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Abstract: Observational studies are essential for measuring vaccine effectiveness. Recent 

research has raised concerns about how a relationship between testing and vaccination may 

affect estimates of vaccine effectiveness against symptomatic infection (symptomatic VE). 

Using an agent-based network model and SARS-CoV-2 as an example, we investigated how 

differences in the likelihood of testing by vaccination could influence estimates of 

symptomatic VE across two common study designs: retrospective cohort and test-negative 

design. First, we measured the influence of unequal testing on symptomatic VE estimates 

across study designs and sampling periods. Next, we investigated if the magnitude of bias in 

VE estimates from unequal testing was shaped by the level of immune escape (vaccine 

efficacy against susceptibility and against infectiousness) and underlying epidemic potential 

(probability of transmission). We found that unequal testing led to larger biases in the cohort 

design than the test-negative design and that biases were largest with lower efficacy against 

susceptibility. We also found the magnitude of bias was moderated by the sampling period, 

efficacy against infectiousness, and probability of transmission, with more pronounced 

moderating effects in the test-negative design. Our study illustrates that VE estimates across 

study designs require careful interpretation, especially in the presence of epidemic and 

immunological heterogeneity. 

Introduction: 

In real-world settings, observational studies are used to infer causal effects of how well 

vaccines protect against infection1,2. Accurate estimates of vaccine effectiveness (VE) are 

important as they are used to evaluate the impact of vaccines at a population-level and can 

affect vaccine confidence3. Most VE observational studies use population-level data collected 

through passive surveillance systems that rely on tests conducted to screen for, or diagnose, 

infections. However, testing for a given infection depends on many factors: variability in 
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recommendations across populations and risk factors for testing and treatment; access and 

uptake shaped in part by healthcare engagement; underlying burden of alternate etiologies of 

symptoms that drive testing. When some of these factors also influence vaccination, they can 

create unequal rates of testing by vaccination status, introducing biases into VE estimates 

such as residual confounding (due to unmeasured confounders), or selection bias due (when 

restricting study samples to those tested)4–7. Concerns surrounding biases in VE estimates due 

to unequal testing by vaccination status were brought to the forefront during the SARS-CoV-

2 pandemic, based on empirical data that revealed associations between vaccination status 

with testing8,9. Quantifying the direction and magnitude of biases in VE estimates due to 

unequal testing by vaccination, and the conditions under which these biases are most 

influential, could inform interpretation of VE estimates and study design to reduce biases. 

Two observational study designs commonly used to estimate VE are the retrospective 

cohort (e.g.,10–14) and retrospective test-negative designs (e.g.,15–19). Cohorts use vaccination 

status to assign exposure and estimate the relative risks of infection (between the vaccinated 

and unvaccinated cohorts) that may occur over a given sampling period. Classification of the 

outcome (infected vs. not infected) depends on testing for infection. Therefore, unmeasured 

confounders that lead to unequal testing by vaccination status can cause residual confounding 

in VE estimates from the cohort design4,20,21.  

Test-negative designs restrict the study sample only to individuals who received a test 

for the infection in an attempt to eliminate unmeasured confounding22,23. At a given point in 

the epidemic (sampling period), cases (individuals who tested positive) and controls 

(individuals who tested negative) are compared to determine if the distribution of the 

exposure (vaccination) differs between cases and controls, using odds ratios2. However, as 

described by Westreich and Hudgens6 and Sullivan, Tchetgen Tchetgen, and Cowling7 
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through a directed acyclic graph (DAG), restricting the study sample to tested individuals 

may introduce a selection bias via selecting on a collider (also referred to as collider bias ). As 

the exposure (vaccination) and outcome (infection) both affect the likelihood of being tested, 

selecting on testing distorts the association between vaccination and infection, thereby 

creating biased VE estimates6,7. 

In an attempt to eliminate the selection bias due to selecting on testing, some test-

negative design studies use symptomatic infection as the outcome to estimate the vaccine’s 

protection against symptomatic infection (hereafter referred to as symptomatic VE) 

(e.g.,15,24,25). Here, these studies also restrict their sample to only those individuals with 

symptoms, which attempts to block the association between infection and testing to mitigate 

the collider bias. However, we posit that selecting on symptoms may not fully block the 

association between infection and testing, therefore allowing the collider bias to persist. 

Various studies have qualitatively described the mechanisms by which unequal testing 

by vaccination could lead to residual confounding or selection bias6,7. However, less is known 

about the magnitude of bias in VE estimates due to unequal testing by vaccination in cohort 

vs. test-negative designs; and importantly, the epidemic and immunological properties under 

which biases in VE estimates are amplified or dampened in the presence of unequal testing.  

Epidemic and immunological properties have the potential to shape biases in VE over 

time and across epidemics. Epidemic properties such as the force of infection (incidence per 

susceptible) and the proportion of the population that are susceptible due to infection-acquired 

immunity can vary over the course of an epidemic and thus can influence the degree of bias in 

VE estimates over time. Epidemic and immunological properties that determine the overall 

size and length of an epidemic may also vary with changing contexts and evolving pathogens, 

potentially shaping biases across epidemics. One epidemic condition that can vary is the 
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underlying epidemic potential (probability of transmission), which could differ depending on 

underlying contact rates and/or biological properties of the virus (e.g. increased 

transmissibility of SARS-CoV-2 variants26,27. Immunological properties such as the biological 

efficacy of vaccines against susceptibility (individual-level protection against acquiring 

infection28) and/or against infectiousness (individual-level reduction in transmitting virus if 

infected28) can also vary across different phases of an epidemic as seen with the increased 

immune escape of SARS-CoV-2 variants29. As such, epidemic and immunological properties 

that determine the overall size and length of an epidemic may moderate the magnitude of bias 

observed in a given epidemic. 

