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Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder which causes debilitating
symptoms in both the motor and cognitive domains. The neurophysiological markers of PD
include ‘oscillopathies’ such as diffuse neural oscillatory slowing, dysregulated beta band
activity, and changes in interhemispheric functional connectivity; however, the relative
importance of these markers as determinants of disease status is not clear. In this study, we
used resting state magnetoencephalography data (n = 199 participants, 78 PD, 121 controls)
from the open OMEGA repository to investigate changes in spectral power and functional
networks in PD. Using a Contrast of Parameter Estimates (COPE) approach, we modelled the
effects of PD while controlling for population-level confounds (age, sex, brain volume).
Permutation testing revealed highly significant increases in theta (p=0.0001) and decreases in
gamma band spectral power (p=0.0001). Building on the group contrast results, we investigated
the ability of source-resolved MEG data to distinguish PD from healthy controls. Our approach
uses a Partial Least Squares (PLS)-based classifier to find linear combinations of MEG features
which independently predict PD. We found MEG-based predictions to be highly sensitive and
specific, reaching an optimal AUC-ROC of 0.87 ± 0.04 using a model including spectral power
features with 4 independent PLS components, compared to 0.68 ± 0.04 when using functional
connectivity. Interpretation of the model weights suggests that oscillatory slowing can be
separated into independent posterior theta and global diffuse delta components that can
robustly identify individual cases of PD with a high degree of accuracy. This suggests MEG can
reveal dissociable, complementary neural processes which contribute to PD.
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Introduction
Parkinson’s disease (PD) is a central nervous system disorder which primarily affects motor
skills and oftentimes cognition (Olanow et al., 2009). It is the second most common
neurodegenerative condition after Alzheimer’s disease, with an estimated 6 million people
affected globally; the disease burden amounted to approximately 700,000 years lost to disability
(YLDs) in 2015 (GBD Collaborators, 2016). It is most common in people over 60 years old, and
males are affected approximately twice as often as females (Cerri et al., 2019).

Loss of dopaminergic neurons in the substantia nigra is a well characterised feature of PD, and
is pathogenic of motor symptoms such as bradykinesia (Surmeier, 2018). Additionally, PD is
associated with dementia in 24-31% of cases (Aarsland et al., 2005). Despite the existence of
dementia and other non-motor symptoms, the motor symptoms currently form the basis of
diagnostic criteria for PD due to their specificity compared to other neurodegenerative disorders
(Tolosa et al., 2021); unfortunately this often results in delayed diagnosis since the disease is
typically well-established with the development of motor symptoms. Identifying the disease in
the prodromal or early stages would potentially improve treatment outcomes, with multiple
biomarkers being investigated (Emamzadeh & Surguchov, 2018).

Currently, there are no neuroimaging markers for diagnosing PD, but a variant of SPECT
imaging which uses a radiotracer to measure dopamine transporter levels in the striatum
DaTSCAN, can be used to support a diagnosis (Bega et al., 2021) and to differentiate PD from
essential tremor (ET) where clinical presentation is ambiguous. Beyond that, measures of
electrophysiological activity offer a possible biomarker source for understanding PD
mechanisms.

Magnetoencephalography (MEG) is a non-invasive functional neuroimaging technology which
measures synchronous neural currents using extremely sensitive magnetometers (Hämäläinen
et al., 1993). MEG data has excellent temporal resolution (on the order of milliseconds) and
good spatial resolution (<5mm with appropriate source modelling). Advanced spatial filtering
algorithms have enabled a whole-brain scanning paradigm for MEG analysis, where source
activity is estimated in multiple locations of interest simultaneously, providing detailed
characterisation of spontaneous neural oscillations and functional connectivity between brain
regions. MEG has been used to investigate the electrophysiological correlates of Parkinson’s
disease (Boon et al., 2019) showing changes in the spectral content of neural oscillatory activity
and functional connectivity. Beta band oscillations (13-30 Hz) are of particular interest in PD
due to their role in motor planning and action in the sensorimotor areas of the cerebral cortex
(Jurkiewicz et al., 2006). Motor cortical beta band power varied with disease state; greater
spontaneous beta band power has been observed in early stage PD patients (Pollok et al.,
2012), while reduced power is seen in late stage patients (Heinrichs-Graham et al., 2014).

The concept of “neural slowing”, a blanket term for a shift in the overall frequency content of
neural oscillations toward lower frequencies, is commonly employed in neuroimaging studies.
Neural slowing is a consistent phenomenology of neurodegenerative conditions including
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Alzheimer’s disease (Jeong, 2004). However, slowing has also been observed in PD without
dementia (Stoffers et al., 2007), suggesting it is not a dementia-specific effect. The underlying
neural mechanisms of neural slowing are not clearly understood, but in AD, are hypothesised to
stem from neural damage and degeneration, as well as a disrupted balance of
excitation/inhibition (E/I) (van Nifterick et al., 2022), with the degree of slowing correlating with
amyloid burden and cognitive impairment (A. Wiesman et al., 2022).

In this study, we sought to identify distinct components of neural oscillatory activity which
correlate with PD. Firstly, using MEG and phenotype data from the open OMEGA repository, we
modelled the general effect of PD on neural oscillatory activity and functional connectivity while
controlling for confounding variables such as age, sex, and brain volume. Secondly, using a
Partial Least Squares (PLS)-based classifier, we investigated whether oscillatory activity and
functional connectivity could accurately predict PD status. We used our PLS-based
cross-decomposition to uncover multiple statistically independent patterns of
neuropathophysiology within the context of neural slowing. Ultimately, a detailed understanding
of oscillopathies in PD could be used with AI-ML to support a cost-effective means of diagnosis
and offer targets for personalised treatment strategies for PD.

