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ABSTRACT

Large-scale genome-wide association studies of schizophrenia have uncovered hundreds of associated loci

but with extremely limited representation of African diaspora populations. We surveyed electronic health

records of 200,000 individuals of African ancestry in the Million Veteran and All of Us Research Programs, and,

coupled with genotype-level data from four case-control studies, realized a combined sample size of 13,012

affected and 54,266 unaffected persons. Three genome-wide significant signals — near PLXNA4, PMAIP1,

and TRPA1 — are the first to be independently identified in populations of predominantly African ancestry. Joint

analyses of African, European, and East Asian ancestries across 86,981 cases and 303,771 controls, yielded

376 distinct autosomal loci, which were refined to 708 putatively causal variants via multi-ancestry

fine-mapping. Utilizing single-cell functional genomic data from human brain tissue and two complementary

approaches, transcriptome-wide association studies and enhancer-promoter contact mapping, we identified a

consensus set of 94 genes across ancestries and pinpointed the specific cell types in which they act. We

identified reproducible associations of schizophrenia polygenic risk scores with schizophrenia diagnoses and a

range of other mental and physical health problems. Our study addresses a longstanding gap in the

generalizability of research findings for schizophrenia across ancestral populations, underlining shared

biological underpinnings of schizophrenia across global populations in the presence of broadly divergent risk

allele frequencies.
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Introduction

Schizophrenia and related psychoses occur in all human populations, but are diagnosed most

frequently among those racialized as Black and those of primarily African ancestries1. In the United

States, such patients experience worse treatment outcomes (e.g. hospitalization, functioning) as a

consequence of racism and other social determinants of health, compounding pervasive inequities

which impact morbidity, mortality, and quality of life2,3. Decades of research point resoundingly to a

heritable basis of risk, which is shared across diagnoses and populations4,5 and does not account for

differences in prevalence and presentation6,7. Furthermore, because the largest genome-wide

association studies (GWAS) have overwhelming recruitment bias towards European populations8, the

continued underrepresentation of African ancestries in genomics research threatens to limit the

benefits of novel biological insights and advances in precision medicine, further entrenching these

disparities.

A primary obstacle in genomics research on schizophrenia is its extreme polygenic

architecture. Hundreds of loci have been identified to date, which exert very small effects in concert

with thousands more that do not attain stringent genome-wide significance. Importantly, prior

research indicates that most of the currently attributable risk (i.e. in European populations) resides in

variation predating human migrations out of Africa, and is shared across worldwide populations.

However, diverging allele frequencies, effect sizes, and patterns of linkage disequilibrium (LD) render

polygenic risk scores (PRS) that decline continuously in performance as genetic distance between

training and target samples increases9–11. These limitations are especially marked in populations of

African ancestry.

Building on our recent work characterizing and validating psychiatric diagnoses from electronic

health records (EHRs)12,13, we newly integrate genome-wide single nucleotide polymorphism (SNP)

genotyping data for over 124,000 African ancestry individuals (AFR) from the Million Veteran Program

(MVP)14 and Cooperative Studies Program (CSP) #57215. We comprehensively assess the
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replicability of major schizophrenia findings and, for the first time, recapitulate characterizations of the

genetic architecture that to date have been limited to populations of European (EUR) and East Asian

(EAS) ancestry. Combining results with civilian data from the All of Us (AOU) Research Program16,

and four published case-control studies17–20 culminated in a multi-stage GWAS of 13,012 affected

persons and 54,266 controls of admixed African ancestries (Supplementary Note). Subsequent

meta-analysis with European and East Asian data yielded a total of 86,981 cases and 303,771

controls. An overview of the AFR-specific and cross-ancestry meta-analysis strategies is given in

Figure 1A. To increase our understanding of the biological mechanisms underlying schizophrenia

across ancestries, we integrated outcomes from the cross-ancestry fine-mapping analysis with

single-cell functional genomic data from the human dorsolateral prefrontal cortex.

Figure 1 | Overview of AFR and cross-ancestry meta-analyses. (A) Stages 1 and 2 of AFR meta-analysis,
and incorporation of summary statistics for EUR and EAS, with summaries of GWAS variants, conditionally
independent signals, causal variants, and physical loci. (B) Manhattan plot of discovery (Stage 1) AFR GWAS
of schizophrenia in CSP #572 and MVP. Loci achieving genome-wide significance in discovery (Stage 1) (light
green text) and meta-analysis (Stage 2) (dark green text) stages are highlighted; empty and filled diamonds
represent the corresponding P-values in each stage. Index variants absent in AFR meta-analysis are displayed
by an empty diamond. (C) Regional association plots for the three genome-wide significant loci in the AFR
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meta-analysis; (green dots, where the shade represents the strength of LD with the index variant (a diamond);
corresponding results for EUR meta-analysis are displayed (grey dots).

Results

Schizophrenia genetic associations in AFR populations

We initially compared 6,408 patients with schizophrenia and 20,065 controls enrolled in CSP

#572 and MVP (Stage 1), and then extended our analysis to an additional 6,604 cases and 34,201

controls (Stage 2) from AOU16, Consortium on the Genetics of Schizophrenia (COGS)18, Genomic

Psychiatry Cohort (GPC)20,21, Molecular Genetics of Schizophrenia (MGS)19, and Project among

African-Americans to explore risks for schizophrenia (PAARTNERS) studies17,22 (Extended Data

Table 1; Supplementary Data 1).