In this study, we developed an agent-based network model, using SARS-CoV-2 as an 

example, to examine the magnitude of bias in symptomatic VE estimates due to unequal 

testing by vaccination status across retrospective cohort and test-negative designs. Here our 

causal relationship of interest is the effect of vaccination on symptomatic SARS-CoV-2 

infection (Fig. 1). First, using our simulated data, we compared biases produced in the two 

study designs at the same sampling period and then across different lengths of the sampling 

period within the same study design (Objective 1). We then assessed the extent to which 

biases were moderated by immunological properties (vaccine efficacy against susceptibility 

and against infectiousness) (Objective 2); and by the underlying epidemic potential 

(probability of transmission) (Objective 3).  

Results: 

Comparison of biases from testing differences across study designs and sampling periods 

Using an agent-based network model and our default parameters (Fig. 2; Table 1), we 

simulated three testing scenarios that varied the magnitude of the relationship between testing 

and vaccination (“c” in Fig. 1): equal testing scenario (equal probability of testing by 
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vaccination status); moderately unequal testing scenario (vaccinated with 1.76 times higher 

testing); and highly unequal testing scenario (vaccinated with 2.36 times higher testing). We 

assumed testing could only occur if individuals had symptoms from SARS-CoV-2 infection 

or had COVID-like symptoms from alternate etiologies. We then measured the magnitude of 

bias in VE estimates produced by the cohort design ( 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 ) and the test-negative design 

(𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) and compared them across study designs and sampling periods. We ran the three 

testing scenarios using both a higher and lower efficacy against susceptibility (0.55 and 0.1), 

which was equivalent to higher and lower true symptomatic VE (see Methods for details).  

Under equal testing, the cohort design produced unbiased 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 estimates that were 

stable over the successive sampling periods (Fig. 3a,b). Under equal testing, the test-negative 

design produced unbiased 𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅 estimates in early sampling periods (e.g. day 20) at the 

beginning of the epidemic (similar to 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅) (Fig. 3e,f). As the epidemic progressed, there 

were a larger number of cumulative symptomatic infections (Fig. 3c,d). Consequently, the 

test-negative design overestimated true symptomatic VE, aligning with the established 

knowledge that the odds ratio (used to calculate 𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) underestimates the relative risk (used 

to calculate 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 as the outcome becomes more frequent30. 

Under unequal testing, the cohort design produced 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 that underestimated the true 

symptomatic VE (Fig. 3a,b). Over the course of the epidemic (and thus longer sampling 

periods), the magnitude of the underestimate decreased and then stabilised (Fig. 3a,b). This 

decrease coincided with unvaccinated individuals being tested later than vaccinated 

individuals (Supplementary 1: Timing of Testing). Stabilization of the pattern occurred at the 

end of the epidemic when there were no more individuals with SARS-CoV-2 available for 

testing (Fig. 3c,d). The magnitude of the underestimates was larger in the highly unequal 

testing scenario versus the moderately unequal testing scenario (Fig. 3a,b). 
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Under unequal testing, the test-negative design also produced 𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅 that 

underestimated the true symptomatic VE with larger biases occurring in the highly unequal 

testing scenario (Fig. 3e,f).  However, the test-negative design produced smaller biases than 

the cohort design with the difference in the magnitude of bias between study designs most 

pronounced when true symptomatic VE (i.e. efficacy against susceptibility) was low.  

In contrast to the cohort design, biases grew larger over the sampling period in the 

test-negative design. This pattern arose with the test-negative design due to greater 

differential outcome misclassification by vaccination status that occurred with successive 

sampling periods (Supplementary Fig. 1).The opportunities for misclassification grew 

because there were more opportunities for individuals to develop COVID-like symptoms 

from alternate etiologies at later sampling periods and to be erroneously classified (e.g. more 

individuals with both prior undiagnosed SARS-CoV-2 infections and COVID-like symptoms 

are available to test “negative” and be classified as controls; Supplementary 1: 

Misclassification Example; Supplementary Fig. 2).  

Irrespective of the sampling period, the magnitude of bias from the test-negative 

design was amplified in the moderately and highly unequal testing scenarios when there was a 

higher prevalence of COVID-like symptoms from alternate etiologies (Supplementary Fig. 3). 

Higher prevalence of COVID-like symptoms from other etiologies increased the potential for 

individuals to receive a negative test, allowing for more potential misclassifications to occur. 

Varying the prevalence of COVID-like symptoms from alternate etiologies had no influence 

on the magnitude of bias in estimates from the cohort design.  

Influence of immunological properties on biases from testing differences 

To determine whether varying immunological properties could shape the magnitude of biases 

from testing differences, we repeated the above analyses but now varied the levels of efficacy 
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against susceptibility (0.1 to 0.9) and efficacy against infectiousness (0.1 to 0.9). Here, we 

opted to use a single time point (the highest SARS-CoV-2 epidemic growth point [inflection 

point]) so that VE estimates could be easily compared across levels of vaccine efficacies.  

We found that efficacy against susceptibility had a large influence on the magnitude 

of bias in both study designs (Fig. 4). Both designs were also capable of producing negative 

estimates of the true symptomatic VE when efficacy was low, even with moderately unequal 

testing (Fig. 3e,f). The moderating effect of efficacy against susceptibility was more 

pronounced as testing by vaccination changed from moderately to highly unequal.  