Methods

Participant selection
Participants were selected from the Open MEG Archive (OMEGA) repository, an open database
comprising neuroimaging and phenotype data from two separate cohorts: the Pre-symptomatic
Evaluation of Experimental or Novel Treatments for Alzheimer Disease (PREVENT-AD) study
and QPN (Quebec Parkinson Network). The PREVENT-AD cohort contains only healthy
controls, while the QPN scans are a mixture of patients with PD and age-matched healthy
controls. Neuroimaging data included resting state MEG scans acquired from a CTF-275 MEG
scanner (CTF MEG Neuro Innovations Inc. Coquitlam, BC, Canada) and structural magnetic
resonance imaging (MRI) images recorded from a 3T Siemens Magnetom TrioTim
(PREVENT-AD) or Prisma-Fit (QPN) data (Siemens Healthcare, etc.). The resting states were
acquired with eyes open and had a minimum duration of 5 minutes. Phenotype data included
age and sex, and a binary disease status (either control or PD); the PD cohort has been
previously studied in (A. I. Wiesman et al., 2023); the authors state that patients “with mild to
moderate (Hoehn and Yahr scale: 1 – 3) idiopathic PD were enrolled… all participants had
been prescribed a stable dosage of antiparkinsonian medication response prior to study
enrollment. Patients were instructed to take their medication as prescribed before research
visits, and thus all data were collected in the practically-defined “ON” state.” All participants had
given prior informed consent for the study; access to OMEGA was approved by the ethics board
of Hospital for Sick Children (Toronto, CA) and granted under the terms of the OMEGA
researcher agreement.
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For the regression part of the study, we used data from all participants. A sex-balanced subset
of the data were selected to perform classification; see later section. Exclusion criteria included
the following: age under 50 years, neurological conditions other than PD, absent MEG or MRI,
MEG did not pass quality control. A total of 199 participants were included in the study; their
characteristics are shown in Table 1.

Table 1: Participant characteristics.

Group PD Control

N 78 121

N(female) 21 89

Mean age (years) 63 ± 10 64 ± 10

MEG data acquisition and preprocessing
MEG data were recorded from the CTF-275 device in the upright position with eyes open at a
sampling rate of 2400 Hz with a hardware low pass filter of 1200 Hz applied. Synthetic
third-order gradiometry using the CTF-275 reference magnetometer array was used to
attenuate environmental magnetic interference. The outline of each participant’s scalp surface
was measured using a Polhemus digitizer, which was used to coregister the source model to the
sensor coordinate system (see section “Source localisation with beamforming”).

Preprocessing of MEG scans was performed using an automated pipeline built using the open
source MNE-Python software package (Gramfort et al., 2013). Firstly, recordings were
downsampled to 300 Hz and band pass filtered between 1 and 150 Hz; the power line peak at
60 Hz was removed using a notch filter. A 110 Hz high pass filtered version of the recording
was also made, which enabled us to detect typically high frequency muscle artefacts.
Continuous head movements were reconstructed from fiducial coil fields; we rejected 7 scans in
which the head position drifted more than 7mm from the position at the start of the experiment.
No systematic difference in head movement was observed between the control and PD group
(p=0.20, independent samples T-test).

Filtered data were then segmented into 10.24 second epochs. Any epoch with a peak-to-peak
amplitude exceeding 6000 fT or containing muscle activity was considered to contain
interference and excluded from further analysis; this procedure ensured muscle artefacts and
low-frequency interference did not contaminate the data. Of the remaining good quality epochs,
the first 25 were selected to be analysed, corresponding to 256 seconds of data for each
participant. From our initial sample of 214 unique participants, 15 were rejected due to head
movement and data quality; further analysis used the remaining 199 participants.
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Further data cleaning was performed on the remaining epochs using Independent Components
Analysis (ICA). We used the “infomax” method (T. W. Lee et al., 1999) implemented in
MNE-python with 80 components to separate out neural and non-neural sources. In the
majority of participants, clearly identifiable heartbeat and eye blink components were recovered
by ICA; these components were automatically tagged using a proprietary classification algorithm
and projected out of the data.

MRI data acquisition and forward modelling
Each participant’s T1-weighted structural MRI data to generate an individualised, single-layer
boundary element model (Mosher et al., 1999) of the inner skull surface using Freesurfer
(Fischl, 2012), comprising motion correction and template registration. For each conformed
T1-weighted image, we iteratively computed an affine registration from the subject-specific
coordinate system to the MNI-152 template space using a robust registration algorithm (Reuter
et al., 2010). Using this affine registration, a precomputed template mesh was warped to
represent the inner skull boundary. We also derived an approximate cranial vault volume in
mm^3 from this mesh for use as a covariate in our contrast model. Finally, seed locations were
transformed from MNI to subject coordinates and three axis-aligned unit dipoles were used to
calculate three sets of magnetic lead fields.

Source localization with beamforming
Source modelling was performed using a LCMV beamformer, an adaptive spatial filter which
minimises signal variance at a given location subject to the constraint of unit gain (Veen et al.,
1997). We calculated the sensor covariance matrix empirically from the cleaned data epochs,
applying a regularisation of 5% of the maximum singular value to ensure a stable inversion.
Combining this with the lead field information enabled us to calculate optimal beamformer
weights. We calculated these LCMV beamformer weights for each cartesian dipole at 78 atlas
locations (Automated Anatomical Labelling, AAL – see (Gong et al., 2009)) and 44 network
locations. For each seed location, the three cartesian components of source activity were
reduced with PCA to a single component, generating a total of 122 source-resolved time series.
Each of these time series was then scaled to unit standard deviation.

Regional spectral power and functional connectivity
We estimated power spectral density (PSDs) from time series for each AAL location using
Welch’s method. FFTs were computed on non-overlapping segments of 4096 samples each and
then averaged to provide an estimate of the relative frequency contribution of power at each
virtual electrode. The resulting power spectra were divided into five a priori frequency bands
with a 1 Hz gap to avoid overlap (see Table 2). The mean amplitude for each frequency band
was then computed, yielding five estimates of band-limited relative power at each AAL node.

Table 2: Frequency band definitions.
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Band Delta Theta Alpha Beta Gamma

Frequency (Hz) 1-3 4-8 9-12 13-29 30-45

Network node time series were used to estimate connectivity in the same frequency bands.
Nodes were selected in the central executive (CEN), default mode (DMN), motor (MOT), visual
(VIS), and attention (ATT) networks (see Supplementary Materials for node definitions with
MNI coordinates). Firstly, the time courses were band-pass filtered for each frequency band.
They were then orthogonalized using an iterative symmetric procedure to remove zero-lag
correlations, thereby eliminating spurious correlations resulting from magnetic field spread
(Colclough et al., 2015). We used the real component of the Hilbert transform to estimate the
amplitude envelope for each time series. These envelopes were low pass filtered at 0.5 Hz and
downsampled to 1 Hz, and the Pearson correlation coefficient (ρ) between pairs of nodes was
calculated, following the procedure outlined in Brookes et al. (2011a). This approach to
estimating functional network activity is termed Amplitude Envelope Correlation (AEC).

