
Risk of selection and timelines for the continued spread of
artemisinin and partner drug resistance in Africa

Oliver J. Watson1, Salome Muchiri2, Abby Ward2, Cecile Meier-Sherling3, Victor Asua4,

Thomas Katairo4, Tom Brewer1, Gina Cuomo-Dannenburg1, Peter Winskill1, Jeffrey A

Bailey3,5, Lucy Okell1, Graziella Scudu2, Aaron M. Woolsey2

1. MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK

2. Clinton Health Access Initiative, Boston, MA, 21127, USA

3. Center for Computational Molecular Biology, Brown University, Providence, RI, USA

4. Infectious Diseases Research Collaboration, Kampala, Uganda

5. Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI,

USA

—-------------------------------------------------------------------------------------------------------------

For the purpose of open access, the author has applied a ‘Creative Commons Attribution (CC BY) licence (where permitted by

UKRI, ‘Open Government Licence’ or ‘Creative Commons Attribution No-derivatives (CC-BY-ND) licence’ may be stated

instead) to any Author Accepted Manuscript version arising.

—-------------------------------------------------------------------------------------------------------------

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.28.24312699doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.08.28.24312699
http://creativecommons.org/licenses/by-nd/4.0/


Abstract (long)

The introduction of artemisinin combination therapies (ACTs) has significantly reduced the

burden of Plasmodium falciparum malaria, yet the emergence of artemisinin partial

resistance (ART-R) as well as partner drug resistance threatens these gains. Recent

confirmations of prevalent de novo ART-R mutations in Africa, in particular in Rwanda,

Uganda and Ethiopia, underscore the urgency of addressing this issue in Africa. Our

objective is to characterise this evolving resistance landscape in Africa and understand the

speed with which ART-R will continue to spread. We produce estimates of both ART-R and

partner drug resistance by bringing together WHO, WWARN and MalariaGen Pf7k data on

antimalarial resistance in combination with a literature review. We integrate these estimates

within a mathematical modelling approach, aincorporating to estimate parameters known to

impact the selection of ART-R for each malaria-endemic country and explore scenarios of

ART-R spread and establishment. We identify 16 malaria-endemic countries in Africa to

prioritise for surveillance and future deployment of alternative antimalarial strategies, based

on ART-R reaching greater than 10% prevalence by 2040 under current malaria burden and

effective-treatment coverage. If resistance continues to spread at current rates with no

change in drug policy, we predict that partner drug resistance will emerge and the mean

percentage of treatment failure across Africa will reach 30.74% by 2060 (parameter

uncertainty range: 24.98% - 34.54%). This translates to an alarming number of treatment

failures, with 52,980,600 absolute cases of treatment failure predicted in 2060 in Africa

(parameter uncertainty range: 26,374,200 - 93,672,400) based on current effective treatment

coverage. Our results provide a refined and updated prediction model for the emergence of

ART-R to help guide antimalarial policy and prioritise future surveillance efforts and

innovation in Africa. These results put into stark context the speed with which antimalarial

resistance may spread in Africa if left unchecked, confirming the need for swift and decisive

action in formulating antimalarial treatment policies focused on furthering malaria control and

containing antimalarial resistance in Africa.
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Abstract (short)

The rise of artemisinin partial resistance (ART-R) and increasing partner drug tolerance by

Plasmodium falciparum malaria in Africa threatens to undo malaria control efforts. Recent

confirmations of de novo ART-R markers in Rwanda, Uganda, and Ethiopia highlight the

urgent need to address this threat in Africa, where the vast majority of cases and deaths

occur. This study characterises the resistance landscape and predicts the spread of

antimalarial resistance across Africa. We estimate and map the current levels of resistance

markers related to artesmisinin and its partner drugs using WHO, WWARN, and MalariaGen

Pf7k data. We combine these estimates with current malaria transmission and treatment

data and use an established individual-based model of malaria resistance to simulate future

resistance spread. We identify 16 African countries at highest risk of ART-R for prioritisation

of enhanced surveillance and alternative antimalarial strategies. We project that, without

policy changes, ART-R will exceed 10% in these regions by 2040. By 2060, if resistance

spreads unchecked, we predict mean treatment failure rates will reach 30.74% (parameter

uncertainty range: 24.98% - 34.54%) across Africa. This alarming spread of resistance is

predicted to cause 52.98 million treatment failures (uncertainty range: 26.37 million - 93.67

million) in 2060. The impact of antimalarial resistance in Africa, if left unchecked, would

hugely damage efforts to reduce malaria burden. Our results underscore the critical need for

swift policy action to contain resistance and guide future surveillance and intervention efforts.
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Introduction