Efficacy against infectiousness also had a moderating effect on the magnitude of 

underestimates caused by unequal testing in both study designs (Fig. 5). The moderating 

effect was less pronounced than that of efficacy against susceptibility. The moderating effect 

of efficacy against infectiousness was present across both high and low efficacy against 

susceptibility.  

Under unequal testing, the moderating effect of each mechanism of efficacy (against 

susceptibility, against infectiousness) also varied by study design. With differences across 

efficacy against susceptibility, the moderating effect was more pronounced with the cohort 

design than the test-negative design (noting also that the absolute magnitude of the bias was 

much smaller with the test-negative design) (Fig. 4a,c). With differences in efficacy against 

infectiousness, the moderating effect was more pronounced with the test-negative design than 

the cohort design and was most evident under scenarios of high efficacy against 

infectiousness (Fig. 5a,b,e,f).  

Efficacy against susceptibility had a larger influence than efficacy against 

infectiousness, and a different influence on the magnitude of bias by study design, because of 

the differential effect that these efficacies had on the cumulative numbers of symptomatic 
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infections by vaccination status - the main components of VE calculations. Although higher 

efficacy against susceptibility and higher efficacy against infectiousness resulted in longer 

epidemic periods with smaller epidemic sizes (Supplementary Fig. 4-6), changes in efficacy 

against susceptibility led to differential reductions in the cumulative proportions of 

symptomatic infections by vaccination status (Fig. 4b; Supplementary Fig. 4) while changes 

in efficacy against infectiousness led to more proportionate reductions by vaccination status 

(Fig. 5c,d; Supplementary Fig. 5-6). Specifically, increasing efficacy against susceptibility 

caused symptomatic infections among vaccinated to shrink more than among the 

unvaccinated, such that the absolute difference between these two groups (vaccinated versus 

unvaccinated) tended to monotonically increase until reaching very high levels of efficacy 

(Fig. 4b; Supplementary Fig. 4). The absolute difference was amplified when testing was 

more unequal. In contrast, changes in efficacy against infectiousness caused a similar 

reduction in the cumulative proportions of symptomatic infections by vaccination status as 

vaccinated and unvaccinated individuals both benefited from the reduction of infectiousness 

provided by those who were vaccinated (Fig. 5c,d; Supplementary Fig. 5-6). The consequence 

of this on the calculations of relative risk and odds ratios explain the differences in the 

moderating effects by study design and are detailed in the supplementary information with 

examples (Supplementary 1: Moderating Effect Calculations; Supplementary Fig. 7-10).  

Influence of underlying epidemic potential (probability of transmission) on biases from 

testing differences 

To determine whether changing epidemic properties could shape the magnitude of biases due 

to testing scenarios, we varied the underlying epidemic potential - the probability of 

transmission (0.033 to 0.1131–34) and assessed the effect on biases in VE estimates. We again 

used a single time point (the highest SARS-CoV-2 epidemic growth point [inflection point]). 
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Similar to the effect of efficacy against infectiousness, decreasing the probability of 

transmission led to a similar, proportionate, reduction in the cumulative proportions of 

symptomatic infections by vaccination status (Fig. 6c,d; Supplementary Fig. 11-12). As such, 

the moderating influence of the probability of transmission demonstrated a similar pattern to 

that of efficacy against infectiousness. In the context of high transmission, changes in the 

transmission had a negligible influence on the magnitude of bias produced in both study 

designs (similar to the pattern observed when efficacy against infectiousness was low) (Fig. 

6a,b,e,f). However, in the context of low transmission, small changes in transmission led to 

larger changes in the magnitude of bias but only in the test-negative design (similar to the 

pattern observed when efficacy against infectiousness was high) (Fig. 6e,f). 

 The difference in the direction and magnitude of biases by study design occurred 

because of the extent to which the ratio in the numerator (in the relative risk) changed with 

changes in the probability of transmission, and the extent to which the ratio in the numerator 

and in the denominator changed (with the odds ratio). These patterns again are similar to 

those observed with efficacy against infectiousness. Detailed explanation and examples of 

how these calculations change across probabilities of transmission and by study design are 

provided in the Supplementary Information (Supplementary 1: Moderating Effect 

Calculations; Supplementary Fig. 13-14).  

Discussion: 

Using simulation modelling and SARS-CoV-2 as the motivating example, we examined the 

magnitude of bias in symptomatic VE due to unequal testing by vaccination status and 

explored how epidemic and immunological properties could shape biases across two 

commonly adopted observational VE study designs. Overall, in the presence of unequal 

testing by vaccination, we found that both the cohort and test-negative design could 
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underestimate true symptomatic VE with greater testing differences leading to larger 

underestimates. However, we also found that the cohort design produced larger 

underestimates (larger biases) than the test-negative design. The largest bias for both study 

designs occurred with low efficacy against susceptibility, but the moderating effect of 

efficacy against susceptibility on bias was more pronounced in the cohort design compared 

with the test-negative design. In contrast, biases produced by the test-negative design were 

more likely than biases produced by the cohort design to be influenced by the length of the 

sampling period, the efficacy against infectiousness, and the probability of transmission.  

Our findings confirm and build on previous insights on the mechanisms by which 

unequal testing and healthcare engagement can create biased estimates of VE in cohort 

designs4,20,21 and in test-negative designs6,7. First, our work expands on previous qualitative 

studies that showcased the potential for residual confounding and selection bias with VE 

against infection6,7. We illustrated that selection bias in test-negative designs can still play an 

important role in affecting estimates of true symptomatic VE - although the magnitude of the 

bias is likely to be small. Second, our work provides a detailed comparison of the magnitude 

of bias found across the two most commonly-adopted study designs - the retrospective cohort 

and test-negative design. Our findings add support to the use of a test-negative design over 

that of a cohort-design in estimating VE in the presence of unequal testing by vaccination 

status22. We further identified important epidemic and immunological properties that should 

be considered when interpreting VE estimates from both study designs: efficacy against 

susceptibility, efficacy against infectiousness, and the probability of transmission. 