Modelling with Contrast of Parameter Estimates
To assess the neurophysiological effects of PD, we modelled spectral and connectivity data as𝑌
a linear combination of explanatory phenotype variables . This method is commonly applied𝑋
when analysing functional MRI experiments (Friston et al., 1994) and has also been applied to
MEG data (Quinn et al., 2024) (Gohil et al., 2022). We used a general linear model:

𝑌 = β𝑋 +  𝐸

with columns of the design matrix representing disease status, age, sex and head volume,𝑋
while regional power and connectivity values were vectorised and concatenated to form the
matrix of responses . Fitting the GLM using ordinary least squares resulted in an array of𝑌
parameter estimates . The contrast was calculated and divided by theβ β(𝑃𝐷) − β(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) 
regularised residual variance to compute a pseudo-T-statistic for(σ →  σ + 0. 02 * 𝑚𝑎𝑥(σ) ) 

each MEG feature.

Statistical significance was assessed separately for power and connectivity through permutation
testing, using as the test statistic; this enables us to avoid a mass-univariate𝑚𝑎𝑥(𝑎𝑏𝑠(𝑇))
approach at the cost of spatial specificity. We estimated the null distribution of T values by
repeatedly shuffling the labels in the contrasted columns and recomputing the GLM 10,000
times. We determined the p-value as the proportion of null statistics more extreme than our
observed statistic. A Bonferroni correction factor was applied to control for family-wise errors
across separate frequency bands; all p-values for significance tests repeated across bands are
reported post-correction, having been multiplied by 5 unless otherwise specified
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Predictive modelling with Partial Least Squares
Partial Least Squares is a cross-decomposition technique that can be applied to regression
problems. Given matrices of data observations and PLS is used to find linear combinations𝑋 𝑌,  
of features in that relate to linear combinations of features in and vice versa (Wegelin,𝑋 𝑌
2000). Unlike PCA, PLS is sensitive to low-variance directions in which are nonetheless𝑋
highly predictive of .𝑌

PLS models have one hyperparameter: the number of latent factors in the joint matrix𝑙
decomposition of and . In a multivariate partial least squares scenario with observations,𝑋 𝑌 𝑛
independent variables, and dependent variables, we have two models which are jointly𝑚 𝑝

optimised:

𝑋 =  𝑇𝑃𝑇 + 𝐸

𝑌 =  𝑈𝑄𝑇 + 𝐹

where is the matrix of independent variables and is the matrix of dependent𝑋 𝑛 × 𝑚 𝑌 𝑛 × 𝑝
variables. and are matrices which are projections of and respectively into latent𝑇 𝑈 𝑛 × 𝑙 𝑋 𝑌
variables, often called “scores”. and are loading matrices while and𝑃 (𝑚 × 𝑙 ) 𝑄 (𝑛 × 𝑙 ) 𝐸 𝐹
represent intrinsic error.

In this work, PLS is used as a predictive model (Abdi & Williams, 2013), where the MEG metrics
are treated as the design matrix and the disease condition is . The model estimates𝑋 𝑌
weightings of the observed MEG metrics which optimally explain the disease condition; this is
elaborated in the section titled Classification using PLS models.

Validating PLS classifier performance
To ensure our classifier was not biased by participant sex, we selected a single stratified
subsample of data to perform all classifier training and testing, consisting of 88 total samples
with equal numbers of male and female participants in the control and case groups. For all our
investigations of performance, we use 40 randomised shuffle splits for cross validation, where
75% of each split is used to train the model and the other 25% is used for testing.

In the case of 2 prediction classes (in this case PD and control), PLS regression can be
straightforwardly converted to a classification by converting categorical labels and thresholding
the continuous response variable, an approach known as discriminant analysis (L. C. Lee et al.,
2018). This enables us to use typical metrics of classifier performance such as the receiver
operating characteristic (ROC) curve, which plots true positive rate (TPR) as a function of false
positive rate (FPR); to estimate the ROC curve, we vary the decision threshold of the classifier
and empirically determine the FPR and TPR for each train-test split of the data. The ROC curve
can also be reduced to a single number by calculating the area under the curve (AUC-ROC),
which is a balanced summary of classifier performance (accuracy) and ranges from 1 (perfect
sensitivity and specificity) to 0.5 (no better than random choice).
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The PLS model allows selection of the number of latent components as a hyperparameter. To𝑙
assess the effect of the number of PLS components on classification performance, we
performed a parameter search: for each integer value of in the range , a PLS model𝑙 [1,  11]
was trained with components and AUC-ROC was calculated across all validation folds.𝑙

To investigate the relative importance of functional connectivity compared to regional oscillatory
power, we repeated the above analyses for versions of the models trained with regional power
only, AEC connection strengths only, and with all features vectorised and concatenated. In
order to determine which MEG data features were important for classification, we retrained the
best performing model with all input data. This allows the fitted weights to be used as a proxy
for relative feature importance.

Results

PD is characterised by topologically diverse cross-spectrum
oscillatory changes
Contrasts between control and PD are shown in Figure 1. A posterior-dominant pattern of
‘neural slowing’ was observed, with theta band hypersynchronization in PD that was highly
significant (p < 0.00001), as well as a spatially similar concomitant decrease in gamma-band
activity (p < 0.00001) - in other words, an increase in low frequency activity and a decrease in
high frequency activity. Beta band effects were topographically complex, with a significant (p <
0.0005) decrease in the occipital regions accompanied by moderate increases in
fronto-temporal regions. Interestingly, we observed a decrease in very slow-wave delta activity
(p = 0.002) in fronto-parietal and somatomotor regions. Spatially diffuse alpha-band activity was
not significant. T-statistic maps labelled with individual atlas nodes can be found in
Supplementary Figure 1. The effects of age, sex, and head volume covariates are shown in
Supplementary Figures 2 and 3 - and revealed large effects on oscillatory activity, highlighting
the importance of taking such factors into account when analysing spontaneous function.

Functional connectivity showed significant global increases across low-frequency coupling,
including, delta (p = 0.0005), theta (p = 0.003), with no apparent network specificity; alpha band
network activity showed no significant change (p = 0.1). Interestingly, beta band connectivity
was not significantly altered in PD (p = 0.23 uncorrected), but showed differential variations in
coupling with slight increases within default mode and visual networks, and dysconnectivity
between the motor network. Gamma connectivity was not significant (p - 0.12 uncorrected).
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Figure 1: Results of PLS regression. T-statistic images for the contrast of (PD - control) are
shown for spectral power (first row) and amplitude envelope correlation (second row). Each
column in the overall figure indexes a particular frequency band of interest. In the first row of
images, the contrast at each of the 78 AAL nodes is projected onto a schematic image of a
brain; left and right lateral orientations are shown. In the second row, AEC contrast values for
all network edges are displayed as a matrix where row i and column j index network nodes, and
the element Mij is the AEC computed between those nodes. Node groupings corresponding to
network definitions (CEN, DMN etc.) are outlined in black. Note the separate colour scales for
power and connectivity.