The introduction of artemisinin combination therapies (ACTs) as global first-line treatments

for uncomplicated Plasmodium falciparum malaria has been vital in reducing malaria burden

globally and slowing the emergence of artemisinin partial resistance (ART-R). However,

ART-R has emerged and threatens to reverse recent gains in malaria control. Initially

identified in Cambodia in the early 2000s, ART-R has spread extensively in Southeast Asia

(SE Asia), with validated mutations in pfkelch13 responsible for ART-R now published by the

WHO.2 Recently, ART-R has emerged de novo in Africa, where the vast majority of cases

and deaths occur, with validated pfkelch13 mutations identified at highest prevalence in

Rwanda3 and Uganda4. This development has prompted calls for an improved response to

the emerging threat in Africa,5 including increasing molecular surveillance for ART-R,

changing treatment strategies to protect the therapeutic lifespan of artemisinin, and more

widespread and rapid assessment of ACT therapeutic efficacy.6 In response to the growing

threat of ART-R, the World Health Organization (WHO) published a strategy in 2022 to

respond to antimalarial drug resistance in Africa.7

The spread of antimalarial resistance in SE Asia led to significant ACT treatment failures,

with 35-45% of patients treated with ACT failing therapy in many regions due to parasites

with both artemisinin and partner drug resistance.8 The emergence of artemisinin resistance

in Africa has raised concerns that similar trends may unfold in Africa. However, the spread of

resistance may not mirror the trajectory seen in SE Asia due to higher transmission

intensities in Africa, which is believed to both increase competition between wild-type and

resistant parasites as well as contribute to higher recombination rates that cause multiple

resistance mutations to disassociate more quickly.9 Further, parasites with pfkelch13

mutations have not yet been documented to cause >10% 28-day treatment failure rates in

therapeutic efficacy studies (TES) of artemether-lumefantrine (AL) in the current hotspots of

ART-R emergence in Rwanda and Uganda.5,10 However, growing evidence to suggests that

treatment failure is increasing in Africa. The observation of decreasing AL efficacy in TES

conducted in travellers returning from the continent (Halsey and Plucinski 2023) and the frequency of

incomplete AL drug adherence in Africa13 suggest that AL efficacy in routine settings may be

lower than observed in trial settings.14 In clinical trials where all doses of AL are not

supervised, 28-day PCR corrected treatment failure rates for AL have been observed >10%

even in settings without any pfkelch13 mutations,15 suggesting that failure in ART-R areas

may be higher. Patterns of directional selection in genetic markers associated with increased

lumefantrine tolerance have been observed after AL treatment.16 Further, observational

studies in Uganda reveal fast increases in ART-R frequency comparable to those observed
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during the initial years of artemisinin resistance emergence in SE Asia.17 Together, these

suggest treatment failures in AL-treated patients occur and may increase due to rising

lumefantrine tolerance and ART-R.

Mathematical models of malaria and resistance play a crucial role in understanding and

managing the spread of antimalarial drug resistance, particularly under the frameworks

proposed by the WHO’s “Strategy to respond to antimalarial drug resistance in Africa.”7

These models help identify the risk factors driving the emergence and spread of resistance,

such as drug pressure, within-host competition and human behaviour, which all influence the

evolution and spread of resistant malaria strains.18 By simulating various scenarios and

interventions, these models help in assess the impact of drug resistance on malaria control

and eradication efforts, providing a robust platform for decision-making.19 Modelling also

supports specific missions of the WHO resistance strategy, notably Pillar 4, which

emphasises understanding and tracking resistance. It aids in mapping the risk of antimalarial

resistance,20 highlighting regions and populations where resistance is more likely to develop

and spread, which enables surveillance and interventions to be targeted effectively.21

