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Abstract 

Genomic surveillance data are used to detect communicable disease clusters, typically 

by applying rule-based signaling criteria, which can be arbitrary. We applied the prospective 

tree-temporal scan statistic (TreeScan) to genomic data with a hierarchical nomenclature to 

search for recent case increases at any granularity, from large phylogenetic branches to small 

groups of indistinguishable isolates. Using COVID-19 and salmonellosis cases diagnosed among 

New York City (NYC) residents and reported to the NYC Health Department, we conducted 

weekly analyses to detect emerging SARS-CoV-2 variants based on Pango lineages and clusters 

of Salmonella isolates based on allele codes. The SARS-CoV-2 Omicron subvariant EG.5.1 first 

signaled as locally emerging on June 22, 2023, seven weeks before the World Health 

Organization designated it as a variant of interest. During one year of salmonellosis analyses, 

TreeScan detected fifteen credible clusters worth investigating for common exposures and two 

data quality issues for correction. A challenge was maintaining timely and specific lineage 

assignments, and a limitation was that genetic distances between tree nodes were not 

considered. By automatically sifting through genomic data and generating ranked shortlists of 

nodes with statistically unusual recent case increases, TreeScan assisted in detecting emerging 

communicable disease clusters and in prioritizing them for investigation. 
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Introduction 

Whole genome sequencing (WGS) data are increasingly used by public health officials 

for communicable disease surveillance and cluster detection (1). For example, SARS-CoV-2 

variant surveillance allows officials to monitor the effects of new variants on COVID-19 disease 

severity, transmission, diagnostics, therapeutics, and immunity from prior infections and 

vaccinations (2, 3). In the U.S., variant data have guided decisions around COVID-19 vaccine 

composition and revocation of emergency use authorizations for monoclonal antibody 

therapies with decreased clinical efficacy (4). Such data have been used in New York City (NYC) 

to summarize epidemiologic characteristics of newly emerging variants (5-8), assess illness 

severity (9), and elucidate community transmission patterns (10). Timely knowledge of 

emerging variants with increased transmissibility or immune escape can prompt actions to limit 

spread. Such actions are particularly important in congregate settings and for populations at 

increased risk of severe illness, such as people who are older or living with comorbid conditions 

(11). 

When many SARS-CoV-2 variants and recombinants cocirculate in a “swarm or soup of 

variants” (12), a key challenge is deciding in near-real time which ones to closely monitor over 

which time increments. Bioinformatic methods and phylodynamic models can be used to 

prioritize variants and estimate variant-specific growth rates (13, 14), although this can be 

onerous to operationalize with many cocirculating variants. In the COVID data tracker 

developed by the U.S. Centers for Disease Control and Prevention (CDC), lineages are displayed 

either if they account for >1% of sequences nationally during a 2-week period or have been 

classified as a variant of interest or concern (2, 15, 16). 

WGS-based subtyping is also revolutionizing population-based enteric bacterial disease 

surveillance. When officials can quickly identify patients infected with genetically similar 

pathogens, the probability of identifying a common exposure and preventing further infections 

is increased (17, 18). The Public Health Laboratory (PHL) at the NYC Department of Health and 

Mental Hygiene (NYC Health Department) performs core genome multilocus sequence typing 

(cgMLST), using prescribed CDC PulseNet methods (19, 20). To detect Salmonella clusters, PHL 

staff compare cgMLST profiles of sequences stored in a local database of isolates (pathogens 
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isolated from clinical specimens) tested and sequenced at PHL. This process often misses 

isolates sequenced out-of-jurisdiction, as data sharing can be difficult, and requires extensive 

manual input, which can lead to undetected clusters. 

Enteric disease cluster detection is typically operationalized using static, rule-based 

definitions, in which isolates from patients in a geographic area are grouped within fixed cut-

offs of genetic relatedness and time (21, 22). Rules can be established by using historical 

outbreak data and modeling (23, 24). A commonly used working cluster definition is ≥3 

Salmonella isolates within a 60-day window within 10 alleles, where ≥2 cases are within ≤5 

alleles (20, 23). Such rules, which can be arbitrary, vary across pathogens according to genetic 

diversity, ecology, and prevalence (25) and are more stringent for common serotypes, such as 

Enteritidis (26). Existing cluster detection tools (27-30) do not also analyze the extent that cases 

are spread out versus concentrated in time, despite the importance of temporal clustering for 

cluster detection and investigation. 

