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Abstract 1 

Current studies of the JYNNEOS-induced neutralizing antibody response to monkeypox virus (MPXV) are limited by 2 

either short-term durability data, quantification in an endemic population, or lack of an infectious MPXV neutralization 3 

assay. We used plaque reduction neutralization test (PRNT) with authentic MPXV and vaccinia viruse (VACV) to assess 4 

antibody responses over twelve months of eight donors vaccinated with two doses of JYNNEOS. One donor previously 5 

received the ACAM2000 vaccine; seven donors were smallpox-vaccine naïve. The IgG response of the donors to VACV 6 

(L1R, B5R, and A33R) and MPXV (E8L, H3L, A35R) antigens and PRNT titers to both viruses peaked at eight weeks post-7 

vaccination and waned thereafter in naïve donors. MPXV PRNT titers were especially low; no naïve donors produced a 8 

detectable PRNT90 titer. Our results suggest the MPXV humoral response produced by JYNNEOS is limited in naïve 9 

donors and invites further investigation into current mpox vaccination strategies and correlates of protection. 10 

 11 

Abstract word count: 150 words  12 
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Introduction 13 

Monkeypox virus (MPXV), the causative agent of mpox disease, is an emerging public health concern. MPXV is 14 

considered endemic in areas of central and western Africa, where it causes thousands of cases annually (1). In 2022, a 15 

large global outbreak of mpox spread primarily among men who have sex with men. The 2022 outbreak heightened 16 

awareness of the need for preventative measures against transmission and severe mpox disease, triggering a public 17 

health campaign that included recommending behavioral changes and vaccination with the Modified vaccinia Ankara-18 

Bavarian Nordic (MVA-BN) vaccine for populations most at risk. Little was known about the efficacy or durability of the 19 

neutralizing antibody response produced by MVA-BN against MPXV at the time of this global outbreak. 20 

MPXV is a member of the Orthopoxvirus genus and is related to variola virus, the causative agent of smallpox, as 21 

well as less virulent genus members including cowpox and vaccinia (VACV). Due to their relatedness, immunity elicited 22 

from vaccinia-based smallpox vaccines produces cross reactivity against MPXV (2, 3). First and second generation 23 

smallpox vaccines comprised of replication competent strains of vaccinia are currently not recommended to the general 24 

population due to potentially severe or fatal side effects for some individuals, including those infected with HIV (4). 25 

MVA-BN is considered a safer, “third generation” smallpox vaccine as it is a highly passaged vaccinia strain that does not 26 

replicate in humans. Due to the public health urgency, MVA-BN was approved for vaccination to protect against mpox 27 

disease in the United States and Europe prior to fully establishing the potency and durability of its neutralizing antibody 28 

response to MPXV in humans of a non-endemic region (5, 6).   The United States Food and Drug Administration (FDA) 29 

approved use of MVA-BN under the name JYNNEOS in 2019, while the European Medicines Agency (EMA) approved it 30 

under the name IMVANEX in 2022. 31 

Epidemiological studies from the US support vaccine efficacy for MVA-BN and have estimated its effectiveness 32 

against MPXV to range from 66 to 88.5% in fully vaccinated individuals (7-10). However, the majority of mpox cases 33 

captured occurred less than six months after the peak of MVA-BN vaccine administration in the US, and the potential for 34 

waning efficacy was not assessed in these studies. Impacts of behavioral changes are also hard to quantify and the role 35 

of MVA-BN in quelling the mpox outbreak in the US has been challenged by modeling of infection rates during the 2022 36 

epidemic (11).  Paredes et al [11] concluded that mpox transmission dropped dramatically before vaccination-induced 37 
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immunity could play a role. Multiple cases of breakthrough mpox infection have been reported to occur within a year of 38 

MV-BN vaccination response, raising further questions about the efficacy and durability of the vaccine-induced immune 39 

response (12). Here we characterize the efficacy and durability of neutralizing antibody (nAb) responses generated by 40 

the JYNNEOS vaccine to MPXV in a small cohort of donors using a native MPXV plaque reduction neutralization test 41 

(PRNT). We found that vaccinees without known exposure to earlier smallpox vaccines had limited neutralizing capacity 42 

against MPXV which waned in less than a year. 43 

Materials and Methods 44 

Human Subjects  45 

This assay development study was performed using deidentified sera and plasma for a public health function in a 46 

declared Public Health Emergency (PHE). It has been deemed “Non-human subject research” by the NYS Institutional 47 

Review Board. The vaccinee cohort is composed of 8 serum specimens from NYS Department of Health employee 48 

donors who were vaccinated with JYNNEOS® because of potential occupational exposure. 49 