Furthermore, models can forecast the impact of changes in diagnostic practices and

treatment strategies in reducing drug pressure, thus informing the optimization of these tools

to delay or prevent the emergence of resistance.6 Integrating detailed genetic and

epidemiological data into these models can refine predictions and enhance the design of

tailored strategies to manage and mitigate resistance.22

In this study, we incorporate recent advances in our understanding of the current frequency

of antimalarial resistance and construct geostatistical models of the frequency of antimalarial

resistance in Africa. Using current estimates and trends in antimalarial resistance, we project

the continued spread of resistance in sub-Saharan Africa over the next 40 years using a

previously published individual-based model of malaria transmission to model the selection

of antimalarial resistance.19 These maps can be used to guide ongoing surveillance efforts

and where the future deployment of alternative interventions to combat the spread of

antimalarial resistance should be prioritised.
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Methods (1120 words)

P. falciparum transmission model

In this study, we employed a previously developed individual-based mathematical model of

P. falciparum malaria transmission, magenta, which was designed to characterise neutral

genetic diversity in malaria parasites23 and extended to simulate the selection of antimalarial

resistance.19 The model is an extended version of one of the models used to cost the WHO

Global Technical Strategy 2030,25 which has been parameterized through fitting to

entomological inoculation rate (EIR), parasite prevalence, clinical disease incidence, and

severe disease incidence data.24 The model includes individual humans, mosquitoes, and

parasite clones, with parasite clones represented by a genetic barcode that tracks the

resistance genotype of each parasite. The extended magenta model has been shown to

accurately capture the dynamics of complexity of infection in different malaria endemic

settings,23 and, with two other resistance models, was used in a consensus exercise and

shown to capture the speed at which resistance has been selected for.19,26 Full model details

are provided in the appendix.

Mapping antimalarial resistance

We tracked markers relating to resistance to artemisinin, lumefantrine, amodiaquine and

piperaquine, which are the most common antimalarials taken across Africa. To map

antimalarial resistance frequency for each resistance marker, we implemented a method

previously used to map partner drug resistance in Africa at the first-administrative level in all

malaria-endemic regions.20 Full details are provided in the appendix. In overview, we collated

antimalarial drug resistance data in Africa from three databases: WHO Threat Maps,27 the

WorldWide Antimalarial Resistance Network (WWARN),28 and the Pf7k database.29 These

sources provided detailed information on P. falciparum resistance markers, including specific

loci in the pfcrt, pfmdr1, pfkelch13 genes, and copy number variations (CNV) in the pfmdr1

and pfpm2-3 genes. We categorised CNVs as binary variables to distinguish between single

and multiple copies, giving 64 potential genotypes to be tracked, which have previously been

used to infer the 28-day treatment failure for AL, ASAQ, and DHAPPQ.30

We deduplicated entries across databases and cleaned the resultant data to account for

mixed infections and clear data entry errors. Similar to Enhrlich et al.,20 we split the mutation

frequency data into discrete time periods and calculated the sample-weighted frequency of

each resistance marker in each first-administrative region. We fit a spatial multivariate

logistic regression model, incorporating spatially structured random effects through a

conditional autoregressive model, to the collated resistance data to predict the frequency of
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drug resistance. Covariates included malaria prevalence, healthcare access, effective

treatment coverage, AL pressure, seasonality, and national GDP. We used a Bayesian

Markov chain Monte Carlo (MCMC) algorithm to fit the model, with 4 chains run in parallel for

10,000 burn-in iterations followed by 100,000 sampling iterations. We ensured model

convergence and quality before drawing 1000 samples from the MCMC chain to construct

median and 95% credible intervals for the frequency of each resistance marker. Full details

are provided in the appendix.

Modelling the spread of artemisinin resistance

To model the spread of resistance, we estimated the selection coefficient (the annual %

change in logit genotype frequency26) for resistance frequency for the six resistance

genotypes collated, assuming constant selection over time. We estimate selection

coefficients using the following approach, which is described in full in the appendix.

The main drivers of antimalarial resistance in the magenta model are malaria transmission

intensity, effective treatment coverage (the probability of an individual receiving effective

treatment after developing a clinical malaria infection), the initial frequency of resistance, and

the proportion of different ACTs used. We used an adjusted Latin Hypercube Sampling

scheme to create 1,250 unique sets of these magenta model input parameters, which span

the range observed globally for each parameter. For all parameter combinations, we

simulated ten stochastic realisations of 100,000 individuals for 40 years to reach equilibrium

first, before simulating the selection of antimalarial resistance over the following 40 years,

assuming that magenta simulation parameters remained constant throughout. For each

simulation, we calculated the selection coefficient associated with the increase in frequency

of each of the six resistance genotypes (Figure 1).26
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Figure 1. Conversion from model simulations to selection coefficients. For a given parameter set of the
main drivers of resistance selection (malaria slide prevalence 2-10: 15%, percentage of front line treatment that is
AL, ASAQ and DHAPPQ: 60%, 25% and 15%, initial lumefantrine, amodiaquine and piperaquine resistance:
45%, 55% and 0%), (A) the simulated frequency of artemisinin resistance (ART-R) is shown and is converted to
(B) log odds (ART-R/1-ART-R), with the selection coefficient given by the calculated gradient (s1, s2, s3).