In contrast, space-time scan statistics search flexibly in both space and time and can 

accommodate adjustments for purely temporal and purely spatial variation (31, 32). CDC and 

state and local health departments, including NYC, previously used a rule-based aberration 

detection method (the historical limits method (33-36)); CDC discontinued this approach in 

2020 (37). In 2014, the NYC Health Department transitioned to using prospective scan statistics 

to quickly detect unusual clusters of any geographical size or duration for many reportable 

communicable diseases, including legionellosis, salmonellosis, and later COVID-19 (38-41). 

Returning to WGS data, we wish to similarly search in a flexible manner in time. However, 

rather than searching flexibly in geographical location and size, we wish to be flexible in the 

location of patients’ WGS isolates on a phylogenetic tree and the granularity of nodes on that 

tree, to quickly detect increases at any single node or collection of closely related nodes. 

 Tree-temporal scan statistics (42, 43) are used by CDC, the U.S. Food and Drug 

Administration, and academic scientists to detect and evaluate unanticipated adverse reactions 

to pharmaceutical drugs and vaccines (44-50). In this pharmacovigilance context, potential 

adverse events can be classified in a tree structure based on International Classification of 

Diseases, Tenth Revision (ICD-10) diagnosis codes. The codes are grouped hierarchically, 
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reflecting general or specific disease conditions affecting different body systems, with related 

diagnoses located on the same tree branch. Unusual increases in diagnoses at any level of 

specificity can be detected in sequential analyses, at any length of time after vaccine or drug 

administration. 

Herein, we marry ideas of flexibly scanning prospectively in calendar time (as for 

spatiotemporal cluster detection) with flexibly scanning along a hierarchical tree structure (as is 

conducted for pharmacovigilance). We thereby establish an “innovation at the edge” of 

infectious disease epidemiology and pharmacoepidemiology (51). We introduce the prospective 

tree-temporal scan statistic and describe its real-time application by the NYC Health 

Department. We selected SARS-CoV-2 and Salmonella because of their substantial disease 

burdens (52) and availability of genomic surveillance data with a hierarchical nomenclature, 

with the potential to guide local public health actions. 

 

METHODS 

Genomic surveillance data 

SARS-CoV-2. PHL and other laboratories perform WGS on a portion of specimens from 

confirmed COVID-19 cases (53) diagnosed among NYC residents, as previously described (5, 8, 

54, 55). Weekly starting August 12, 2021, we determined counts of each lineage assignment 

during a rolling 12 week-period ending on the most recent specimen collection date. Pango 

lineages, which represent the dynamic nomenclature applied to genetically distinct SARS-CoV-2 

lineages (56, 57), were assigned by using the pangolin software tool (58). Initially, we used the 

PangoLEARN machine learning model to assign a lineage name to each WGS result (58). To 

improve lineage assignment stability, we switched as of December 16, 2021 to the UShER 

method for placing new genome sequences onto a phylogeny (59, 60). 

Occasionally, as with XBB.1.5 and then XBB.1.16, a variant newly emerged during the 

rolling 12-week study period and quickly became predominant. In these instances, so as not to 

obscure more recently emerging variants, we temporarily shortened the study period to begin 

after that variant became predominant, then returned to a rolling 12-week period. This is 
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similar to an approach used to fine-tune a spatiotemporal cluster detection system when there 

is difficulty detecting new outbreaks in areas with recent prior outbreaks (41). 

 

Salmonella. When a NYC resident tests positive for Salmonella infection, City and State 

laws require the laboratory to report the result and submit the patient’s isolate to PHL or the 

New York State Department of Health (61, 62). These laboratories conduct WGS on the isolates. 