Cortical oscillatory activity reliably predicts PD and with greater
accuracy than functional connectivity

Figure 2: Classification accuracy with PLS is best achieved using cortical oscillatory
activity. Left: ROC curves for disease classifiers using different MEG features. Solid lines
show the mean ROC across all validation folds; shaded areas show one standard deviation.
Four PLS components are used in all cases. Right: cross-validated AUC-ROC scores as a
function of PLS components. Vertical bars show standard error on the mean, computed across
folds.
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Figure 2 shows the overall performance of the PLS-based linear classifiers; ROC curves for the
optimal PLS classifier are shown on the left, while the effect of the number of PLS components
on classifier performance is shown on the right. Models trained with regional oscillatory activity
performed consistently better than those using connectivity or combined oscillatory &
connectivity features (maximum power AUC: 0.87 ± 0.04, network AUC: 0.68 ± 0.04, combined
AUC: 0.75 ± 0.04). For the regional oscillatory activity models, adding components initially
improves performance, with a clear peak around components (AUC-ROC: 0.87 ± 0.04);𝑙 = 4
adding subsequent higher dimensional components decreased performance. The combined
effect of components 2-4 leads to an increase in AUC-ROC of 0.15 ± 0.04 over and above the
performance of a classifier using only one component. A plateau behaviour was observed at

in the combined classifier, suggesting performance was mostly driven by regional power𝑙 = 4
features, while connectivity classifiers appeared unaffected by dimensionality.

Spatially resolved spectral components independently predict PD

Figure 3: Distinct oscillatory activity features of the optimal PLS classification model.
The left subfigure displays PLS weights from the best performing model with components,𝑙 = 4
trained on power features only. The right subfigure shows the distribution of the four orthogonal
model scores across the control and case group. Each row indexes a single PLS component,
while each column indexes the frequency band of interest. Excess power in positively weighted
regions (red) increases the likelihood of being classified as PD, while excess power in
negatively weighted regions (blue) decreases this likelihood.

Figure 3 shows the four discrete components of the optimal power-based PLS classifier when
trained on all input data; weights were premultiplied by 1 or -1 such that their correlation with the
target variable is always positive. The weightings for each component are displayed in the left𝑋
hand plot, while the scores for each component are shown on the combined jitter and box𝑋
plots on the right hand side. As expected, the most discriminative component ( is very𝑙 = 1)
similar to the observed PD > control contrast effect, showing posterior theta slowing effectively
differentiates controls from patients. Component 2 shows broad decreases in delta and alpha
frequencies, while frontal midline theta appears to decrease; this is accompanied by increases
in beta and gamma band activity, suggesting an overall shift to higher frequencies. Component
3 shows a global slowing effect with delta showing the largest effect, while component 4
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appears to emphasise a global theta decrease accompanied by bilaterally increased beta over
superior temporal areas.

Discussion

Summary
Neurodegenerative processes in Parkinson’s disease (PD) have mechanistic and measurable
effects on neural oscillatory activity in the brain. Using a contrast-based modelling approach, we
revealed the neurophysiological effects of PD, while controlling for the confounding effects of
age, sex and head size. We found that each of these variables were associated with significant
effects on brain activity, demonstrating the need for effective confound modelling. Additionally,
we used a PLS-based predictive model to classify the disease status of participants with
competitive sensitivity and specificity, achieving an AUC-ROC of 0.87 ± 0.04, broadly
characterised as “good” or “very good” (Hond et al., 2022). Interpretation of the model weights
reveals four linear combinations of oscillatory features, each of which independently predicts
PD. These components imply a diverse set of spatially and spectrally distinct oscillatory
changes across the cortical surface. The observed correspondence between classifier weights
and group-level contrast suggests that the classifier is leveraging genuine disease-associated
neural differences (rather than incidental biases in samples), and applying cross-validation
demonstrates that the classifier generalises to new samples.

Oscillatory slowing in PD
The effects on Parkinson’s disease on neural oscillations have been studied for over 50 years
(Neufeld et al., 1988). A recent review of PD-related changes in MEG data (Boon et al., 2019)
reports a slew of alterations in electrical activity associated with PD. These changes appear to
vary depending on the disease stage, but one robust result is an increase in low-frequency
oscillations, observed in both early and late stage PD patients with respect to controls. Early
EEG studies of PD (Soikkeli et al., 1991) and dementia in general (Hughes et al., 1989) noted
significant slowing in both groups. Oscillatory slowing in PD has been observed with MEG (A. I.
Wiesman et al., 2023) using an analysis pipeline based on Brainstorm (Tadel et al., 2011),
suggesting that these changes are robust to choice of analysis tool.

In the current study, we observed multiple distinct modes of oscillatory change which were
directly predictive of PD, which could be interpreted as separate disease processes. At least two
of these components (1 and 3) are diffuse and unambiguously identified with neural slowing.
However, these components differ greatly in their spatial distribution and most predictive
frequency bands: component 1 exhibits a pattern of theta-dominant slowing with a
posterior-oriented gradient typically identified with PD, while component 3 is dominated by a
global diffuse delta-band effect. Components 2 and 4 are more difficult to describe in terms of
slowing, with component 2 showing an overall shift to higher frequencies, and component 4
showing details such as bilaterally increased beta power over superior temporal lobes.
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Capturing these fine spatial details relies on the specificity of source-resolved MEG data using
MRI-derived individual head models. Our results suggest that neural slowing – while a useful
summary measure for determining the overall magnitude and direction of spectral changes –
may fail to capture important details of spectral effects, especially with regards to the observed
differences in theta- and delta- wave slowing in PD.