We trained an ensemble machine learning model to predict selection coefficients based on

the magenta simulation parameters, yielding a statistical model that emulates the underlying

transmission model behaviour and can be subsequently generalised to any malaria setting in

Africa. We tested and confirmed the out-of-sample performance of the emulator, before

leveraging it to estimate the selection coefficient for each resistance marker in all malaria

endemic first-administrative regions in Africa. Given significant uncertainty in parameter

estimates of the main drivers of antimalarial resistance, we also used the emulator to

estimate an upper and lower estimate of selection coefficients, reflecting the 95% confidence

interval range for each magenta simulation parameter. Finally, we checked the validity of the

emulator to recreate the dynamics of emerging ART-R through a statistical comparison

against empirical estimates of selection coefficients calculated previously in Uganda using

longitudinal surveillance of ART-R.17

We used the estimated selection coefficients to simulate the continued spread of resistance

in Africa, with the initial frequency of resistance genotypes given by the earlier mapping of

resistance in Africa. To capture uncertainty in both the initial resistance frequency and the

selection coefficients arising from epidemiological parameter uncertainty, we also modelled

an upper and lower scenario. Initial resistance frequency was set to the 95% credible interval

range from our inferred resistance maps, and selection coefficients were estimated based on

the 95% confidence interval range for magenta simulation parameters.

Given the difficulty in estimating the rate at which malaria parasites under selection spread

geographically,31 we used a simple model of parasite movement in space. Resistant

parasites spread out from a source region to all adjacent first-administrative regions at an

equal rate, with the rate determined such that once resistance in the source region reaches

25% frequency, resistance in all neighbouring regions is established and not susceptible to

stochastic fade-out. Once resistance is established in a neighbouring region (defined as 1%

resistance frequency based on previous antimalarial resistance consensus modelling

exercises (Watson et al. 2022)), we assume all future resistance dynamics are solely

determined by the region’s selection coefficient. Given the use of a single fixed selection

coefficient for each region, this assumes that malaria prevalence and case management in

each region remains constant over time. Using this approach, the resultant range in possible

timelines for the spread of antimalarial resistance in Africa is based only on uncertainty in

current resistance frequency and epidemiological parameters, with a single model of spatial
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spread and no assumed changes in future case management or malaria control. We used

the projected spread of resistance mutations in Africa to infer the increase in the probability

of 28-day treatment failure in each first-administrative region, before using the projected

annual population size in each region to estimate population-weighted treatment failures in

Africa till 2060.32

Results

After cleaning, deduplication, and accounting for mixed infections, we identified 3,808

surveys of resistance collected from 2000 to 2021 in Africa, with a mean number of samples

tested of 65. Surveys provided estimates of the resistance frequency for the K76T locus in

pfcrt, the N86Y and Y184F loci in pfmdr1, WHO validated markers of artemisinin resistance

in pfkelch13 and copy-number variation (CNV) of pfmdr1, and CNV of pfpm2-3

(Supplementary Figure 1). There was considerable spatial and temporal sparsity in the

availability of molecular surveys, with a notable decline in the availability of molecular

surveys in recent years, likely reflecting the delay from sample collection to molecular

surveillance data being published. Analysis of the spatial distribution of all resistance

markers (Supplementary Figures 2-7) revealed significant spatial autocorrelation (p < 0.05)

for all markers except pfmdr1 N86Y. Across Africa, the mean frequency of resistance was

highest for pfcrt K76T and lowest for combined pfkelch13WHO validated markers of ART-R.