Efficacy against susceptibility had the largest influence on the magnitude of bias in 

VE estimates with a more pronounced effect on estimates from the cohort design. Other 

studies have also found that efficacy against susceptibility can moderate the magnitude of 
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bias produced by other mechanisms of bias such as heterogeneity in contact levels by 

vaccination status35 and confounding bias due to correlated case and control vaccination 

behaviours2. The key implication from these findings is that as a virus undergoes genetic 

adaptations leading to immune escape, and/or waning against susceptibility occurs, the 

greater the risks of larger biases being produced in VE estimates. This is likely why several 

studies found estimates of negative VE (suggesting that the vaccine is increasing symptomatic 

infection) during the emergence of the Omicron variant of SARS-CoV-2 (e.g.,24,25) - a variant 

known to have higher immune escape36.  

There are three important implications stemming from the influence of sampling 

period, efficacy against infectiousness, and the epidemic potential (probability of 

transmission) – all of which were more pronounced with the test-negative design than with 

the cohort design. First, in the context of an emerging and evolving outbreak, VE studies are 

routinely conducted over successive time-periods. Thus, it becomes increasingly important, in 

the context of unequal testing, to repeat VE studies and consider the timing of sampling for 

interpretation of VE estimates. Early in the epidemic, a test-negative design offers a large 

advantage in terms of minimizing the magnitude of bias but calls for greater caution in 

interpretation as the epidemic evolves. Caution is particularly important given that 

irrespective of the sampling period, prevalence of COVID-like symptoms from alternate 

etiologies influenced the magnitude of bias in symptomatic VE estimates from the test-

negative design. As such, the population (e.g. age-group, or prevalence of comorbidities), 

geography, and seasonality that govern the level of alternate etiologies for COVID-like 

symptoms are expected to create differences in biases with test-negative designs. 

Second, although changes in efficacy against infectiousness play an overall smaller 

role in moderating the magnitude of biases from unequal testing compared to efficacy against 
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susceptibility, its effects can still be prominent when using the test-negative design. Efficacy 

against infectiousness is therefore important to consider in the context of the test-negative 

design as the efficacy against infectiousness can change as vaccines are updated and as 

viruses, such as influenza, develop immune escape that alters their ability to transmit37.  

Third, the finding that small changes in epidemic potential – in the context of already 

low epidemic potential - could have a large moderating effect on the size of biases in test-

negative designs provides a key insight when conducting and comparing VE estimates across 

populations and geographies. This is because study settings are inherently shaped by the 

underlying contact network (e.g. study setting with high-density housing and occupations 

with high rates of contacts) which in turn, shape epidemic potential.   

Taken together, when pooling or synthesizing VE estimates, future work is needed to 

account for sources of heterogeneity that affect the magnitude of potential biases to 

strengthen the robustness of evidence synthesis. In the meantime, careful inclusion of 

nuanced DAGs (across study designs) and cautious and transparent interpretation to 

communicate the potential benefits of vaccination is essential. Good practices also include 

anticipating and recognizing that observed VE may represent biased VE estimates in the 

presence of unequal testing by vaccination status. These practices are important given that 

addressing unequal testing remains challenging. Electronic health records in national 

databases typically have information on exposures and health outcomes but limited data on 

confounders38. We therefore echo the sentiments of Lewnard et al.39 cautioning that the test-

negative design - along with other types of study designs - should not be naively applied to 

testing datasets collected through administrative or public health surveillance data sources. 

An area of future methodological work includes using externally-collected data on testing by 
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vaccination status from representative surveys (e.g.,8,9) to conduct quantitative bias analysis, 

including simulation-based bias analysis 40,41. 

Our simulation study has several limitations. Chief among them is our assumption that 

vaccination coverage was static. Rolling out a vaccine over time could potentially reduce the 

magnitude of bias due to unequal testing if, for example, individuals who have high health 

engagement (and hence are likely to be tested) also wanted to be vaccinated but were not able 

to immediately receive one. This effect could also be reversed if interventions reached those 

with the highest healthcare engagement first before being distributed to those with lower 

healthcare engagement (causing more unequal testing by vaccination in the beginning of the 

epidemic before stabilizing). Second, we assumed the severity of symptoms due to SARS-

CoV-2 did not vary by vaccination status. Vaccination for SARS-CoV-2 has been shown to 

reduce symptoms42,43. Depending on the strength of the association between vaccination and 

testing by symptom-severity, which has been shown to affect the accuracy of VE estimates23, 

the magnitude of bias could be reduced or remain unchanged from counterbalancing 

associations (e.g vaccinated individuals may have milder symptoms than unvaccinated 

individuals, but they may also be more likely to get tested even with mild symptoms). Third, 

our scenarios were conditioned on vaccinated individuals testing more than unvaccinated 

individuals based on several surveys related to SARS-CoV-2 testing and vaccination (e.g.,8,9). 