 50 

Viruses and Cells 51 

The following reagents were obtained through BEI Resources, NIAID, NIH: Vaccinia Virus, Western Reserve (NIAID, Tissue 52 

Culture Adapted), NR-55 and Monkeypox Virus, USA-2003, NR-2500. Virus stocks were passaged once in Vero E6 cells 53 

(African green monkey kidney, ATCC CRL-1587) maintained in Eagle’s Minimum Essential Medium (EMEM) with 2% heat-54 

inactivated fetal bovine serum, Penicillin (100 unit/mL) and Streptomycin (100 µg/mL). 55 

Sonication 56 

Sonication was performed in sealed tubes with the Virtis Virsonic 100 cup horn sonicator continuously cooled to 4°C 57 

with a circulating water bath. Virus was diluted in Eagle's EMEM with 2% fetal bovine serum and separate aliquots were 58 

sonicated with increasing intensity at settings 2, 3, 4, and 5 for four five second bursts separated by five second rest 59 

intervals to determine optimal sonication conditions. 60 
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Plaque reduction neutralization test (PRNT) 61 

Test serum was not heat inactivated unless otherwise noted. Each serum sample was serially diluted 2-fold in EMEM + 62 

2% FBS. An equal volume of media containing either VACV or MPXV was sonicated at setting 3 and added to each 63 

sample at a concentration expected to yield approximately 100 plaque forming units (PFU). The virus:serum mixture was 64 

incubated at 37°C for 1 hour, with the exception of experiments in Figure S3, which took place for 24 hours. The mixture 65 

was then inoculated onto VeroE6 cell monolayers and adsorbed for 1 hour at 37°C. EMEM media containing 0.6% oxoid 66 

agarose was then added to wells, allowed to solidify, and incubated at 37°C with 5% CO2. A secondary overlay containing 67 

0.2% neutral red (manufacturer details) was added for plaque visualization at 48 hours post infection.  Plaques were 68 

counted 24 hours later. Neutralization titers were determined as the serum dilution resulting in a 50% (PRNT50) or 90% 69 

(PRNT90) plaque reduction compared to the virus working dilution (approximately 100-250 PFU). Virus inoculum used to 70 

enumerate the working dilution was incubated in media alone alongside virus:sera samples prior to infection and then 71 

titrated by plaque assay in parallel to PRNT. Positive and negative control antibodies were included in each assay and a 72 

four-fold difference in the range of control antibodies would result in rejection of assay results. PRNT titers measuring 73 

the efficacy of JYNNEOS in vaccinated donors over time are the result of two independent experiments, except Figure 74 

S3, which represents only a single assay.  75 

Recombinant OPV Antigens 76 

Recombinant proteins were obtained from several sources. Recombinant A33R (VAC-WR-A33R; Cat# NR545), B5R (VAC-77 

WR-B5R; Cat# NR-546) and L1R (VAC-WR-L2R; Cat# NR-21986) were obtained from BEI Resources, Manassas VA. Mpox 78 

A35R (Cat # 230-30238), E8L (Cat# 230-30232) and H3L (Cat# 230-30233) were purchased from Ray Biotech, Peachtree 79 

Corners, GA. 80 

 81 

Orthopoxvirus-specific Multiplex Microsphere Immunoassay (MIA) 82 

Specimens were assessed for the presence of antibodies reactive to OPV antigens using an MIA as previously described 83 

(12). Recombinant proteins were covalently linked to the surface of fluorescent, magnetic microspheres (Luminex 84 
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Corporation). Serum or plasma samples (25 µl at 1:100 dilution) and antigen-coupled microspheres (25 µl at 5x104 85 

microspheres/mL per manufacturer instructions) were mixed and incubated for 30 minutes at 37°C. Serum-bound 86 

microspheres were washed and incubated with phycoerythrin (PE)-conjugated secondary antibody specific for human 87 

IgG (Southern Biotech). After washing and final resuspension in buffer, the samples were analyzed on a FlexMap 3D 88 

analyzer using xPONENT software, version 4.3 (Luminex Corporation). 89 

 90 

Calculation of Cutoffs and Index Values 91 

ROC curves were generated in GraphPad Prism 9.1.0 for each antigen based on the MFI values of the 120 mpox-negative 92 

donors born after 1970 and 40 mpox-positive confirmed donors. Sensitivity and specificity values generated by the ROC 93 

curve were used to calculate cutoffs using a Youden’s J index (J = sensitivity + specificity – 1) for the range of MFI values 94 

in the ROC analysis. The cutoff value was set as the MFI equaling the highest Youden’s J index which represents the best 95 

balance of specificity and sensitivity over the range of the assay. MFI signals for antigen comparisons were normalized 96 

for background fluorescence using an index value (MFI / clinical cutoff). 97 

Statistical Analyses  98 

One-way ANOVA was used to assess statistical significance. For multiple comparisons of the differences in means of 3 or 99 

more groups to a control group, one-way ANOVA was followed by the Dunnett's multiple comparison test. 100 