From the geostatistical models fit to each marker, we found a significant predictive effect for

all covariates. Specifically focusing on ART-R, we found a positive correlation between

ART-R frequency and both effective treatment coverage and the proportion of ACTs

administered that were AL. Conversely, factors such as higher malaria prevalence, better

healthcare access, and higher GDP were associated with reduced ART-R. The resultant

inferred map of ART-R frequency in Africa confirmed the high spatial autocorrelation, with

the 50% credible interval map indicating limited geographic spread of ART-R, with notable

exceptions seen in the known current hotspots of emerging ART-R in Uganda, Rwanda and

Eritrea (Figure 2). The inferred maps of resistance frequency for ART-R and the other fiver

markers of resistance (Supplementary Figures 8-13) were subsequently used to characterise

the risk of resistance selection by estimating selection coefficients for each marker using the

emulator trained on simulated model outputs for the trajectory of resistance (Supplementary

Figure 14), before conducting forward simulations to project future trends in antimalarial

resistance and treatment failure.
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Figure 2. Frequency of WHO validated pfkelch13 markers of artemisinin resistance. (A) Each point shows

an individual molecular survey for pfkelch13 mutations collected between 2017-2021 in Africa. Point size shows

the number of samples tested, and increasing frequency of WHO validated pfkelch13 markers of artemisinin

resistance (ART-R) is shown in shades of red. Any survey in which no ART-R was observed is shown in black.

(B) Map shows the 50% credible interval estimate from a Bayesian spatial model of ART-R frequency at the

first-administrative region. Any region predicted to have greater than 2.5% ART-R frequency is shown in shades

of red. See appendix for equivalent maps and 95% credible intervals for all other genetic markers modelled.

A single selection coefficient over time was able to capture the dynamics of resistance in the

transmission model output for all the six genotypes of interest. Using our trained emulator,

we mapped the distribution of selection coefficients for ART-R, revealing significant variation

across Africa (Figure 3). For the selection of ART-R, across all first-administrative regions,

our central estimates of selection coefficients ranged from 0.059 - 0.404, representing 5.9% -

40% relative increase in resistance frequency per year (Figure 32A). We observed the

highest selection coefficients, indicating a rapid increase in resistance frequency, in East

Africa, particularly in regions surrounding the current epicentre of emerging ART-R in

Rwanda and Uganda. We used these selection coefficients to estimate the corresponding

time for the ART-R to increase from 1% to 10% frequency, which ranged between 5.9 - 40.7

years (Figure 3B). An analysis of the partial predictive plots for the emulator showed that the

spatial pattern observed in the mapped selection coefficients was driven predominantly by

high effective treatment coverage, with low malaria prevalence and low levels of multiple

ACTs being used, as determined by a higher proportion of all ACTs administered being AL,

driving higher selection coefficients (Supplementary Figure 15).

We tested the validity of the developed emulator model by comparing the predicted selection

coefficients in Uganda against those previously estimated directly using longitudinal

molecular surveillance data between 2016-2022. The model predictions for Uganda closely

matched the empirical estimates, with the modelled central estimate for each region included
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in the 95% confidence interval estimated from longitudinal surveillance data for each region

and nationally (Figure 3C). Overall, the model-predicted selection coefficients were lower

than those estimated directly from the observed data. However, they were a significantly

better fit to the observed data than the predicted selection coefficients estimated when

non-malarial fevers were not accounted for in the model (Supplementary Figure 16). When

accounting for uncertainty in parameter estimates of the main drivers of antimalarial

resistance, the mean increase and decrease in selection coefficients across all regions was

13.9% (95% CI: 4.3% - 30.9%) and 18.4% (95% CI: 4.7% - 44.0%) for the upper and lower

estimates respectively (Supplementary Figure 17).

Figure 3. Risk of artemisinin selection in Africa. A) Mapped distribution of selection coefficients for artemisinin
resistance in Africa and B) the resultant modelled time in years for artemisinin resistance (ART-R) to increase
from 1% to 10% frequency. C) Out of sample comparison of model predicted selection coefficients (red) for
Uganda against directly estimated selection coefficients (blue) from Meier-Scherling et al. (2024). Points and
whiskers in blue represent median and 95% CrI from Meier-Scherling et al. (2024) and points and whiskers in red
show the central, upper and lower estimates based on the median and 95% CI estimates for model simulation
parameters.

If current malaria prevalence and treatment coverage and drug policies remain constant, our

scenario projections predict that ART-R will continue to spread across Africa over the next
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20 years (Figure 4). The model predicts that resistance will continue to spread from the

current hotspots in Rwanda and Uganda, with significant expansion into neighbouring

countries such as Kenya and Tanzania. In our central scenario, we predict that ART-R will be

greater than 10% frequency by 2040 in the majority of first-administrative regions in 16

countries, mostly concentrated in East Africa. When accounting for uncertainty in parameter

estimates of the main drivers of antimalarial resistance, we predict that ART-R will be greater

than 10% frequency by 2040 in 11 and 26 countries based on the lower and upper

parameter estimate uncertainty (Supplementary Figure 18).