WGS data (including serotype and cgMLST allele calls) are compiled with patient demographic 

data and uploaded to CDC PulseNet, where allele codes are assigned at the national level (20, 

63). Allele codes are then populated in CDC’s System for Enteric Disease Response, 

Investigation, and Coordination (SEDRIC) (64). In parallel, graduate student interns at the NYC 

Health Department attempt to interview all NYC residents with salmonellosis as soon as 

feasible after initial report to collect possible exposure information (65). 

Weekly from SEDRIC starting November 16, 2022, we downloaded allele codes for 

salmonellosis (typhoidal and nontyphoidal) for New York State residents, as additional parsing 

of patient addresses was necessary to restrict to NYC residents. Approximately 43% of the 

state’s residents live in NYC (66). We defined “NYC residents” as New York State residents 

known to live in NYC plus the <2% with unknown residency status, as we preferred to include a 

small number of non-NYC residents rather than potentially miss outbreaks involving NYC 

residents. 

We determined counts of each Salmonella allele code during a rolling 365-day period 

ending on the most recent specimen collection date. Given delays between specimen collection 

and allele code assignment, we conducted weekly sensitivity analyses replacing the temporal 

element with the “upload date” in SEDRIC, with a rolling 365-day period ending with the most 

recent upload date. 

 

Health equity. The population benefits of genomic surveillance might be inequitably 

distributed if particular groups are underrepresented in WGS results (67). Underrepresentation 

might be a consequence of inequitable access to health care and laboratory testing and, for 

SARS-CoV-2 infections, nonrandom sampling practices for sequencing (54). We assessed WGS 
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result availability for confirmed and probable cases of COVID-19 (53) and salmonellosis (68) 

among NYC residents diagnosed during a 2-year period ending October 2023. We stratified by 

patient-level race or ethnicity and by the Index of Concentration at the Extremes, an area-based 

measure of economic and racial or ethnic segregation (69, 70). 

 

Hierarchical tree files 

SARS-CoV-2. Pango lineage notes were used to determine parent-child relationships for 

all detected SARS-CoV-2 variants (58, 71). For example, for the analysis conducted on August 

17, 2023, all detected variants were descended from B.1. Thus, B.1 was designated as the tree 

root, which progressively branched into increasingly specific lineages, including the Omicron 

variant (i.e., B.1.1.529), and culminating in more specific nodes, such as the Omicron subvariant 

EG.5.1.1. For recombinant lineages (e.g., XBB), we assigned multiple parents effective January 

2024, but in the earlier analyses presented here, we assigned the most recent common 

ancestor as the parent (Table 1). 

 

Salmonella. We designated “SAL” as the tree root and each Salmonella serotype (e.g., 

Typhi, Enteritidis, Kottbus) as the second tree level. We appended the allele code, which can be 

up to six digits, to the serotype. Whereas laboratory scientists typically compare isolates 

manually using allele ranges, we used allele codes because of the standardized hierarchical 

nomenclature. Isolates with more allele code digits in common have a lower number of allele 

differences (Table 2). 

 

Prospective tree-temporal scan statistic 

 To flexibly search for unusual increases in any variant or allele code emerging over any 

recent time period, we conducted weekly prospective analyses using the tree-temporal scan 

statistic (42, 72) using the free TreeScanTM software (73). We conditioned analyses on time, 

representing the specimen collection date, to adjust nonparametrically for any citywide purely 

temporal patterns, such as data reporting lags or increasing or decreasing trends. We also 

conditioned on “node,” representing the variant or allele code, to account for whether cases 
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historically had been common or rare at each node during the baseline period (i.e., prior to the 

cluster period). This is because we were interested in detecting newly emerging nodes, not 

nodes that were also common during the baseline period. Mathematical formulae for 

calculating the expected number of cases, excess cases, and relative risk are available in the 

TreeScan user guide (72). 

We set the prospective tree-temporal scan statistic to detect emerging disease clusters 

at any node in the WGS-based tree file beyond the root, from large phylogenetic branches to 

small groups of genetically indistinguishable isolates. For SARS-CoV-2, we searched for 

increases in variants during the most recent 14, 15, 16, …, 27, or 28 days to balance recency and 

persistence. For Salmonella, we searched for allele codes with increases during the most recent 

1, 2, 3, …, 89, or 90 days to encompass the standard 60 days in the rule-based Salmonella 

definition (20), plus an additional 30 days to accommodate data lags. 