However, unequal testing has also occurred in the opposite direction44, which is an important 

consideration when comparing VE studies across different study settings, irrespective of 

pathogen. If unequal testing reflects higher testing among unvaccinated individuals, the 

direction of the bias would change, leading to an overestimation rather than an 

underestimation of symptomatic VE. 
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Observational studies are key to assessing how well vaccines might be working in the 

real-world2. We illustrated how unequal testing by vaccination status could bias estimates of 

true symptomatic VE across two commonly used study designs. Overall, using a test-negative 

design rather than a cohort design can reduce the magnitude of biases due to unequal testing. 

However, interpretation of VE estimates still requires cautious interpretation, especially given 

heterogeneity in epidemic and immunological properties – with the most important property 

being vaccine efficacy against susceptibility.  

Methods 

Mechanisms of Interest 

The causal relationship we are interested in is the effect of vaccination on symptomatic 

SARS-CoV-2 infection (Fig. 1). For simplification, we assumed that vaccination does not 

reduce symptoms in vaccinated individuals who acquire SARS-CoV-2 and thus the effect of 

vaccination on infection is the same as its effect on symptomatic infection. If infected, an 

individual may develop symptoms which leads to an opportunity to engage in SARS-CoV-2 

testing. Both infectious and non-infectious etiologies other than SARS-CoV-2 can lead to 

symptoms similar to those caused by SARS-CoV-2 (referred to as etiologies of COVID-like 

symptoms, Fig. 1)45.   

We assumed that the association between vaccination and testing (pathway marked as 

“c” in Fig. 1, which reflects unequal testing by vaccination status) is induced by a relationship 

between the level of healthcare engagement and vaccination (pathway marked “a” in Fig. 1) 

and a relationship between the level of healthcare engagement and testing (pathway marked 

as “b” in Fig. 1).  

In the cohort design, everyone was included in the study sample. Fig. 1A depicts how 

unequal testing by vaccination status can lead to residual confounding in VE estimates when 
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using the cohort design if healthcare engagement is unmeasured. In the test-negative design, 

the study sample was restricted to individuals who were symptomatic and tested for SARS-

CoV-2 (depicted by the two “conditioned upon” circles in Fig. 1B). Conditioning on 

symptomatic and testing can generate a selection bias in VE estimates due to 

selecting/conditioning on a collider. Testing meets the criteria as a collider because both the 

exposure (vaccination) and the outcome (infection) are associated with testing. While 

conditioning on symptomatic blocks the association between SARS-CoV-2 infection and 

testing (as symptomatic is a mediator), it induces an association between SARS-CoV-2 

infection and etiologies of COVID-like symptoms (depicted by dashed line in Fig. 1B) 

through which infection is associated with testing (see Supplementary 2: Selection Bias for 

details).  

To focus our examination on mechanisms of biases due to unequal testing by 

vaccination status, we assumed no other sources of unmeasured confounding.  

Model Overview 

We used an agent-based model to simulate SARS-CoV-dynamics and to model the 

individual-level variations in vaccination and testing (Fig. 2). We chose an agent-based model 

as it is a flexible approach that can capture emergent phenomena arising from complex 

interactions in a heterogeneous population46. In our model, each individual (i.e. agent) was 

assigned attributes to capture health-states related to SARS-CoV-2: Susceptible, Exposed, 

Infectious, Recovered and Immune (where individuals are assumed to be fully protected from 

re-infection). Other individual-level attributes that vary over time include: symptom status 

(symptomatic or asymptomatic), SARS-CoV-2 testing (tested or not tested); SARS-CoV-2 

diagnosis if tested (tested positive vs negative). Attributes that do not vary over time include: 

healthcare engagement (low or high); and vaccination status (vaccinated or unvaccinated). 
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The model updates each individual’s attributes daily. Table 1 summarises the parameters and 

their corresponding data sources. 

Contact Patterns 

Transmission occurs in daily time-steps through contacts in a homogenous and static network 

generated using an Erdos-Renyi random graph model47. The network is based on an average 

of 6 daily contacts48. Given the network is sparse, the distribution of contacts across the 

population follows a Poisson distribution49. The original placement of edges (representing 

contacts) is homogeneous by vaccination status, and all nodes (individuals) are connected to 

the main network (Supplementary 2: Contact Patterns).  

SARS-CoV-2 Transmission 

Based on available data from the literature, we assigned a default value for the biological 

probability of transmission per contact per day, duration of the exposure state, duration of 

infectiousness, and proportion asymptomatic if infected with SARS-CoV-2 (Table 1). Each of 

these processes is stochastic and was implemented using draws from statistical distributions 

(Supplementary 2: SARS-COV-2 Transmission Dynamics).  

COVID-like Symptoms 

At any given point in time, a stable proportion (default value of 0.152 in our primary analysis) 

of the simulated population experienced COVID-like symptoms from alternate etiologies50. 

We assumed symptoms lasted on average for 10 days (reflecting average duration of 

symptoms from the “common cold” 51 and influenza52 (Appendix 1: COVID-like Symptoms).  

Vaccination (Coverage and Mechanisms of Protection) 
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We applied a fixed 75% vaccination coverage53 such that 75% of the simulated population 

was fully vaccinated prior to the start of the epidemic, with no further vaccination thereafter. 

This reflects a scenario wherein a variant may emerge, but new or additional vaccination has 

not yet been rolled out.  

We simulated vaccine efficacy against susceptibility to acquisition of SARS-CoV-2 

and vaccine efficacy against infectiousness54.  Efficacy against susceptibility was 

implemented as “all-or-nothing” protection. That is, the vaccine induced 100% protection for 

a subset of vaccinated individuals (set by the value of efficacy against susceptibility) and zero 

protection for the remainder (1-efficacy)54. We assumed that vaccination did not reduce the 

probability of becoming symptomatic. 