Figure 4. Spread of artemisinin resistance frequency in Africa. The central estimate for the predicted spread
of artemisinin resistance frequency (ART-R) in Africa during 2020 - 2040. ART-R is predicted to spread out from
the current epicentres of artemisinin resistance in Rwanda and Uganda, with 16 countries predicted to have
greater than 10% ART-R by 2040 in the majority of first-administrative regions.

In our modelled scenarios of the spread of ART-R, the fastest selection of ART-R occurs in

settings that also select quickly for the pfmdr1 Y184F mutation and pfmdr1 CNV, which

confers an increased tolerance to lumefantrine. The resultant selection of both ART-R and

decreasing lumefantrine efficacy leads to decreases in the average efficacy of AL and

increases in the percentage of 28-day treatment failures across Africa. Using our central

estimates for the speed of selection, we predict that the mean percentage of treatment

failures across Africa, weighted by predicted population sizes in 2060 and based on current

clinical incidence rates per capita, will reach 30.74% by 2060 (Figure 5, Table 1). When

accounting for uncertainty in parameter estimates of the main drivers of antimalarial

resistance, our estimates range between 24.98% - 34.54% for the lower and upper

parameter estimate uncertainty, respectively. Using current estimates of effective-treatment

coverage, this translates to 52,980,600 absolute occurrences of treatment failure in 2060,

ranging between 26,374,200 - 93,672,400 for the lower and upper parameter estimate

uncertainty, respectively.
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Figure 5. Projected treatment failure in Africa without changes in drug policy. (A) The modelled increase in
treatment failure and (B) absolute number of treatment failures over the next 40 years under the upper, central
and lower scenarios, where upper and lower scenarios reflect the 95% CI uncertainty in parameter estimates of
the main drivers of antimalarial resistance.
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Table 1. Average Treatment Failure and Absolute Number of Treatment Failures in Africa in 2060
ISO3C Country Treatment Failure (%) Absolute Treatment Failures
AGO Angola 10.73% (8.50% - 16.30%) 836,200 (343,100 - 2,236,800)

BDI Burundi 38.29% (34.93% - 38.97%) 1,232,800 (605,200 - 2,160,600)

BEN Benin 24.82% (16.01% - 34.86%) 507,600 (206,100 - 1,085,600)

BFA Burkina Faso 40.30% (26.78% - 42.21%) 2,466,400 (955,800 - 4,132,000)

BWA Botswana 16.36% (14.28% - 25.16%) 100 (0 - 100)

CAF Central African Republic 19.48% (12.25% - 31.97%) 99,900 (28,900 - 330,200)

CIV Côte d’Ivoire 10.47% (8.06% - 16.43%) 322,600 (140,000 - 850,100)

CMR Cameroon 28.42% (18.00% - 36.24%) 1,136,500 (411,200 - 2,331,000)

COD Democratic Republic of Congo 13.13% (8.64% - 19.03%) 3,322,800 (1,295,700 - 7,624,500)

COG Republic of Congo 40.55% (27.29% - 42.52%) 393,200 (149,200 - 699,900)

DJI Djibouti 41.99% (39.70% - 42.64%) 18,400 (16,100 - 19,900)

ERI Eritrea 19.35% (17.51% - 20.53%) 12,000 (6,700 - 18,500)

ETH Ethiopia 22.76% (14.59% - 32.61%) 452,000 (143,100 - 1,076,200)

GAB Gabon 18.01% (14.07% - 26.22%) 40,200 (15,800 - 106,500)

GHA Ghana 35.55% (33.20% - 35.91%) 1,730,000 (984,300 - 2,680,300)

GIN Guinea 18.20% (13.24% - 28.36%) 248,300 (100,900 - 655,700)

GMB Gambia 16.21% (11.24% - 26.35%) 7,200 (3,500 - 15,900)

GNB Guinea-Bissau 23.01% (12.11% - 34.97%) 16,900 (3,300 - 56,300)

GNQ Equatorial Guinea 41.56% (20.88% - 42.68%) 154,900 (46,200 - 253,100)

KEN Kenya 42.28% (40.83% - 42.70%) 1,165,500 (682,500 - 1,846,500)