For each node (candidate cluster), a likelihood ratio-based test statistic is calculated 

when the observed number of cases during the time window at the node exceeds the expected 

number. The candidate cluster with the maximum likelihood ratio test statistic is the cluster 

least likely to be due to chance under the null hypothesis of no node-by-time interaction, after 

adjusting for purely temporal variation and total node counts during the study period. For 

example, if a node has 5.4% of cases during the baseline period, and there are 100 total cases 

with WGS results during the cluster period, then the expected number of cases during the 

cluster period at that node is 5.4. 

Monte Carlo hypothesis testing is used to assess statistical significance, controlling for 

the multiplicity of overlapping nodes and time windows evaluated. To create a simulated 

dataset, case dates are shuffled and randomly assigned to the original nodes. The maximum 

likelihood ratio test statistic for each simulated dataset is calculated in the same way as for the 

observed dataset. The standard number of Monte Carlo replications is 999, but to slightly 

improve performance, we used 99,999 for Salmonella analyses and 999,999 for SARS-CoV-2 

analyses, which had fewer tree nodes.  

The maximum likelihood ratio for the observed dataset is ranked among the ones from 

the simulated runs under the null hypothesis, and a P value is derived from this ranking as 
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P=rank/(999,999+1) for the SARS-CoV-2 analyses (72). For prospective analyses, a recurrence 

interval (RI) is calculated as the reciprocal of the P value. For a weekly analysis frequency, this is 

further divided by 52 for the number of analyses per year. The RI represents the duration of 

weekly surveillance required for the expected number of clusters at least as unusual as the 

observed cluster to be equal to 1 by chance (74). For example, when the null hypothesis of no 

clusters is true, then during a 1-year period, the expected number of clusters with RI ≥ 365 is 1. 

We defined a signal as any cluster with RI ≥100 days for Salmonella or ≥365 days for 

SARS-CoV-2. We considered RI 100–<365 days as a weak cluster, RI 365 days–<5 years as a 

moderate cluster, RI 5–<100 years as a strong cluster, and RI ≥100 years as a very strong cluster 

(41). Web Appendix 1 provides weekly cluster reporting details. 

 

Performance assessment 

SARS-CoV-2. In the absence of national guidance for how jurisdictions should select 

variants to monitor locally, we compiled illustrative examples of successes and challenges in 

using TreeScan results to focus attention on emerging variants during weekly analyses 

conducted during August 2021–November 2023. 

 

Salmonella. We characterized clusters prospectively detected by TreeScan during the 

first year of weekly analyses, November 16, 2022–November 8, 2023. We considered clusters to 

be “solved” if investigators identified a common food source, animal exposure, exposure site, 

or travel history that likely explained the association among cluster patients. Web Appendix 2 

provides further details about cluster definitions, cluster prioritization, and consideration of 

typhoidal clusters. 

 

Ethics statement 

The Institutional Review Board of the NYC Health Department determined this activity 

meets the definition of public health surveillance as set forth under 45 CFR§46.102(l)(2). 
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RESULTS 

Completeness and representativeness 

Among NYC residents diagnosed during November 2021–October 2023, WGS was 

conducted for 7% of COVID-19 cases (151,944 of 2,266,600) and for 62% of nontyphoidal 

salmonellosis cases (1,679 of 2,722; Web Table 1). Of 1,068 salmonellosis cases with no allele 

code, 937 (88%) were probable cases and positive only by culture-independent diagnostic 

testing, 106 (10%) were culture-positive but had no isolate available for WGS, 5 (<1%) 

underwent WGS but failed quality control, and 20 (2%) were unique sequences that could not 

be matched to an existing allele code by CDC's naming algorithm. The median lag from 

specimen collection to allele code assignment was 22 days (interquartile range: 20–28 days). Of 

1,654 salmonellosis cases with an allele code assigned, 1,322 (80%) had a fully or partially 

completed interview; interviews are necessary to collect information for identifying common 

exposures among cluster patients. 