 101 

Results 102 

Studies were performed with donated sera from individuals (n=8) immunized with a two-dose regimen of the 103 

JYNNEOS vaccine against potential occupational exposure. Vaccine doses were administered approximately 28 days 104 

apart and sera were collected from all participants shortly before JYNNEOS vaccination (pre-vax) and at sequential time 105 

points until 12 months post-vaccination. Seven donors were administered the vaccine subcutaneously and one donor 106 

received the vaccine intradermally.  One donor had received ACAM2000, a second-generation smallpox vaccine 107 

approximately five years prior to JYNNEOS vaccination. The remaining donors were determined to be previously 108 
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smallpox-vaccine naïve by a combination of personal account, lack of a vaccine “take” scar, and/or age. Due to 109 

differences in timing of immunization, the 12-month sampling point included sera for only seven of the eight 110 

participants.  111 

Donor sera were examined for IgG reactivity to MPXV- and VACV -derived antigens by using a previously 112 

described microsphere immunoassay (13) to assess overall antibody levels and cross-reactivity to MPXV in response to 113 

JYNNEOS vaccination. Orthopoxvirus virions have two forms, which differ in their surface proteins: intracellular mature 114 

virions (IMV) and extracellular enveloped virions (EEV), so antigens from each form were tested. VACV L1R and MPXV 115 

E8L are found on IMVs, while the remaining antigens are found on EEVs. VACV recombinant proteins L1R, A33R, and B5R 116 

were selected for quantification as immunization by these antigens and VACV A27L demonstrated protection from lethal 117 

mpox in nonhuman primates (14). MPXV recombinant protein antigens were chosen by availability.  118 

Sera from the donor with prior smallpox vaccination (Fig 1A-B) displayed much higher IgG reactivity than the 119 

naïve donors and was excluded from the mean values in Fig 1C-D. In naïve donors, the mean sera IgG reactivity became 120 

positive for all VACV antigens tested with VACV L1R showing the highest mean IgG reactivity of all antigens tested (Fig 121 

1D). In contrast, E8L was the sole MPXV antigen with positive mean IgG reactivity in naïve donors despite MPXV A35R 122 

being homologous to VACV A33R (Fig 1C). For all antigens, IgG reactivity peaked at approximately eight weeks post initial 123 

dose and waned thereafter, indicating the antibody response generated by JYNNEOS is short-lived in naive individuals 124 

(15). In contrast, sera from the previously vaccinated individual remained stably positive beyond 250 days post-125 

vaccination for all antigens with the exception of MPXV A35R (Fig 1A-B).  We also noted that sera from naive individuals 126 

reacted most strongly to the IMV antigens from both viruses (L1R and E8L). This bias towards MPXV IMV antigen E8L was 127 

not present in sera from the previously vaccinated individual despite their response to VACV L1R being more robust.  128 

The PRNT is considered the gold standard for measuring neutralizing antibody levels as it directly measures 129 

inhibition of native virus infection. Our PRNT was developed by minor modifications of a standard assay (16, 17).  130 

Orthopoxviruses such as VACV are known to form multi-virion aggregates (18, 19) and such structures are capable of 131 

affecting antibody binding interactions and neutralizing properties (20, 21). As preliminary MPXV assays showed 132 

variability and non-uniform plaque clusters (Fig S2), we introduced a sonication step. The sonication conditions of VACV 133 
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and MPXV stocks used in our study were determined empirically by sonicating at increasing levels of intensity using a 134 

cup horn sonicator. While plaque titrations of MPXV without sonication produced visible clusters of plaques which 135 

prevented accurate titer estimation, even low levels of sonication treatment resulted in well separated MPXV plaques 136 

and significantly increased titers (p = 0.0166, Fig S2). We chose the third intensity setting “S3” for subsequent use as it 137 

was the lowest setting that provided significantly increased plaque numbers for both viruses (p = 0.0185, Fig S2). Virus 138 

was sonicated according to this procedure at the start of each PRNT.  139 

We also considered the duration of virus incubation with sera prior to infection, as some PRNT studies of MPXV 140 

and VACV neutralization have extended the virus:sera incubation to overnight rather than one hour at 37oC (22, 23). We 141 

found that the extended incubation time was suboptimal despite producing increased PRNT50 titers because infectivity 142 

of the viruses also decreased independently of neutralizing antibodies with the extended adsorption time. MPXV 143 

demonstrated a 43.2% reduction in mean working dilution (p <0.00001) while VACV demonstrated a 20.9% reduction (p 144 