Predicting PD from MEG
EEG and MEG have been previously leveraged as predictive biomarkers for PD and PD
dementia (PDD); for example, quantitative EEG has been used to predict development of
dementia in PD, with an increased hazard ratio (HR = 3.0; p = 0.004) for median theta band
power (Klassen et al., 2011). We found competitive performance (AUC-ROC: 0.87 ± 0.04) using
our PLS model, gaining the best performance using only spectral power features and a
relatively low number of linear components (l = 4) despite the inherently high dimensionality of
the MEG data. Our PLS classifier identified features previously determined to be highly
predictive of PDD conversion, such as lowered beta power (Olde Dubbelink et al., 2014) and
higher delta/theta power (Caviness et al., 2015). Previously published studies on classifying PD
from M/EEG report a range of accuracy values: 82% using Lempel-Ziv complexity (Gómez et
al., 2011), 88% using a deep learning approach (Oh et al., 2020), and 93% using a linear
predictive coding approach (Anjum et al., 2020). As PLS is a fundamentally linear method, its
raw predictive performance given unlimited training data will be strictly inferior in comparison
with nonlinear “deep learning” approaches, such as neural network or transformer architectures.
However, PLS retains some key advantages in the context of our dataset and goals. Firstly,
PLS is ideally suited to our small neuroimaging dataset with more features than observations,
providing practical classification accuracy with a fraction of the sample size required to train a
deep learning classifier (often in the tens or hundreds of thousands of samples). PLS works
with the many correlated MEG features without a regularisation hyperparameter (as with e.g.
ridge regression), which makes cross-validation easier. Lastly, PLS facilitates interpretation of
the features directly relevant to classification, whereas deep learning methods often present a
“black box”; as such, this coincides with our goal of understanding neurophysiological
differences.

We found that our best performing model uses only oscillatory features, excluding functional
network information completely. Given the proven utility of the functional network paradigm in
neuroimaging, this result is somewhat surprising; however, previous studies using MEG for
biomarker discovery have reported similar results in which source power outperformed
connectivity metrics in predictive power (Engemann et al., 2020) . A penalty to performance is
paid when including more features, which is a consequence of regularisation applied to prevent
overfitting; thus, including more features must be justified by the predictive power of those
features. The lower performance of network features might therefore be partially explained by
their quantity (5120 network edges vs. 390 power nodes); an approach using fewer and more
judiciously chosen seed locations might result in better performance.
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Limitations
Our study was subject to several limitations, both in terms of the available data and the analysis
which was performed on that data. One such limitation of our available data was the encoding
of disease status as a simple binary variable. While this simplifies the analysis, significant
variation in Parkinsonian symptoms is elided. It is known that disease stage and symptom
severity, medication status and presence of tremor or dyskinesia also have impacts on the
observed electrophysiological data, and this was also not investigated. In general, we were
able to use the large sample size to increase statistical power in the group contrast(𝑁 = 199)
and effectively cross-validate the classifier results; however, the requirement for sex-balanced
input data for the classifier led to a reduction in the available data for training and evaluation.
After excluding non-PD neurological diagnoses, the limiting group was females with PD

; this is partially a consequence of the higher prevalence of PD in males (Cerri et al.,(𝑁 = 21)
2019). Nevertheless, the observed significant effects of head volume and sex make it hard to
justify the use of unbalanced data for classification. Recording more data from women with PD
would greatly increase the available sample size.

Our MEG analysis pipeline, while keeping to established guidelines (Gross et al., 2013) as
much as possible, has some fundamental limitations. For instance, the scaling of the virtual
electrode time series to unit standard deviation is a common choice in resting state MEG
analysis. However, it has the effect that information about the absolute signal magnitude in
discrete frequency bands is lost: instead, the spectral values presented should be interpreted as
fractional or relative weightings of frequency content.

Conclusion
Our findings suggest that neural slowing effects in PD can be decomposed into multiple
orthogonal components, exhibiting complex patterns of variation across the cortical surface
which differ both in spectral content and spatial organisation. While each of these components
is independently predictive of PD, the optimal classification is achieved with a combination of
these components, reliably distinguishing individuals with PD from matched controls with
competitively high sensitivity and specificity in an age- and sex-balanced sample. These results
suggest that neural oscillations measured with source-resolved MEG be further investigated as
a biomarker for disease staging or early detection in PD and other neurodegenerative disorders
which exhibit neural slowing.
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Supplementary material

Supplementary Figure 1: Labelled map of individual T-statistic values for PD > control contrast.
Each of the 10 matrices present pseudo-T values for individual brain regions within a lobe
grouping; within each image, columns index regions (i.e. AAL nodes) and rows index frequency
bands. The images are further arranged into two rows, the upper and lower rows denoting left
and right hemisphere regions, respectively. All images use the same global colour map.

Supplementary Figure 2: Oscillatory activity contrast maps for age, sex and volume, with
p-values uncorrected for FWER. Every factor exhibited large moderating effects on a number of
frequency bands.
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Supplementary Figure 3: Network contrast maps for age, sex and volume. p-values are
uncorrected for FWER.

Network Nodes Definitions

Central Executive Network
RIPS [25, -62, 53]
RVV [36, -62, 0]
LVV [-44, -60, -6]
RSMG [32, -38, 38]
RSLOC [26, -64, 54]
LSLOC [-26, -60, 52]
RFEF [28, -4, 58]
LFEF [-26, -8, 54]

Default Mode Network
LAG [-43, -76, 35]
RAG [51, -64, 32]
PCC [-3, -54, 31]
vMPFC [-2, 51, 2]
dMPFC [-13, 52, 23]
RMPFC [2, 53, 24]
LITG [-57, -25, -17]

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


Motor network
Precentral_L [-39.0, -7.0, 50.0]
Precentral_R [41.0, -10.0, 51.0]
Postcentral_L [-43.0, -24.0, 47.0]
Postcentral_R [41.0, -27.0, 51.0]
Parietal_Sup_L [-24.0, -61.0, 58.0]
Parietal_Sup_R [26.0, -60.0, 61.0]
Parietal_Inf_L [-43.0, -47.0, 45.0]
Parietal_Inf_R [46.0, -48.0, 48.0]

Attention network
RSMG [52, -48, 28]
RFEF [30, -13, 53]
LFEF [-26, -12, 53]
LpIPS [-25, -67, 48]
RpIPS [23, -69, 49]
LMT [-43, -72, -8]
RMT [42, -70, -11]
RMFG [41, 17, 31]
RPCS [41, 2, 50]
RSTG [58, -48, 10]
RVFC [40, 21, -4]

Visual network
LV1 [-3, -101, -1]
RV1 [11, -88, -4]
LV2d [-8, -99, 7]
RV2d [14, -96, 13]
LV3 [-9, -96, 13]
RV3 [20, -95, 18]
LV4 [-31, -77, -17]
RV4 [27, -71, -14]
LV7 [-23, -78, 26]
RV7 [32, -78, 25]