Most of our analyses used a default value for high and low efficacy against 

susceptibility (0.55, informed by an average estimate of VE against Omicron infection55; and 

a default value for low efficacy against susceptibility (0.1, reflecting VE estimates taken 9 

months after vaccination56. For vaccine efficacy against infectiousness, we used a default 

value of 0.257.   

VE Study Design and Estimates 

To mimic the retrospective cohort design in studies using population-level health 

administrative data, we assumed that symptomatic individuals with SARS-CoV-2 who were 

not tested will be misclassified as not infected when estimating true symptomatic VE using 

the cohort design (formula 1). 

(1)     𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 =  1 −  𝑅𝑅𝑅𝑅(𝑡𝑡) 

with: 
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where  𝑅𝑅𝑅𝑅(𝑡𝑡) is a relative risk at time t; 𝐶𝐶𝐶𝐶𝑉𝑉(𝑡𝑡) and 𝐶𝐶𝐶𝐶𝑈𝑈(𝑡𝑡) are the cumulative numbers of 

symptomatic infected for vaccinated and unvaccinated that have been tested and diagnosed 

(tested positive) at time t, respectively; and 𝑁𝑁𝑉𝑉 and 𝑁𝑁𝑈𝑈 are the total numbers of vaccinated 

and unvaccinated individuals, respectively. 

To mimic the test-negative design, we sampled from the simulated cohort individuals 

who were both symptomatic and tested. Using those sampled individuals we can estimate the 

true symptomatic VE, with formula 2: 

 

(2)     𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅 =  1 −  𝑂𝑂𝑅𝑅(𝑡𝑡) 

and 

 

where 𝑂𝑂𝑅𝑅 (𝑡𝑡) is an odds ratio at time t; and 𝐶𝐶𝐶𝐶𝑉𝑉 (𝑡𝑡) and 𝐶𝐶𝐶𝐶𝑈𝑈 (𝑡𝑡) are the cumulative numbers 

of symptomatic individuals due to etiologies of COVID-like symptoms for vaccinated and 

unvaccinated populations who tested negative for SARS-COV-2 and had no prior positive 

tests for SARS-COV-2 by time t, respectively. 

Testing Scenarios 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312655doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.27.24312655
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

We simulated three testing scenarios, each with a varying strength of the relationship between 

testing and vaccination (“c” Fig. 1): equal testing scenario (equal probability of testing by 

vaccination status); moderately unequal testing scenario (vaccinated with 1.76 times higher 

testing); and highly unequal testing scenario (vaccinated with 2.36 times higher testing). Here 

the direction of the testing differences (i.e. vaccinated individuals testing more than 

unvaccinated) and the magnitude of the differences in the moderately unequal testing scenario 

are based on empirical survey results9). Varying “c” also affected the timing of testing by 

vaccination status. Thus, in our testing scenarios, vaccinated individuals tested later than 

unvaccinated individuals when testing was unequal with the difference in the timing growing 

as unequal testing went from moderately unequal to highly unequal (Supplementary 1: 

Timing of Testing). 

The magnitude of “c” is influenced by the likelihood of vaccination by the level of 

healthcare engagement (“a” in Fig. 1); and the likelihood of testing by the level of healthcare 

engagement (“b” in Fig. 1). We varied values of “a” to simulate the three testing scenarios 

above (see Supplementary 2: Testing and Healthcare Engagement and Testing Scenarios for 

details).  

Simulations and Analyses 

Each scenario consisted of 100 epidemic realizations and each epidemic realization used a 

population size of 100,000. We selected these values because in scenarios using our default 

parameters, estimates of symptomatic VE had converged by the epidemic’s inflection point. 

All realizations were initialized with 10 randomly assigned individuals on day 1 of their 

infectiousness (See Supplementary 2: Event Scheduling).  In our analyses, we estimated VE 

using a cohort design and test-negative design (𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) under the three testing 

scenarios. The magnitude of bias was measured as the difference between efficacy against 
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susceptibility (the model input), and the symptomatic VE estimates produced by the cohort 

design ( 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 ) and the test-negative design (𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅). We assessed the magnitude of bias using 

efficacy against susceptibility as it represents the true symptomatic VE. Efficacy against 

susceptibility is equivalent to true symptomatic VE because 1) the vaccine provides “all-or-

nothing” protection54; and 2) the vaccine does not reduce the likelihood of becoming 

symptomatic once infected. We performed model verification to confirm the accuracy of our 

model, and our symptomatic VE estimates (Supplementary 2: Model Verification; 

Supplementary Fig. 15-16). Results are reported using the median and the interquartile range 

from the 100 realizations. 

To address how symptomatic VE can vary across study designs and across sampling 

periods (Objective 1), we calculated 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅  (cumulative measurements as shown in 

formula 1 and 2) using different sampling periods to estimate symptomatic VE. Specifically, 

we began on day 20 (thus, a 20-day sampling period), and then repeated daily until the end of 

the epidemic. We conducted this analysis using both high and low default values of efficacy 

against susceptibility (0.55 and 0.1, respectively). We also varied the prevalence of etiologies 

of COVID-like symptoms to explore its influence on the magnitude of bias across the three 

testing scenarios.  

We repeated the above analyses (with default parameters as per Table 1) under a range 

of epidemic and immunological properties to determine whether varying these properties 

could shape the magnitude of the bias (Objectives 2 and 3). First, we varied efficacy against 

susceptibility (0.1 to 0.9) and efficacy against infectiousness (0.1 to 0.9). We then varied the 

underlying epidemic potential - the probability of transmission (0.033 to 0.1131–34). 