= 0.00121) (Fig S3B).  This decreased infectivity suggested virus instability during the extended incubation time, which 145 

was greater for MPXV than VACV (Fig S3B).  146 

Neutralizing antibody responses were measured for both MPXV and VACV by PRNT (Fig 2). The donor with prior 147 

smallpox vaccination had higher levels of neutralization than the naïve donors (Fig 2A-B) and is the only individual that 148 

produced a positive PRNT90. (Fig 2). Due to the difference in vaccination history, data points from this individual are 149 

shown in plots but were excluded from the overall mean PRNT titer calculations.  150 

In all previously naïve individuals tested, the neutralizing antibody responses toward MPXV peaked at an 151 

average geometric mean PRNT50 titer (GMT) of 1:35 approximately one month following the 2nd dose of JYNNEOS and 152 

quickly waned to below the 1:20 limit of detection (LOD) (Fig 2). Comparatively, neutralization of VACV was better than 153 

MPXV following just one dose of vaccine and was more robust with a peak GMT PRNT50 of 1:61 at eight weeks post 154 

initial dose (Fig 2-3). Neutralization of either virus waned similarly over time post-vaccination (Fig 2). One individual 155 

mounted no detectable neutralization response to MPXV (Fig. 2A). PRNT50 titers of most individuals to MPXV and VACV 156 

were below the limit of detection for both viruses by 12 weeks post initial vaccine dose (Fig 2A-B). At 12 months, post-157 

vaccination sera from previously naïve individuals retained some reactivity to VACV with a PRNT50 GMT of 1:23, but 158 
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neutralization of MPXV was at or below the PRNT50 LOD with a GMT of 1:12 (Fig 3). No naïve donors produced a 159 

detectable PRNT90 titer of at least 1:20 to either MPXV or VACV at any time point. 160 

                                               161 

Discussion 162 

The low levels of MPXV-neutralizing activity induced by JYNNEOS vaccination observed in this study are 163 

consistent with results of other recent studies, some of which have raised concerns over the efficacy and durability of 164 

MVA-BN vaccines in preventing mpox disease and spread (24, 25). We also found that neutralization titers can be 165 

impacted by assay conditions, which should be considered when comparing neutralizing activity levels from different 166 

studies. Empirical testing of MPXV PRNT assay conditions revealed that sonication can improve plaque quality and assay 167 

reliability, warranting its inclusion as part of a standardized protocol. In contrast, MPXV stability concerns argue against 168 

extending the pre-infection incubation period from one hour to overnight despite some increased sensitivity.   169 

The donor who received prior ACAM2000 vaccination produced a greater IgG response and higher neutralization 170 

titers than naïve donors. However, the extent to which this individual’s neutralizing antibody response to MPXV was 171 

impacted by intrinsic differences between ACAM2000 and JYNNEOS, such as replication competence, versus the 172 

boosting of a memory response by additional vaccine doses is unclear. Other studies suggest that neutralizing antibody 173 

responses to MPXV can be enhanced by either a third MVA booster dose following the initial series or MVA vaccination 174 

after a first-generation smallpox vaccination (24, 26, 27).  Both immunization strategies produced elevated neutralizing 175 

antibody levels to VACV that were stable when measured out to six months (28). MPXV neutralizing antibody levels can 176 

likewise be enhanced by both strategies, albeit to a lesser degree.  One important caveat is that currently available 177 

studies measure MPXV antibody levels only shortly after boosting and thus do not address durability of the effect of 178 

prior vaccination history (24, 26). 179 

There is evidence that first generation smallpox vaccines can produce a degree of a long-lasting humoral 180 

response to MPXV (24, 29, 30). However, long term studies on the durability of the MPXV-neutralizing antibody 181 

response derived from the second-generation vaccine ACAM2000 were not evaluated when the FDA established non-182 
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inferiority of JYNNEOS to ACAM2000 (31-33). While ACAM2000 is a replicating vaccinia strain derived from the live 183 

Dryvax vaccine, MVA-BN is a vaccinia strain which contains mutations and deletions that restrict its replication in human 184 

cells. Due to these differences, both the durability and the specificity of immune response elicited by MVA-BN may bear 185 

less similarity to historical smallpox vaccination than expected and should be evaluated further.  For example, IgG levels 186 

induced by JYNNEOS vaccination exhibited a temporal response in naive vaccinees, which mirrored the waning 187 

neutralizing antibody response observed in this study and showed differential reactivity between VACV and MPXV 188 

antigens. Further testing is also needed to establish which antigens are important in eliciting neutralizing antibodies to 189 