Abbreviations:
"RIPS": "Right Intra Parietal Sulcus",
"RVV": "Right Ventral Visual",
"LVV": "Left Ventral Visual",
"RSMG": "Right Supramarginal Gyrus",
"RSLOC": "Right Superior Lateral Occipital Cortex",
"LSLOC": "Left Superior Lateral Occipital Cortex",
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"RFEF": "Right Frontal Eye Field",
"LFEF": "Left Frontal Eye Field",
"LAG": "Left Angular Gyrus",
"RAG": "Right Angular Gyrus",
"PCC": "Posterior Cingulate Cortex",
"vMPFC": "Ventromedial Prefrontal Cortex",
"dMPFC": "Dorsomedial Prefrontal Cortex",
"RMPFC": "Rostral Medial Prefrontal Cortex",
"LITG": "Left Inferior Temporal Gyrus",
"Precentral_L": "Precentral Left",
"Precentral_R": "Precentral Right",
"Postcentral_L": "Postcentral Left",
"Postcentral_R": "Postcentral Right",
"Parietal_Sup_L": "Parietal Superior Left",
"Parietal_Sup_R": "Parietal Superior Right",
"Parietal_Inf_L": "Parietal Inferior Left",
"Parietal_Inf_R": "Parietal Inferior Right",
"LV1": "Left Visual 1",
"RV1": "Right Visual 1",
"LV2d": "Left Visual 2 (Dorsal)",
"RV2d": "Right Visual 2 (Dorsal)",
"LV3": "Left Visual 3",
"RV3": "Right Visual 3",
"LV4": "Left Visual 4",
"RV4": "Right Visual 4",
"LV7": "Left Visual 7",
"RV7": "Right Visual 7",
"LpIPS": "Left posterior Intra-Parietal Sulcus",
"RpIPS": "Right posterior Intra-Parietal Sulcus",
"LMT": "Left Middle Temporal",
"RMT": "Right Middle Temporal",
"RMFG": "Right Middle Frontal Gyrus",
"RPCS": "Right Precentral Sulcus",
"RSTG": "Right Superior Temporal Gyrus",
"RVFC": "Right Ventro-Frontal Cortex"

AAL nodes with MNI coordinates
Rectus_L: [ -5. 36. -20.]
Olfactory_L: [ -8. 14. -13.]
Frontal_Sup_Orb_L: [-17. 46. -15.]
Frontal_Med_Orb_L: [-5. 53. -9.]
Frontal_Mid_Orb_L: [-31. 49. -11.]
Frontal_Inf_Orb_L: [-36. 29. -13.]
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Frontal_Sup_L: [-19. 33. 41.]
Frontal_Mid_L: [-34. 31. 34.]
Frontal_Inf_Oper_L: [-49. 11. 18.]
Frontal_Inf_Tri_L: [-46. 29. 13.]
Frontal_Sup_Medial_L: [-5. 48. 30.]
Supp_Motor_Area_L: [-6. 4. 60.]
Paracentral_Lobule_L: [ -8. -27. 69.]
Precentral_L: [-39. -7. 50.]
Rolandic_Oper_L: [-47. -10. 13.]
Postcentral_L: [-43. -24. 47.]
Parietal_Sup_L: [-24. -61. 58.]
Parietal_Inf_L: [-43. -47. 45.]
SupraMarginal_L: [-56. -35. 29.]
Angular_L: [-44. -62. 34.]
Precuneus_L: [ -8. -57. 47.]
Occipital_Sup_L: [-17. -86. 27.]
Occipital_Mid_L: [-33. -82. 15.]
Occipital_Inf_L: [-36. -80. -9.]
Calcarine_L: [ -7. -80. 5.]
Cuneus_L: [ -6. -81. 26.]
Lingual_L: [-15. -69. -6.]
Fusiform_L: [-31. -41. -22.]
Heschl_L: [-42. -20. 9.]
Temporal_Sup_L: [-53. -22. 6.]
Temporal_Mid_L: [-56. -35. -4.]
Temporal_Inf_L: [-50. -29. -25.]
Temporal_Pole_Sup_L: [-40. 14. -21.]
Temporal_Pole_Mid_L: [-37. 13. -35.]
ParaHippocampal_L: [-21. -17. -22.]
Cingulum_Ant_L: [-4. 34. 13.]
Cingulum_Mid_L: [ -6. -16. 40.]
Cingulum_Post_L: [ -5. -44. 23.]
Insula_L: [-35. 5. 2.]
Rectus_R: [ 8. 34. -19.]
Olfactory_R: [ 10. 15. -13.]
Frontal_Sup_Orb_R: [ 18. 47. -15.]
Frontal_Med_Orb_R: [ 8. 50. -9.]
Frontal_Mid_Orb_R: [ 33. 51. -12.]
Frontal_Inf_Orb_R: [ 41. 31. -13.]
Frontal_Sup_R: [22. 30. 43.]
Frontal_Mid_R: [37. 32. 33.]
Frontal_Inf_Oper_R: [50. 14. 20.]
Frontal_Inf_Tri_R: [50. 29. 13.]
Frontal_Sup_Medial_R: [ 9. 50. 29.]
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Supp_Motor_Area_R: [ 8. -1. 61.]
Paracentral_Lobule_R: [ 7. -33. 67.]
Precentral_R: [ 41. -10. 51.]
Rolandic_Oper_R: [52. -8. 13.]
Postcentral_R: [ 41. -27. 51.]
Parietal_Sup_R: [ 26. -60. 61.]
Parietal_Inf_R: [ 46. -48. 48.]
SupraMarginal_R: [ 57. -33. 33.]
Angular_R: [ 45. -61. 37.]
Precuneus_R: [ 10. -57. 42.]
Occipital_Sup_R: [ 24. -82. 29.]
Occipital_Mid_R: [ 37. -81. 18.]
Occipital_Inf_R: [ 38. -83. -9.]
Calcarine_R: [ 16. -74. 8.]
Cuneus_R: [ 13. -81. 27.]
Lingual_R: [ 16. -68. -5.]
Fusiform_R: [ 34. -40. -22.]
Heschl_R: [ 46. -18. 9.]
Temporal_Sup_R: [ 58. -23. 5.]
Temporal_Mid_R: [ 57. -39. -3.]
Temporal_Inf_R: [ 53. -32. -24.]
Temporal_Pole_Sup_R: [ 48. 13. -18.]
Temporal_Pole_Mid_R: [ 44. 13. -34.]
ParaHippocampal_R: [ 25. -16. -22.]
Cingulum_Ant_R: [ 8. 36. 14.]
Cingulum_Mid_R: [ 8. -10. 38.]
Cingulum_Post_R: [ 7. -43. 20.]
Insula_R: [39. 5. 1.]