LBR Liberia 34.10% (27.70% - 34.69%) 608,800 (276,300 - 1,057,900)

MDG Madagascar 12.00% (9.84% - 16.90%) 236,800 (112,600 - 511,100)

MLI Mali 23.75% (13.82% - 35.71%) 959,200 (330,100 - 2,322,800)

MOZ Mozambique 41.34% (36.86% - 42.48%) 4,187,100 (2,618,400 - 6,028,700)

MRT Mauritania 8.68% (8.65% - 9.74%) 8,000 (2,400 - 19,600)

MWI Malawi 41.42% (37.52% - 42.25%) 1,593,000 (779,300 - 2,772,300)

NAM Namibia 34.55% (22.79% - 40.79%) 5,400 (2,600 - 8,500)

NER Niger 18.28% (12.71% - 31.78%) 606,000 (211,400 - 1,965,900)

NGA Nigeria 34.38% (22.02% - 40.20%) 14,063,200 (6,055,300 - 23,926,400)

RWA Rwanda 40.39% (37.74% - 41.88%) 375,700 (249,700 - 520,100)

SDN Sudan 40.04% (25.24% - 42.31%) 1,051,100 (270,200 - 2,215,100)

SEN Senegal 7.84% (7.29% - 9.54%) 19,800 (12,900 - 33,100)

SLE Sierra Leone 42.34% (37.88% - 42.70%) 918,500 (477,400 - 1,501,600)

SOM Somalia 11.41% (8.53% - 17.00%) 9,700 (3,000 - 30,000)

SSD South Sudan 10.79% (9.94% - 13.19%) 106,200 (46,000 - 249,800)

SWZ Eswatini 15.66% (12.47% - 21.63%) 0 (0 - 100)

TCD Chad 8.51% (7.53% - 11.36%) 121,800 (55,300 - 296,600)

TGO Togo 35.88% (24.78% - 40.55%) 405,300 (161,300 - 758,100)

TZA Tanzania 42.60% (42.22% - 42.79%) 4,621,400 (2,929,500 - 6,932,600)

UGA Uganda 42.59% (42.19% - 42.81%) 6,739,200 (4,314,500 - 10,915,600)

ZAF South Africa 17.64% (13.68% - 23.84%) 1,000 (700 - 1,400)

ZMB Zambia 42.85% (42.63% - 42.91%) 2,161,500 (1,321,200 - 3,372,400)

ZWE Zimbabwe 16.77% (11.42% - 28.09%) 18,400 (6,400 - 53,100)

AFR Africa 30.74% (24.98% - 34.54%) 52,980,600 (26,374,200 - 93,672,400)
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Discussion

In this study, we modelled the risk of selection and spread of ART-R in Africa, providing a

detailed assessment of how resistance could evolve and expand over the coming decades.

Our findings indicate that the highest selection coefficients for ART-R are predominantly

located in regions with high effective treatment coverage with predominantly one ACT, low

malaria prevalence and high partner drug resistance. In particular, our model framework

correctly identified the current epicentres of ART-R in Rwanda and Uganda and surrounding

regions as those with the highest selection coefficient for ART-R, with the selection

coefficients inferred in Uganda consistent with those measured directly from longitudinal

molecular surveillance.17 In forward scenario projections without changes in drug policy, we

predict that ART-R will exceed 10% frequency by 2040 in sixteen African countries,

concentrated in East Africa near the current epicentre of ART-R in Rwanda and Uganda.

The resultant reduction in treatment efficacy could lead to greater than 30% 28-day

treatment failure rates on average in Africa by 2060, resulting in tens of millions of treatment

failures by 2060.

The implications of these findings for malaria control are profound. The projected rise in

treatment failures due to ART-R highlighted in our projections signals a growing public health

crisis. If current treatment policies remain unchanged, treatment failure rates could escalate

above the WHO treatment failure threshold of 10%, severely undermining our ability to

effectively treat malaria cases, reducing and leading to a resurgence in malaria morbidity

and mortality. The current reliance on artemisinin in combination therapies and clear

potential for ART-R to spread requires immediate containment strategies in high-risk areas.