Results for Objective 1 were reported for the entire sampling period (20 - 150 and 20 - 

100 days for high and low efficacy against susceptibility, respectively); Results for Objectives 
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2 and 3 were reported at a single time point - the highest SARS-CoV-2 epidemic growth point 

(i.e. the time when the epidemic experienced its highest positive growth [inflection point]). A 

single time point was used for Objectives 2 and 3 so VE estimates could be easily compared 

across levels of epidemic and immunological properties.  

All simulations were conducted using R58 (version 4.3.1) with computations 

performed on the Niagara supercomputer at the SciNet HPC Consortium59,60 (Supplementary 

2: Computing Resources).   

Code Availability: 

The code to replicate all analyses is available on GitHub (https://github.com/mishra-

lab/testing_bias.git). 
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Figures: 

Fig. 1: Directed Acyclic Graphs (DAGs) for estimating vaccine effectiveness against 
symptomatic SARS-CoV-2 infection (symptomatic VE) using a retrospective cohort design 
with relative risk (A) and a retrospective test-negative design with an odds ratio (B). The 
DAG depicts causal relationships (arrows) and induced associations (dashed lines). As the 
vaccine does not decrease the likelihood of developing symptoms, effectiveness against 
symptomatic infection is equivalent to effectiveness against infection (yellow arrow). Causal 
relationships between healthcare engagement with vaccination (a) and with testing for SARS-
CoV-2 (b) induces an association between vaccination and testing for SARS-CoV-2 (c). As 
all individuals who are not symptomatic do not have etiologies of COVID-like symptoms and 
therefore do not get tested, an association also exists between testing for SARS-CoV-2 and 
etiologies of COVID-like symptoms (d) (depicted in B). Conditioning on symptomatic blocks 
the association between infection and testing via symptomatic; however it also induces an 
association between SARS-COV-2 infection and etiologies of COVID-like symptoms (e) 
through which infection is associated with testing. 
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Fig. 2: Example of the agent-based network model used to generate SARS-CoV-2 
transmission dynamics. Nodes represent individuals who are vaccinated (blue) and 
unvaccinated (pink); edges represent contact that allows for respiratory transmission. Each 
node also has individual-level attributes including SARS-CoV-2 infection status (Susceptible 
[never infected], Exposed, Infectious; Recovered [previously infected]), vaccination status 
(vaccinated; unvaccinated), level of healthcare engagement (low; high), testing status 
(untested; tested positive for SARS-CoV-2; tested negative for SARS-CoV-2), symptom 
status (symptomatic; asymptomatic/no symptoms), and etiologies of COVID-like symptoms 
status (exposed to alternate etiologies of COVID-like symptoms; unexposed to alternate 
etiologies of COVID-like symptoms). 
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Fig. 3: Symptomatic vaccine effectiveness estimates across a range of sampling periods from 
the retrospective cohort design (𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 , a and b) and the retrospective test-negative design ( 
𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅, e and f); and the cumulative proportion of symptomatic infections by vaccination status 
(c and d). The true symptomatic VE (i.e. the level of vaccine efficacy against susceptibility) is 
depicted by the grey dashed line. Symptomatic VE estimates (𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) were 
calculated across three testing scenarios (green): equal testing by vaccination status, 
moderately unequal testing (vaccinated with 1.76 times higher testing), and highly unequal 
testing (vaccinated with 2.36x higher testing). Cumulative proportion of symptomatic 
infection represents the cumulative level of symptomatic infection for unvaccinated (yellow) 
and vaccinated (dark gold). Central lines depict the median across 100 epidemic realizations 
and the shaded area represents the interquartile range.  
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Fig. 4: Magnitude of bias in symptomatic vaccine effectiveness (symptomatic VE) estimates 
and the epidemic size by testing scenarios and levels of vaccine efficacy against 
susceptibility. The magnitude of bias (how much estimates underestimated the vaccine’s 
“true” protection against symptomatic infection) was calculated across three testing scenarios 
(green) - equal testing by vaccination status, moderately unequal testing (vaccinated with 1.76 
times higher testing), and highly unequal testing (vaccinated with 2.36x higher testing) - for 
the retrospective cohort design (𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅) (a) and the retrospective test-negative design (𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) 
(c). The epidemic size - the cumulative proportions of individuals with symptomatic SARS-
CoV-2 who were unvaccinated (yellow) and vaccinated (dark gold) (b) - and VE estimates 
were each sampled at the highest positive epidemic growth point per epidemic (the inflection 
point). Each epidemic scenario was simulated 100 times; simulated epidemics with less than 
0.1% cumulative infections were removed (N= the # of epidemic realizations per 
scenario).The median time of sampling by the level of vaccine efficacy against susceptibility 
was t = 50 for 0.1, t = 58 for 0.3, t = 68 for 0.5, t = 92 for 0.7, and t = 185 for 0.9. 
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Fig. 5: Magnitude of bias in symptomatic vaccine effectiveness (symptomatic VE) estimates 
and the epidemic size by testing scenarios and levels of vaccine efficacy against 
infectiousness given higher and lower vaccine efficacy against susceptibility (0.55 and 0.1). 
The magnitude of bias (how much estimates underestimated the vaccine’s “true” protection 
against symptomatic infection) was calculated across three testing scenarios (green) - equal 
testing by vaccination status, moderately unequal testing (vaccinated with 1.76 times higher 
testing), and highly unequal testing (vaccinated with 2.36x higher testing) - for the 
retrospective cohort design (𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅) (a and b) and the retrospective test-negative design (𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) 
(e and f). The epidemic size - the cumulative proportions of individuals with symptomatic 
SARS-CoV-2 who were unvaccinated (yellow) and vaccinated (dark gold) (c and d) - and 
symptomatic VE estimates were each calculated at the point of the highest positive epidemic 
growth per epidemic (the inflection point). Each epidemic scenario was simulated 100 times; 
simulated epidemics with less than 0.1% cumulative infections were removed (N= the # of 
epidemic realizations per scenario). When vaccine efficacy against susceptibility was higher 
(0.55), the median time of sampling across vaccine efficacy against infectiousness was t = 69 
for 0.1, t = 79 for 0.3, t = 93 for 0.5 , t = 123 for 0.7, and t = 290 for 0.9; when vaccine 
efficacy against susceptibility was lower (0.1), the median time of sampling was t = 48 for 
0.1, t = 54 for 0.3, t = 64 for 0.5 , t = 85 for 0.7, and t = 167 for 0.9.  
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Fig. 6: Magnitude of bias in symptomatic vaccine effectiveness (symptomatic VE) estimates 
and the epidemic size by testing scenarios and probability of transmission for higher and 
lower vaccine efficacy against susceptibility (0.55 and 0.1). The magnitude of bias (how 
much estimates underestimated the vaccine’s “true” protection against symptomatic infection) 
was calculated for three testing scenarios (green) - equal testing by vaccination status, 
moderately unequal testing (vaccinated with 1.76 times higher testing), and highly unequal 
testing (vaccinated with 2.36x higher testing) - for the retrospective cohort design (𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅) (a 
and b) and the retrospective test-negative design (𝑉𝑉𝑉𝑉𝑂𝑂𝑅𝑅) (e and f). The epidemic size - the 
cumulative proportions of individuals with symptomatic SARS-CoV-2 who were 
unvaccinated (yellow) and vaccinated (dark gold) (c and d) - and symptomatic VE estimates 
were each calculated at the point of the highest positive epidemic growth per epidemic. Each 
epidemic scenario was simulated 100 times; simulated epidemics with less than 0.1% 
cumulative infections were removed (N= the # of epidemic realizations per scenario). If the 
magnitude of bias in VE estimates could not be calculated, they were replaced with the “*” 
symbol. When vaccine efficacy against susceptibility was higher (0.55), the median time of 
sampling across probabilities of transmissibility was t = 202 for 0.05, t = 108 for 0.07, t = 82 
for 0.09 and t =67 for 0.11; when vaccine efficacy against susceptibility was lower (0.1), the 
median time of sampling was t = 225 for 0.03, t = 90 for 0.05, t = 65 for 0.07, t = 54 for 
0.09, and t = 47 for 0.11. 
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Table 