19

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


References

Aarsland, D., Zaccai, J., & Brayne, C. (2005). A systematic review of prevalence studies of

dementia in Parkinson’s disease. Movement Disorders, 20(10), 1255–1263.

https://doi.org/10.1002/mds.20527

Abdi, H., & Williams, L. J. (2013). Partial Least Squares Methods: Partial Least Squares

Correlation and Partial Least Square Regression. In B. Reisfeld & A. N. Mayeno (Eds.),

Computational Toxicology: Volume II (pp. 549–579). Humana Press.

https://doi.org/10.1007/978-1-62703-059-5_23

Anjum, M. F., Dasgupta, S., Mudumbai, R., Singh, A., Cavanagh, J. F., & Narayanan, N. S.

(2020). Linear predictive coding distinguishes spectral EEG features of Parkinson’s

disease. Parkinsonism & Related Disorders, 79, 79–85.

https://doi.org/10.1016/j.parkreldis.2020.08.001

Bega, D., Kuo, P. H., Chalkidou, A., Grzeda, M. T., Macmillan, T., Brand, C., Sheikh, Z. H., &

Antonini, A. (2021). Clinical utility of DaTscan in patients with suspected Parkinsonian

syndrome: A systematic review and meta-analysis. NPJ Parkinson’s Disease, 7, 43.

https://doi.org/10.1038/s41531-021-00185-8

Boon, L. I., Geraedts, V. J., Hillebrand, A., Tannemaat, M. R., Contarino, M. F., Stam, C. J., &

Berendse, H. W. (2019). A systematic review of MEG‐based studies in Parkinson’s

disease: The motor system and beyond. Human Brain Mapping, 40(9), 2827–2848.

https://doi.org/10.1002/hbm.24562

Caviness, J. N., Hentz, J. G., Belden, C. M., Shill, H. A., Driver-Dunckley, E. D., Sabbagh, M. N.,

Powell, J. J., & Adler, C. H. (2015). Longitudinal EEG changes correlate with cognitive

measure deterioration in Parkinson’s disease. Journal of Parkinson’s Disease, 5(1),

117–124. https://doi.org/10.3233/JPD-140480

Cerri, S., Mus, L., & Blandini, F. (2019). Parkinson’s Disease in Women and Men: What’s the

20

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


Difference? Journal of Parkinson’s Disease, 9(3), 501–515.

https://doi.org/10.3233/JPD-191683

Colclough, G. L., Brookes, M. J., Smith, S. M., & Woolrich, M. W. (2015). A symmetric

multivariate leakage correction for MEG connectomes. Neuroimage, 117, 439–448.

https://doi.org/10.1016/j.neuroimage.2015.03.071

Cronin-Golomb, A. (2010). Parkinson’s disease as a disconnection syndrome. Neuropsychology

Review, 20(2), 191–208. https://doi.org/10.1007/s11065-010-9128-8

Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’s disease as a disconnection

syndrome? Neuropsychology Review, 13(2), 79–92.

https://doi.org/10.1023/a:1023832305702

Emamzadeh, F. N., & Surguchov, A. (2018). Parkinson’s Disease: Biomarkers, Treatment, and

Risk Factors. Frontiers in Neuroscience, 12, 612.

https://doi.org/10.3389/fnins.2018.00612

Engemann, D. A., Kozynets, O., Sabbagh, D., Lemaître, G., Varoquaux, G., Liem, F., &

Gramfort, A. (2020). Combining magnetoencephalography with magnetic resonance

imaging enhances learning of surrogate-biomarkers. eLife, 9, e54055.

https://doi.org/10.7554/eLife.54055

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781.

https://doi.org/10.1016/j.neuroimage.2012.01.021

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J.

(1994). Statistical parametric maps in functional imaging: A general linear approach.

Human Brain Mapping, 2(4), 189–210. https://doi.org/10.1002/hbm.460020402

Gohil, C., Roberts, E., Timms, R., Skates, A., Higgins, C., Quinn, A., Pervaiz, U., van

Amersfoort, J., Notin, P., Gal, Y., Adaszewski, S., & Woolrich, M. (2022). Mixtures of

large-scale dynamic functional brain network modes. NeuroImage, 263, 119595.

https://doi.org/10.1016/j.neuroimage.2022.119595

21

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


Gómez, C., Olde Dubbelink, K. T. E., Stam, C. J., Abásolo, D., Berendse, H. W., & Hornero, R.

(2011). Complexity analysis of resting-state MEG activity in early-stage Parkinson’s

disease patients. Annals of Biomedical Engineering, 39(12), 2935–2944.

https://doi.org/10.1007/s10439-011-0416-0

Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z. J., He, Y., & Evans, A. C. (2009). Age- and

Gender-Related Differences in the Cortical Anatomical Network. Journal of

Neuroscience, 29(50), 15684–15693. https://doi.org/10.1523/JNEUROSCI.2308-09.2009

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Goj, R., Jas,

M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis

with MNE-Python. Frontiers in Neuroscience, 7.

https://www.frontiersin.org/articles/10.3389/fnins.2013.00267

Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak,

V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J. R., van Wassenhove, V., Wibral,

M., & Schoffelen, J.-M. (2013). Good practice for conducting and reporting MEG

research. NeuroImage, 65, 349–363. https://doi.org/10.1016/j.neuroimage.2012.10.001

Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., & Lounasmaa, O. V. (1993).

Magnetoencephalography-theory, instrumentation, and applications to noninvasive

studies of the working human brain. Reviews of Modern Physics, 65, 413–497.

https://doi.org/10.1103/REVMODPHYS.65.413

Heinrichs-Graham, E., Kurz, M. J., Becker, K. M., Santamaria, P. M., Gendelman, H. E., &

Wilson, T. W. (2014). Hypersynchrony despite pathologically reduced beta oscillations in

patients with Parkinson’s disease: A pharmaco-magnetoencephalography study. Journal

of Neurophysiology, 112(7), 1739–1747. https://doi.org/10.1152/jn.00383.2014

Hond, A. A. H. de, Steyerberg, E. W., & Calster, B. van. (2022). Interpreting area under the

receiver operating characteristic curve. The Lancet Digital Health, 4(12), e853–e855.

https://doi.org/10.1016/S2589-7500(22)00188-1

22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


Hughes, J. R., Shanmugham, S., Wetzel, L. C., Bellur, S., & Hughes, C. A. (1989). The

relationship between EEG changes and cognitive functions in dementia: A study in a VA

population. Clinical EEG (Electroencephalography), 20(2), 77–85.

https://doi.org/10.1177/155005948902000204

Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology,

115(7), 1490–1505. https://doi.org/10.1016/j.clinph.2004.01.001

Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C., & Cheyne, D. (2006). Post-movement beta

rebound is generated in motor cortex: Evidence from neuromagnetic recordings.