Patient demographic characteristics were similarly distributed between reported cases 

overall and the subset with WGS results. Distributions were within +/-2.5% for every stratum of 

race or ethnicity and the Index of Concentration at the Extremes (Web Table 1). Although 

substantial portions of patients lacked WGS results, there was no evidence of systematic 

underrepresentation during this period. 

 

SARS-CoV-2 illustrative examples 

Rapid detection of a locally emerging variant. The weekly analysis performed June 22, 

2023, with a computer running time of 4 minutes and 15 seconds, identified 6 SARS-CoV-2 

variants emerging among NYC residents (Table 3). Three of the 6 nodes were the same as in the 

prior week’s analysis (Web Table 2), including persistent, strong signals for XBB.1.16, XBB.2.3, 

and their subvariants. Of the newly signaling nodes, EG.5.1 (RI = 35 years) first signaled more 

strongly than its grandparent (XBB.1.9.2), with 11 specimens collected during May 17–June 12, 

2023. EG.5 or EG.5.1 continued to signal for 13 consecutive weekly analyses, June 22–

September 14, 2023, after which more specific subvariants (e.g., EG.5.1.6) began signaling more 

strongly. 
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WHO designated EG.5 as a variant under monitoring on July 19, 2023 and a variant of 

interest on August 9, 2023 (75), 4 and 7 weeks, respectively, after our first EG.5.1 signal. During 

a period with many cocirculating variants and when EG.5 initially constituted a small number 

and percentage of cases with WGS results, the TreeScan analysis and trend visualization (Figure 

1) led NYC Health Department officials to focus attention on this variant. 

 

Delayed detection of locally emerging variants. In the analysis performed October 20, 

2022, multiple BE.1.1.1 subvariants first signaled as having emerged since September 19, 2022, 

indicating delayed detection of BQ.1, BQ.1.1 (RI = 19,231 years for both nodes), and BQ.1.3 (RI 

= 2.4 years). In the concurrent UShER version update, a subset of cases had been reassigned to 

BQ lineages, revealing that BQ lineages, which descended from BE.1.1.1 (71), had been present 

for >1 month. Once the input data were updated, TreeScan analyses appropriately detected the 

emergence of BQ lineages. 

 

Assurance of no other locally emerging variants. The Omicron variant was first detected 

in NYC in clinical and wastewater samples collected in November 2021 and quickly became 

predominant (54, 76). While staff were urgently focused on characterizing local effects on 

population health, TreeScan analyses provided assurance there were no additional lineages 

emerging concurrently that also would have required attention and response. 

 

Salmonella 

During the first year of weekly analyses, on 128 serotypes, TreeScan detected 16 unique 

clusters in the primary analysis using specimen collection date as the temporal element, and 1 

additional cluster in the sensitivity analysis using upload date (Table 4). TreeScan detects 

statistical anomalies, which must be investigated to distinguish true clusters from data quality 

issues. Of the 17 clusters, 2 represented data quality issues that were quickly resolved in 

SEDRIC, where >1 isolate had been sequenced from the same patient. The remaining 15 

clusters were credible and worth investigating. Of these 15 clusters, 2 were typhoidal and 

associated with travel to an endemic area. Of the 13 nontyphoidal clusters, 2 (15%) were 
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comprised of family members with shared exposures, 2 (15%) reflected larger, 

interjurisdictional outbreaks, 2 (15%) were persistent strains causing illnesses over a long time 

(77-80), and 7 (54%) were unsolved. Of the 13 nontyphoidal clusters, 1 (8%) was detected at 

the third allele code digit so encompassed a broader allele range than rule-based cluster 

definitions. The remaining 12 (92%) were detected to at least the fifth allele code digit, aligning 

with rule-based cluster definitions. Of these clusters, 9 (75%) were concurrently detected by 

PHL, 2 (17%) were comprised entirely of isolates tested at other jurisdictions’ public health 

laboratories so could not have been detected by PHL, and 1 (8%) was detected when 

technological issues disrupted portions of PHL’s cluster detection workflow. 