Table 1: Parameter values for agent-based model including default values, reference(s) for 
the parameter values and the range of sensitivity vales for those parameters of interest. 

 
Parameter Default1 value, 

and range (if 
applicable) 

Data notes and sources Distribution 

Average contacts 
per person per day 

6 Average estimate from prior empirical 
studies in the United States and the 
United Kingdom during the pandemic;48.  

Poisson 

Time from SARS-
CoV-2 exposure to 
infectiousness  

4 days 61 Poisson 

Duration of SARS-
CoV-2 
infectiousness  

10 days 62 Poisson 

Probability of 
SARS-CoV-2 
transmission per 
contact per day 

0.1 (0.03-0.11) 
Default value estimated assuming an R0 = 
6 using parameter values defined above 
with an unvaccinated population and 
random mixing; Range values based on 
estimates found for ancestral SARS-CoV-
2, and the Delta and Omicron variants;31–

34.  

Bernoulli 

Proportion 
asymptomatic if 
infected with 
SARS-CoV-2  

0.35 
63 Bernoulli 

Proportion “fully” 
vaccinated with 
COVID-19 vaccine 

0.75 
Based on coverage during the emergence 
of the SARS-CoV-2 Omicron variant in 
many high-income countries;53. 

 

Vaccine efficacy 
against 
susceptibility 

0.1, 0.55 
(0.1 - 0.9) 

Based on an average estimate and an 
estimate taken 9 months after vaccination 
for the SARS-CoV-2 Omicron 
variant;55,56. 

 

Vaccine efficacy 
against 
infectiousness 

0.2 
(0.1 - 0.9) 

Based on an average estimate for the 
SARS-CoV-2 Omicron variant;57. 

 

Proportion with 
COVID-like 
symptoms from 
alternate etiologies 

0.152 Average prevalence of symptoms of 
seasonal “common cold” in North 
America pre-COVID;50. 

 

Duration of 
COVID-like 
symptoms from 

10 days Average duration of symptoms with the 
“common cold” and influenza;51,52 

Poisson 

 
1 the parameter value used in all analyses unless otherwise specified. 
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alternate etiologies 
Testing Scenarios Ratio of testing.  

vaccinated: 
unvaccinated 

  

Equal testing  1.0 No relationship between the level of 
healthcare engagement and the likelihood 
of vaccination. See Supplementary 2: 
Testing Scenarios for implementation 
details 

 

Moderately 
unequal testing 

1.76 A moderately strong relationship between 
the level of healthcare engagement and 
the likelihood of vaccination (“a” in 
Figure 1).  Based on empirical survey 
results from Glasziou et al.9. See 
Supplementary 2: Testing Scenarios for 
implementation details.   

 

Highly unequal 
testing 

2.36 A strong relationship between the level of 
healthcare engagement and the likelihood 
of vaccination (“a” in Figure 1). See 
Supplementary 2: Testing Scenarios for 
implementation details.  
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