of diarrhea symptoms [20]. We assume that more days of diarrhea
with less dehydration is indicative of lower volumes of stool. We further assume that lower volumes
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of stool equates to less bacteria released into the community, (i.e., less transmission). Finally, we
assume that an absence of symptoms leads to better stool management (e.g., more likely to safely
dispose of stool in covered pit latrine), further decreasing transmission for asymptomatic cholera
patients compared to severely symptomatic cholera patients.

Similarly, νabx is not well characterized in the literature and would benefit from additional clinical
research. For the purposes of this study, we find a feasible value for this parameter (νabx = 0.500)
also through literature review and expert elicitation. It has been shown that among cholera
patients treated with antibiotics, the proportion of patients testing positive by culture decreases
rapidly over the first 2 days after treatment, with no culture positives individuals by day 4 [13].
Similarly, it has been found that cholera patients were culture positive an average of 2.6 days after
antibiotics [20], whereas other studies documented an average of 1 day of stool culture positivity
following antibiotic treatment [36]. While these estimates speak to the rate at which cholera patients
treated with antibiotics recover, recovery is not a binary process where shedding is immediately
halted. Therefore we opted for a conservative estimate of half transmission to encompass the time
spent transitioning from the start of treatment to recovery.
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Final Size Equation Derivation

We rewrite here the relevant equations of the system and give them individual labels for reference.

(f.1)
dS

dt
= −λS

(f.2)
dE

dt
= λS − σE

(f.3)
dIMsyU

dt
= σpMUE − αMIMsyU

(f.4)
dIMsyT

dt
= σpMTE − ((1− q)αM + qδθ)IMsyT

(f.5)
dIMsh

dt
= αMIMsyU + (1− q)αMIMsyT

− (γM + µM)IMsh

(f.6)
dIMabx

dt
= qδθIMsyT − γMabx

IMabx

(f.7)
dIAsh

dt
= σpAE − γAIAsh

(f.8)
dISsyU

dt
= σpSUE − αSISsyU

(f.9)
dISsyT

dt
= σpSTE − θISsyT

(f.10)
dISsh

dt
= αSISsyU − (γS + µS)ISsh

(f.11)
dISabx

dt
= θISsyT − γSabx

ISabx

(f.12)
1

S

dS

dt
= −λ

= −β[(ISsyU + ISsyT ) + νshISsh
+ νAIAsh

+ νM(IMsyU + IMsyT ) + νshνMIMsh

+ νMνabxIMabx
]

(f.13)
dRun

dt
= γAIAsh

+ γMIMsh
+ γSISsh

(f.14)
dRabx

dt
= γMabx

IMabx
+ γSabx

ISabx

(f.15)
dD

dt
= µMIMsh

+ µSISsh

(f.16) N = S∞ +Run∞ +Rabx∞ +D

The following method avoids using (f.1) and (f.2) to avoid complications from the force of infection
λ.

To find the final size, we integrate our equation over the time interval from 0 to ∞ [22]. We start
by setting the infected state equation integrals equal to 0 to simplify each equation in terms of∫
Edt.

From setting the integral of (f.3) = 0:

σpMU

∫ ∞

0

Edt = αM

∫ ∞

0

IMsyUdt ⇒
∫ ∞

0

IMsyUdt =
σpMU

αM

∫ ∞

0

Edt
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From setting the integral of (f.4) = 0:

σpMT

∫ ∞

0

Edt = ((1− q)αM + qδθ)

∫ ∞

0

IMsyTdt ⇒
∫ ∞

0

IMsyTdt =
σpMT

(1− q)αM + qδθ

∫ ∞

0

Edt

From setting the integral of (f.5) = 0:

αM

∫ ∞

0

IMsyUdt+ (1− q)αM

∫ ∞

0

IMsyTdt = (γM + µM)

∫ ∞

0

IMsh
dt

⇒
∫ ∞

0

IMsh
dt =

αM

γM + µM

(
(1− q)

∫ ∞

0

IMsyUdt+

∫ ∞

0

IMsyTdt

)
⇒

∫ ∞

0

IMsh
dt =

αM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt

From setting the integral of (f.6) = 0:

qδθ

∫ ∞

0

IMsyTdt = γMabx

∫ ∞

0

IMabx
dt ⇒

∫ ∞

0

IMabx
dt =

qδθ

γMabx

(
σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt

From setting the integral of (f.7) = 0:

σpA

∫ ∞

0

Edt = γA

∫ ∞

0

IAsh
dt ⇒

∫ ∞

0

IAsh
dt =

σpA
γA

∫ ∞

0

Edt

From setting the integral of (f.8) = 0:

σpSU

∫ ∞

0

Edt = αS

∫ ∞

0

ISsyUdt ⇒
∫ ∞

0

ISsyUdt =
σpSU
αS

∫ ∞

0

Edt

From setting the integral of (f.9) = 0:

σpST

∫ ∞

0

Edt = θ

∫ ∞

0

ISsyTdt ⇒
∫ ∞

0

ISsyTdt =
σpST
θ

∫ ∞

0

Edt

From setting the integral of (f.10) = 0:

αS

∫ ∞

0

ISsyUdt = (γS + µS)

∫ ∞

0

ISsh
dt ⇒

∫ ∞

0

ISsh
dt =

σpSU
γS + µS

∫ ∞

0

Edt

From setting the integral of (f.11) = 0:

θ

∫ ∞

0

ISsytdt = γSabx

∫ ∞

0

ISabx
dt ⇒

∫ ∞

0

ISabx
dt =

σpST
γSabx

∫ ∞

0

Edt

We then find the final sizes of the desired states in terms of
∫
Edt.
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From the integral of (f.13):∫ ∞

0

dRun

dt
dt = Run∞ −R0 = Run∞ = γA

∫ ∞

0

IAsh
dt+ γM

∫ ∞

0

IMsh
dt+ γS

∫ ∞

0

ISsh
dt

⇒ Run∞ =
αMγM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt+ σpA

∫ ∞

0

Edt+
σpSUγS
γS + µS

∫ ∞

0

Edt

From the integral of (f.14):∫ ∞

0

dRabx

dt
dt = Rabx∞ = γMabx

∫ ∞

0

IMabx
dt+ γSabx

∫ ∞

0

ISabx
dt

⇒ Rabx∞ = qδθ

(
σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt+ σpST

∫ ∞

0

Edt

From the integral of (f.15):∫ ∞

0

dD

dt
dt = D∞ = µM

∫ ∞

0

IMsh
dt+ µS

∫ ∞

0

ISsh
dt

⇒ D∞ =
αMµM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt+
σpSUµS

γS + µS

∫ ∞

0

Edt

From here we want to find the
∫
Edt to plug in above. We will use the trick of dividing both sides

by S. From there we integrate and plug in the integrals from the infected states found above.
(f.12) then integrates to solve for

∫
Edt.

1

S

dS

dt
= −λ∫ ∞

0

dS

S
=

∫ ∞

0

−β
[
(ISsyU + ISsyT ) + νshISsh

+ νAIAsh

+νM(IMsyU + IMsyT ) + νshνMIMsh
+ νMνabxIMabx

]
dt

− 1

β
(ln(S∞)− ln(S0)) =

σpSU
αS

∫ ∞

0

Edt+
σpST
θ

∫ ∞

0

Edt+ νsh
σpSU

γS + µS

∫ ∞

0

Edt

+ νA
σpA
γA

∫ ∞

0

Edt

+ νM
σpMU

αM

∫ ∞

0

Edt+ νM
σpMT

(1− q)αM + qδθ

∫ ∞

0

Edt

+ νshνM
αM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt

+ νMνabx
qδθ

γMabx

(
σpMT

(1− q)αM + qδθ

)∫ ∞

0

Edt

⇒
∫ ∞

0

Edt = − 1

β
(ln(S∞)− ln(S0)) /K
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where

K =
σpSU
αS

+
σpST
θ

+ νsh
σpSU

γS + µS

+ νA
σpA
γA

+ νM
σpMU

αM

+ νM
σpMT

(1− q)αM + qδθ
+ νshνM

αM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)
+ νMνabx

qδθ

γMabx

(
σpMT

(1− q)αM + qδθ

)
=

R
βN

Therefore ∫ ∞

0

Edt =
N

R
(ln(S0)− ln(S∞))

From here we use (f.16) to put all of the pieces together:

N = S∞ +Run∞ +Rabx∞ +D

S∞ −N = −
∫ ∞

0

Edt

[
αMγM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)
+ σpA +

σpSUγS
γS + µS

+ qδθ

(
σpMT

(1− q)αM + qδθ

)
+ σpST

+
αMµM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+

σpSUµS

γS + µS

]
S∞ −N = −N

R
(ln(S0)− ln(S∞))C

S∞ −N = −N

R
(ln(S0)− ln(S∞))

where

C =
αMγM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)
+ σpA +

σpSUγS
γS + µS

+ qδθ

(
σpMT

(1− q)αM + qδθ

)
+ σpST

+
αMµM

γM + µM

(
σpMU

αM

+
(1− q)σpMT

(1− q)αM + qδθ

)
+

σpSUµS

γS + µS

= pSU + pST + pA + pMU + pMT

= 1

We continue to solve for s∞, where s∞ = S∞/N .

(S∞ −N)
R
N

= ln(S∞)− ln(N)

S∞
N

= e
R
N
(S∞−N)

s∞ = eR(s∞−1)
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Importantly, this is the standard result for typical SIR and SEIR models as well.

So if we have ∫ ∞

0

Edt =
N

R
(ln(S0)− ln(S∞))

and

s∞ = eR(s∞−1) (2)

then we can get equations for the final sizes for Run, Rabx, and D by plugging these into the
equations for Run∞, Rabx∞, and D∞ above after solving for s∞ numerically.

Run∞ =

(
αMγM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+ σpA +

σpSUγS
γS + µS

)
N

R
(ln(N)− ln(s∞N)) (3)

Rabx∞ =

(
qδθ

(
σpMT

(1− q)αM + qδθ

)
+ σpST

)
N

R
(ln(N)− ln(s∞N)) (4)

D∞ =

(
αMµM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+

σpSUµS

γS + µS

)
N

R
(ln(N)− ln(s∞N)) (5)

To study the proportions of individuals in each class, we divide out N and will call the proportional
final sizes run∞ = Run∞/N , rabx∞ = Rabx∞/N , and d∞ = D∞/N .

run∞ =

(
αMγM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+ σpA +

σpSUγS
γS + µS

)
1

R
(− ln(s∞)) (6)

rabx∞ =

(
qδθ

(
σpMT

(1− q)αM + qδθ

)
+ σpST

)
1

R
(− ln(s∞)) (7)

d∞ =

(
αMµM

γM + µM

(
σpMU

αM

+
σpMT

(1− q)αM + qδθ

)
+

σpSUµS

γS + µS

)
1

R
(− ln(s∞)) (8)
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