Firstly, there is an urgent need to strengthen molecular surveillance systems across Africa to

detect and monitor the spread of ART-R.5 Current surveillance efforts are concentrated in a

few regions, with our spatial mapping of antimalarial resistance markers showing large

regions of the continent under-monitored, significantly limiting the precision in our efforts to

map antimalarial resistance. Expanding molecular surveillance to regions without recent and

comprehensive surveillance, particularly those we identified with high selection coefficients

for ART-R, is essential to improve mapping efforts and providein providing sufficiently early

detection of ART-R for effective containment strategies to be implemented. Molecular

surveillance must also include partner drug resistance markers and be integrated with

routine malaria case management monitoring.33 We also need additional and more flexible

early warning tools to detect increasing ACT tolerance. Monitoring the proportion of treated

malaria patients returning to clinics with recurrent infections,11 the time to reinfection after
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treatment34 and the therapeutic efficacy in imported malaria cases in non-endemic regions12

all provide additional lenses to detect decreasing ACT susceptibility earlier.

The close agreement between our modelled selection coefficients and those directly

measured in Uganda17 provides increased confidence that our modelling framework reflects

the current emergence of ART-R in Uganda. However, our central estimates of the speed of

selection of ART-R in Ethiopia are very low, due to low effective-treatment coverage

estimates, and likely underestimate the risk of ART-R selection given the emergence of 662I

mutations. These contrasting findings, however, could be explained by the considerable

uncertainty in our modelled scenarios and why the full range of uncertainty presented should

be considered. Much of the uncertainty is due to uncertainty in our subnational estimates of

malaria prevalence, effective treatment coverage, the relative use of different ACTs and

current levels of antimalarial resistance. This uncertainty causes our upper estimate of the

absolute number of treatment failures (93,672,400) to be over three and half times larger

than our lower estimate (26,374,200). Improving estimates and our understanding of each of

these factors is necessary to improve the accuracy and precision of modelling, while also

enabling the design of region-specific public health policies to combat resistance.

In an effort to provide a comprehensive assessment of resistance across Africa, we

introduced various limiting assumptions in our study. While we characterised the impact of

uncertainty in a number of key drivers of resistance, there are other drivers that were not

explored as extensively in our sensitivity analyses. Our results show that accounting for

individuals with asymptomatic malaria infection seeking treatment for a non-malarial febrile

illness increases ART-R selection. However, current estimates of subnational and

age-disaggregated estimates of the frequency of these events are limited.36 The impact of

the private drug market towards resistance is poorly understood. While our estimates of

effective treatment coverage do account for the private market, the quality of private market

drugs may be lower than in the public sector. Similarly, incomplete drug adherence is also

not explicitly modelled, although substantial evidence points towards significant

heterogeneity in adherence.13 Furthermore, while the spatial model of parasite movement to

simulate the geographic spread of resistance is a practical simplification, it does not fully

account for the complex human and environmental factors that influence parasite migration

and gene flow across regions. Lastly, the assumption of constant malaria transmission

intensity and treatment coverage over time is clearly an incorrect assumption. However, it is

helpful nonetheless in providing a counterfactual for the possible spread of resistance if

changes in treatment policy, such as MFT or novel non-artemisinin combination therapies

such as ganaplacide-lumefantrine, are not implemented.
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Despite these limitations, the generated results, including spatial estimates of current

resistance frequency, identification of regions most likely to select for resistance once

established and scenario timelines for further resistance spread under current drug policies,

will help guide future efforts to combat antimalarial resistance. Further, it is clear that ART-R

resistance is emerging and increasing in Africa and policy makers will need to consider

alternative strategies to combat resistance. Widespread availability of

ganaplacide-lumefantrine is likely still five years away with Phase 3 trials ongoing after

successful Phase 2 results,37 which will reduce selective pressures on artemisinin but is

reliant on lumefantrine remaining fully effective. Triple artemisinin combination therapies are

a particularly promising tool to combat resistance, reinforcing the effectiveness of combining

drugs in a single formulation and removing the time window between parasites being

exposed to different drugs.38 Before these new tools are widespread, strategic use of

multiple first-line therapies will likely be needed to limit the selection of resistance, which will

require careful consideration of the logistical challenges of distributing multiple treatments

across diverse and resource-constrained settings. Importantly, each of these changes in

treatment policies will not prevent resistance unless resistance drivers, such as incomplete

drug adherence, lack of diagnostic testing and private marker drug quality are addressed. As

with many areas of malaria control, it is likely that multiple tools, evolving over time to keep

pace with parasite evolution, will be needed to prevent resistance, reversing the last two

decades of reductions in malaria burden.
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