 Investigators considered the TreeScan results to be helpful in focusing staff attention 

and investigation resources. For example, TreeScan clusters in NYC occasionally reflected 

concurrent, aberrant clusters across other jurisdictions, prompting multijurisdictional 

collaboration to identify common exposures. The TreeScan cluster at the third allele code digit 

alerted investigators to a local increase in Salmonella Javiana, spurring further investigation into 

possible subclusters. Moreover, in analyzing isolates according to location of residence, 

TreeScan detected clusters among NYC residents that otherwise might not have been detected 

because patients were tested by different laboratories. TreeScan also provided coverage when 

external technological issues disrupted certain processes at PHL. 

 

DISCUSSION 

 We introduced the prospective tree-temporal scan statistic, which, when applied to 

genomic surveillance data with a standardized hierarchical nomenclature, automatically sifts 

through large quantities of data in minutes and generates a ranked shortlist of nodes with a 

statistically unusual number of recent cases. Our method flexibly evaluates all candidate 

clusters, across many degrees of genetic relatedness and date ranges. It dynamically accounts 

for any purely temporal trends, such data lags or changes in WGS result availability, and 

minimizes false signals by adjusting for the multiplicity of nodes and cluster windows scanned. 

With real-time application to SARS-CoV-2 and Salmonella data, the NYC Health Department 

detected credible clusters for investigation and data quality problems for correction. 
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Limitations 

 WGS results were available for only 7% of COVID-19 cases and 62% of salmonellosis 

cases. After the federal COVID-19 public health emergency declaration ended in May 2023 and 

with reduced funding, specimen and sequence availability have declined (81), which could 

reduce population representativeness and delay new variant detection. Additionally, although 

the NYC Health Code requires laboratories to reflexively culture certain enteric pathogens, 

including Salmonella (61), the widespread use of culture-independent diagnostic testing has 

reduced the proportion of salmonellosis cases with recovered isolates. Patients without WGS 

results cannot contribute their exposure histories to WGS cluster investigations, making it more 

challenging to solve outbreaks. Improving population-based WGS data completeness, 

representativeness, and timeliness requires strengthening partnerships with clinics and 

submitting laboratories and deepening investments in laboratory capacity and bioinformatics 

infrastructure, including applying culture-independent sequencing methods (82-85). 

Where WGS results were available, the tree nomenclature imposed limitations. For 

SARS-CoV-2, assigning Pango lineages using UShER allowed for accurate and stable lineage 

assignments at the expense of timeliness. As in the BQ lineages example, delays in updating 

nomenclature to recognize new lineage designations resulted in delayed detection. For 

Salmonella, the signal-to-noise ratio to detect a new cluster is poor for allele codes ending in 

“x,” such as “SALM1.0 – 6743.2.4x” for the serotype Enteritidis (26), as the underlying 4-, 5-, 

and 6-digit codes are masked due to low genomic diversity increasing the within-code distance 

beyond assignment thresholds. More broadly, we rely on a standardized nomenclature, with no 

consideration of genetic distances between tree nodes. 

TreeScan should complement, not replace, other cluster detection approaches using 

laboratory-based data, such as by examining allele ranges (20, 23). Tree-temporal scan statistics 

could miss outbreaks where genetic or temporal clustering is weak. Zoonotic disease outbreaks, 

such as those associated with exposure to reptiles or backyard poultry, often involve multiple 

serotypes with large allelic diversity (25, 86). Patients’ isolates might be weakly clustered 

temporally for outbreaks due to persistent environmental contamination (87) or following 
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delays in accessing medical care or obtaining WGS results. Web Appendix 3 provides additional 

minor limitations. 

 

Conclusions 

 By decreasing reliance on time-consuming, manual laboratory data review, and by 

simultaneously analyzing data not only by genetic relatedness but also by temporal clustering, 

TreeScan analyses can help officials focus limited investigative resources on emerging clusters 

and variants. Future work could apply this approach to additional pathogens (20, 88, 89) using 

additional hierarchical nomenclature systems (e.g., SNP addresses (90)), analyze additional 

pathogen characteristics (e.g., antimicrobial resistance patterns), and analyze state- and 

national-level data to support multijurisdictional outbreak response. Incorporating TreeScan 

into analytical pipelines could strengthen strategic frameworks for genomic surveillance (91), 

including in low- and middle-income countries (92).  