MPXV and determine whether JYNNEOS preferentially elicits antibody responses to intracellular mature virions versus 190 

antigens associated with the extracellular envelope.   191 

The possibility of a more efficacious cellular immune response to MPXV also warrants consideration. Cohn et al 192 

found that JYNNEOS vaccination led to an increase in CD4 and CD8 T cells that could recognize and respond to 193 

Orthopoxvirus specific antigens [14]. These CD4 and CD8 T cell responses from the JYNNEOS 2-dose recipients were 194 

similar to those of MPXV-convalescent donors.  Cytokine responses were also comparable in the vaccinated versus 195 

convalescent groups. However, the protectiveness of these cellular responses and their longevity requires further study, 196 

as samples from vaccinated and convalescent donors were collected up to approximately four months post exposure.   A 197 

comparative challenge study of MVA-BN and ACAM2000 immunized rhesus macaques also found that both vaccines 198 

produced similar T cell responses to VACV lysate (34). 199 

Mpox remains a threat to public health, as transmission is an ongoing issue.  While the 2022 global outbreak was 200 

driven by strains of MPXV Clade IIb, the more virulent Clade I MPXV strains have recently demonstrated the capacity for 201 

sexual transmission within endemic regions such as the Democratic Republic of Congo (35, 36). Documented cases of 202 

vaccine breakthrough infections and re-infection further underline the continuing need for effective means of 203 

preventing mpox transmission (37). Careful examination of current vaccination strategies and responses is urgently 204 

needed to ensure the long-term mitigation of mpox in endemic areas and prevention of ongoing global spread.  205 

 206 
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Figures 318 

 319 

Figure 1: IgG antibody reactivity to orthopoxvirus antigens in JYNNEOS vaccinees with and without prior smallpox 320 
vaccination. 321 

Serum specimens from eight JYNNEOS vaccine recipients were analyzed for IgG reactivity to recombinant protein 322 
antigens derived from mpox or vaccinia virus by microsphere immunoassay. One donor with who received ACAM2000 323 
prior to JYNNEOS is shown separately in A and B. Means of seven individuals who had no prior smallpox vaccination are 324 
shown in C and D.  Mean index values (MFI/cutoff) of MPXV E8L (gray squares), MPXV A35R (blue triangles) and MPXV 325 
H3L (white diamonds) were plotted for days 0, 8, 26, 56, 118, 231, and 434 post-vaccination (A,C). Mean index values 326 
(MFI/cutoff) of VACV L1R (white circles), VACV A33R (orange triangles) and VACV B5R (gray circles) were plotted for 0, 8, 327 
26, 56, 118, 231, and 434 post-vaccination (B, D). The black dashed line at y = 1.0 indicates the cutoff value. The dotted 328 
line indicates the second dose of vaccine at day 28 post vaccination. 329 
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 334 

Figure 2. PRNT titers for participants vaccinated with JYNNEOS up to six months prior. 335 

Sera from donors vaccinated with two doses of JYNNEOS approximately 28 days apart were tested by PRNT. Assays were 336 
performed with sonicated virus and a one hour virus:sera incubation. A) MPXV PRNT50 and B) VACV PRNT50 C) MPXV 337 
PRNT90 and D) VACV PRNT90.  Participants with no known vaccinia exposure (black circles) are used for mean 338 
calculations. Data from a single donor with prior smallpox vaccination (black Xs) are plotted separately and excluded 339 
from mean calculations.  Each datapoint represents the geometric mean titer (GMT) of two independent experiments 340 
performed in duplicate. The vertical dotted lines represent the timing of the vaccine doses and the limits of detection 341 
(LOD) are expressed by horizontal dotted lines. 342 
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 344 

Figure 3. Longitudinal neutralizing antibody response by JYNNEOS vaccination extending to 12 months. 345 

Sera from donors vaccinated with two doses of JYNNEOS approximately 28 days apart were tested by PRNT. Assays were 346 
performed with sonicated virus and a one hour virus:sera incubation. A) MPXV PRNT50 and B) VACV PRNT50 C) MPXV 347 
PRNT90 and D) VACV PRNT90.  Data from a single donor with prior smallpox vaccination are plotted separately (Xs).  Data 348 
from participants with no known vaccinia exposure were used for mean calculations (black circles). Each datapoint 349 
represents the geometric mean titer (GMT) of two independent experiments, each performed in duplicate. Limit of 350 
detection (LOD) is expressed by horizontal dotted line. 351 
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