NeuroImage, 32(3), 1281–1289. https://doi.org/10.1016/j.neuroimage.2006.06.005

Klassen, B. T., Hentz, J. G., Shill, H. A., Driver-Dunckley, E., Evidente, V. G. H., Sabbagh, M. N.,

Adler, C. H., & Caviness, J. N. (2011). Quantitative EEG as a predictive biomarker for

Parkinson disease dementia. Neurology, 77(2), 118–124.

https://doi.org/10.1212/WNL.0b013e318224af8d

Lee, L. C., Liong, C.-Y., & Jemain, A. A. (2018). Partial least squares-discriminant analysis

(PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary

practice strategies and knowledge gaps. The Analyst, 143(15), 3526–3539.

https://doi.org/10.1039/c8an00599k

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an

extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural

Computation, 11(2), 417–441. https://doi.org/10.1162/089976699300016719

Mosher, J., Leahy, R., & Lewis, P. (1999). EEG and MEG: forward solutions for inverse

methods. IEEE Transactions on Biomedical Engineering, 46, 245–259.

https://doi.org/10.1109/10.748978

Neufeld, M. Y., Inzelberg, R., & Korczyn, A. D. (1988). EEG in demented and non-demented

parkinsonian patients. Acta Neurologica Scandinavica, 78(1), 1–5.

https://doi.org/10.1111/j.1600-0404.1988.tb03609.x

23

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


Nordström, A., & Nordström, P. (2018). Traumatic brain injury and the risk of dementia

diagnosis: A nationwide cohort study. PLOS Medicine, 15(1), e1002496.

https://doi.org/10.1371/journal.pmed.1002496

Oh, S. L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M., &

Acharya, U. R. (2020). A deep learning approach for Parkinson’s disease diagnosis from

EEG signals. Neural Computing and Applications, 32(15), 10927–10933.

https://doi.org/10.1007/s00521-018-3689-5

Olanow, C. W., Stern, M. B., & Sethi, K. (2009). The scientific and clinical basis for the treatment

of Parkinson disease (2009). Neurology, 72(21_supplement_4), S1–S136.

https://doi.org/10.1212/WNL.0b013e3181a1d44c

Olde Dubbelink, K. T. E., Hillebrand, A., Twisk, J. W. R., Deijen, J. B., Stoffers, D., Schmand, B.

A., Stam, C. J., & Berendse, H. W. (2014). Predicting dementia in Parkinson disease by

combining neurophysiologic and cognitive markers. Neurology, 82(3), 263–270.

https://doi.org/10.1212/WNL.0000000000000034

Pollok, B., Krause, V., Martsch, W., Wach, C., Schnitzler, A., & Südmeyer, M. (2012).

Motor‐cortical oscillations in early stages of Parkinson’s disease. The Journal of

Physiology, 590, null. https://doi.org/10.1113/jphysiol.2012.231316

Quinn, A. J., Atkinson, L. Z., Gohil, C., Kohl, O., Pitt, J., Zich, C., Nobre, A. C., & Woolrich, M.

W. (2024). The GLM-Spectrum: A multilevel framework for spectrum analysis with

covariate and confound modelling. Imaging Neuroscience.

https://doi.org/10.1162/imag_a_00082

Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A

robust approach. Neuroimage, 53(4), Article 4.

https://doi.org/10.1016/j.neuroimage.2010.07.020

Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury.

Nature Reviews. Neurology, 10(3), 156–166. https://doi.org/10.1038/nrneurol.2014.15

24

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


Soikkeli, R., Partanen, J., Soininen, H., Pääkkönen, A., & Riekkinen, P. (1991). Slowing of EEG

in Parkinson’s disease. Electroencephalography and Clinical Neurophysiology, 79(3),

159–165. https://doi.org/10.1016/0013-4694(91)90134-P

Stoffers, D., Bosboom, J. L. W., Deijen, J. B., Wolters, E. C., Berendse, H. W., & Stam, C. J.

(2007). Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s

disease without dementia. Brain, 130(7), 1847–1860.

https://doi.org/10.1093/brain/awm034

Surmeier, D. J. (2018). Determinants of dopaminergic neuron loss in Parkinson’s disease. The

FEBS Journal, 285(19), 3657–3668. https://doi.org/10.1111/febs.14607

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A

user-friendly application for MEG/EEG analysis. Computational Intelligence and

Neuroscience, 2011, 879716. https://doi.org/10.1155/2011/879716

Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of

Parkinson’s disease. The Lancet. Neurology, 20(5), 385–397.

https://doi.org/10.1016/S1474-4422(21)00030-2

van Nifterick, A. M., Gouw, A. A., van Kesteren, R. E., Scheltens, P., Stam, C. J., & de Haan, W.

(2022). A multiscale brain network model links Alzheimer’s disease-mediated neuronal

hyperactivity to large-scale oscillatory slowing. Alzheimer’s Research & Therapy, 14,

101. https://doi.org/10.1186/s13195-022-01041-4

Veen, B. V., Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical

activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on

Biomedical Engineering, 44, 867–880. https://doi.org/10.1109/10.623056

Wegelin, J. (2000). A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the

Two-Block Case. Technical Report.

Wiesman, A. I., da Silva Castanheira, J., Degroot, C., Fon, E. A., Baillet, S., PREVENT-AD

Research Group, & Network, Q. P. (2023). Adverse and compensatory

25

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/


neurophysiological slowing in Parkinson’s disease. Progress in Neurobiology, 231,

102538. https://doi.org/10.1016/j.pneurobio.2023.102538

Wiesman, A., Murman, D., Losh, R. A., Schantell, M. D., Christopher‐Hayes, N. J., Johnson, H.

J., Willett, M. P., Wolfson, S. L., Losh, K. L., Johnson, C. M., May, P., & Wilson, T. (2022).

Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer’s

disease. Brain, 145, 2177–2189. https://doi.org/10.1093/brain/awab430

26

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312669doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://www.zotero.org/google-docs/?nwDcFi
https://doi.org/10.1101/2024.08.27.24312669
http://creativecommons.org/licenses/by-nc/4.0/