Health departments should continuously apply multiple cluster detection methods to 

quickly detect different types of outbreaks. In NYC, building-level analyses and spatiotemporal 

scan statistics have quickly detected outbreaks with strong geographic clustering, before 

laboratory subtyping results became available (39, 93). However, these methods could miss 

geographically diffuse outbreaks, such as following exposure to a widely disseminated source, 

or outbreaks affecting only a few patients. Despite lags in subtyping data availability, such 

outbreaks could be detected faster by applying tree-temporal scan statistics to WGS data. 

TreeScan thus fills an important gap in the public health practitioner’s automated cluster 

detection and monitoring toolkit. 
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Table 1. Example hierarchical nomenclature for SARS-CoV-2 variants assigned to Pango 

lineages, showing tree levels. 

Level Node (Pango lineage) Note 

1 B.1  

2 B.1.1  

3 B.1.1.529 Omicron 

4 BA.2 Alias of B.1.1.529.2 

5 XBB Recombinant lineage of BJ.1 (alias of B.1.1.529.2.10.1.1) and 
BM.1.1.1 (alias of B.1.1.529.2.75.3.1.1.1) 

6 XBB.1  

7 XBB.1.9  

8 XBB.1.9.2  

9 EG.5 Alias of XBB.1.9.2.5 

10 EG.5.1  

11 EG.5.1.1  
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Table 2. Example hierarchical nomenclature for Salmonella isolates assigned a serotype and 

allele code. 

Level Node (serotype, allele code) Maximum expected allele difference for isolates matching at 
specified allele code digit 

1 SAL N/A 

2 SAL.Kottbus N/A 

3 SAL.Kottbus.6185 80 

4 SAL.Kottbus.6185.1 28 

5 SAL.Kottbus.6185.1.1 15 

6 SAL.Kottbus.6185.1.1.2 7 

7 SAL.Kottbus.6185.1.1.2.1 4 

8 SAL.Kottbus.6185.1.1.2.1.1 0a 

N/A = not applicable. 
aIsolates matching at the sixth digit of the allele code are 0 alleles apart, i.e., indistinguishable 

by core genome multilocus sequence typing. 
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Table 3. Analysis conducted on June 22, 2023 to apply prospective tree-temporal scan statistics to detect emerging SARS-CoV-2 
variants in specimens collected among New York City residents during the 14–28-day period ending June 12, 2023. 
 

Variant No. of 
cases with 
specimens 
collected 
during 12-
week study 
period, 
March 21–
June 12, 
2023 

Cluster 
start 
date, 
ending 
June 12, 
2023 

No. of 
cases with 
specimens 
collected 
during 
cluster 
window 

No. of 
expected 
cases 

Relative 
risk 

No. of 
excess 
cases 

Test 
statistic 

Recurrence 
interval 
(years)b 

No. of 
consecutive 
weeks 
signaling 

Percent of 
sequenced 
cases with 
specimens 
collected 
week 
ending 
June 12, 
2023 

XBB.1.16a 213 May 16 107 52.1 3.7 78.0 22.8 19,231 11 28 

XBB.2.3a 83 May 18 41 17.5 3.9 30.5 11.5 4,808 3 17 

XBB.1.24.1 5 May 30 5 0.4 ∞ 5.0 8.2 55 1 <1 

EG.5.1c 11 May 17 11 2.5 ∞ 11.0 7.9 35 1 6 

XBB.1.5.68 8 May 19 8 1.6 ∞ 8.0 6.6 5 1 <1 

XBB.1.5.16a 13 May 16 11 3.2 17.3 10.4 5.8 2 2 <1 
aSubvariants included. 
bNodes with recurrence interval ≥ 1 year were included. The maximum possible recurrence interval for this analysis was 19,231 

years. When using 999,999 Monte Carlo replications, the smallest possible P-value is 1/999999 = 0.000001. With a weekly 
prospective analysis frequency, the maximum recurrence interval was thus (1 / 0.000001) / 52 analyses per year = 19,231 years. 

cAlias of XBB.1.9.2.5.1. 
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Table 4. Salmonellosis clusters among New York City residents detected using prospective tree-temporal scan statistics in weekly 
analyses conducted during November 16, 2022–November 8, 2023. 

Serotype Allele code Date first 
detected 

Cluster start 
date 
(specimen 
collection 
date) 

Observed 
cases 

Relative 
risk 

Excess 
cases 

Recurrence 
interval 

Notes 

Typhimurium 6745.56.1.2.3.116 12/8/22 10/25/22 4 ∞ 4.0 7.5 years Unsolved 

Oranienburg 6760.67.167.5.1.1 12/21/22 11/19/22 2 ∞ 2.0 130 days Data quality issue: 
removed duplicate 
isolate 

Kottbus 6185.1.1.2.1 1/4/23 12/1/22 5 25.6 4.8 1.9 years Unsolved 

I 4:i:- 772.1.3.1.2.2 1/11/23 12/8/22 3 ∞ 3.0 2.9 years Unsolved 

Typhimurium 6745.20.1.1.10.9 2/1/23 1/9/23 3 ∞ 3.0 12 years Same family. 
Multiple shared 
exposures  

Typhimurium 6766.47.1.12.4.3 3/1/23 2/10/23 2 ∞ 2.0 33 years Unsolved 

Typhi 6788.1.1.47.1.97 3/15/23 2/15/23 4 ∞ 4.0 481 years Same family. All 
traveled to 
endemic area 

Paratyphi A 1082.1.3.1.1.11 4/19/23 3/24/23 2 ∞ 2.0 119 days Same family. All 
traveled to 
endemic area 

Typhi 6788.1.1.4.18 5/3/23 4/10/23 2 ∞ 2.0 147 days Data quality issue: 
removed isolate 
from a follow-up 
specimen  

Typhimurium 6766.32.1.3.8.3 5/17/23 4/28/23 2 ∞ 2.0 339 days Unsolved 

Typhimurium 459.3.1.8.1.1 6/7/23 5/15/23 2 ∞ 2.0 174 days Same family. 
Shared meal 
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Paratyphi B 
Var. L(+) 
Tartrate+ 

316.6.3.13.1 7/19/23 7/4/23 2 ∞ 2.0 31 years Unsolved 

Javiana 6765.1.1 9/7/23 7/21/23 7 14.6 6.5 213 days 3 subgroups of 
more closely 
related isolates, 2 
of which were 
multistate 
investigations 

Infantis 6747.16.3.109.1 9/13/23 7/28/23 4 ∞ 4.0 101 days Multistate 
investigation  

IIIb 61:k:1,5 135.5.33.6.1.1 9/27/23 9/26/23a 2 ∞ 2.0 114 days Unsolved 

Newport 6809.9.1.1.1.954 10/12/23 9/24/23 2 ∞ 2.0 6.2 years Persisting enteric 
bacterial strain 

Hadar 6771.1.1.30.1 11/8/23 10/17/23 3 126.1 3.0 2.6 years Persisting enteric 
bacterial strain 

aThis was the only unique cluster detected in sensitivity analyses, where the temporal element was upload date instead of specimen 
collection date. 

 
  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 29, 2024. ; https://doi.org/10.1101/2024.08.28.24312512doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.28.24312512


 
26 

 

Figure 1. Count and percent of cases with EG.5.1 as the SARS-CoV-2 sequencing result among New York City residents with 

specimens collected during March 21–June 12, 2023. Results are as of June 22, 2023, the first analysis week that EG.5.1 signaled as 

emerging, with the cluster window starting May 17, 2023 shaded in grey. 

Alt text for accessibility: A time series graph showing 0 cases of the SARS-CoV-2 variant EG.5.1 until May 17, 2023, followed by 11 

cases during May 17 through June 7, 2023, with 0, 1, or 2 cases per day. 
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