Our GWAS in CSP #572 and MVP (Stage 1) uncovered six statistically independent

genome-wide significant (P<5×10-8) associations with SNPs in ZBTB20 on 3q13.31, BTLA on 3q13.2,

GRIN2A on 16p13.2, near WSCD1 and AIPL1 on 17p13.2, downstream of the Homeobox B (HOXB)

gene cluster on 17q21.32, and upstream of PMAIP1 on 18q21.32 (Figure 1B; Extended Data Table

2). Of these, only PMAIP1 was directly replicated in the expanded AFR meta-analysis (13,012 cases

and 54,266 controls), while two additional regions — upstream of PLXNA4 on 7q32.3 and TRPA1 on

8q21.11 — attained genome-wide significance with this analysis (Figure 1B; Figure 1C).

Notably, none of the specific genome-wide significant associations observed in AFR have been

reported in published studies of EUR or EAS populations. However, suggestive AFR findings (P<10-5)

included previously replicated associations with SNPs in FAM120A (9q22.31) and DCC (18q21.2)

(Supplementary Table 1).

Cross-ancestry GWAS of schizophrenia

We obtained EUR summary statistics from the Psychiatric Genomics Consortium (PGC3;

53,386 cases and 77,258 controls) and combined these with new MVP-EUR results (6,579 cases and

155,490 controls) to yield an expanded GWAS of 59,965 cases and 232,748 controls (Figure 2A -
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left panel; Extended Data Table 1). We then combined our AFR results (13,012 cases and 54,266

controls) with these expanded EUR results and available EAS summary statistics23 (14,004 cases,

16,757 controls) in cross-ancestry meta-analyses across 18,982,014 individual variants in 86,981

cases and 303,771 controls (Figure 2A - right panel; Extended Data Table 1; Supplementary Data

1).

We resolved 19,529 genome-wide significant associations (excluding 5,021 mapping to the

extended MHC region) to 307 statistically independent signals using conditional and joint (COJO)

multi-SNP analysis (Methods), which accounts for linkage disequilibrium (LD) among nearby variants

(Supplementary Table 2). By comparison, meta-analyses of EUR and EAS, EUR and AFR, and AFR

and EAS yielded 298, 257, and 13 independent signals, respectively (Supplementary Tables 3-5).

Taken together with within-ancestry results for AFR (3) and EUR (248) (Supplementary Table 6), this

corresponded to 708 unique variants spanning 397 physically distinct chromosomal loci (Figure 2B).

As expected, there was starkly lower power to detect genome-wide significant associations in AFR

compared to EUR populations and only marginally greater power in cross-population analyses of

three ancestries (Figure 2C).

We intersected our findings with 270 loci in the most recent PGC study24 using LD-”clumped”

intervals, highlighting 151 independent variants in 111 novel loci that were more than 1Mb from a

previously reported locus (Figure 2A and Figure 2B; Supplementary Table 7). Multi-ancestry

GWAS findings revealed additional novel loci implicating genes, including CACNA1B, KCNN4-AS1,

NRP1, PTPRT, SEMA3A, and SLC12A5, which play important functions in neuronal signaling.

We compared directions of allelic effects between ancestries, observing that, for progressively

more stringent P-value thresholds (PT) applied to the PGC-EUR findings, the proportion of

same-direction effects in EUR replication and EAS results converged to 1 (Figure 2D). As applied to

AFR results, in which the same PGC-EUR signals corresponded to a larger effective number of

LD-independent SNPs, we observed fractions of same-direction tests exceeded 60% at (Psign<10-3 at
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PT<10-10); however, this fraction exceeded the null expectation of 50% concordance at all tested

thresholds. A direct comparison of LD-independent genome-wide significant SNPs revealed a modest

but significant correlation between AFR and EUR effects (ρ=0.209; P=7.55×10-7), despite fewer

directionally concordant results than seen with an independent EUR sample (ρ=0.812; P=8.25×10-53)

(Figure 2E; Supplementary Table 8).

Figure 2 | Cross-ancestry schizophrenia meta-analyses. (A) Miami plot displaying expanded EUR results (left; 59,965
cases and 232,748 controls) and cross-ancestry findings (right; 86,981 cases and 303,771 controls). Each conditionally
independent lead variant within 1Mb is displayed as a diamond; novel findings in expanded EUR meta-analyses (blue);
novel findings in cross-ancestry GWAS (orange); novel variants in analyses of two ancestries are also shown (lighter
shades). (B) Upset Plot displaying the distribution of distinct index SNPs across updated EUR meta-analysis and
cross-ancestry meta-analyses. The total number of conditionally independent SNPs for each are displayed in the lower
left panel. Single-ancestry (blue) EUR versus cross-ancestry (orange) meta-analyses are highlighted. (C) Frequencies
and Odds Ratios for COJO SNPs in EUR, AFR, and cross-ancestry meta-analyses, with respect to the alternative (tested)
allele. Corresponding 80% power lines are displayed. (D) Comparison of directional concordance across single-ancestry
meta-analysis results. (E) Standardized effect estimates for MVP-EUR and AFR at genome-wide SNPs in PGC3-EUR,
with regression lines; panels shaded in grey contain findings with directionally concordant effects.
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Enhanced fine-mapping of schizophrenia-associated loci

We evaluated the impact of expanded diversity on fine-mapping resolution at new and

previously associated loci. From the COJO SNPs in each meta-analysis, we defined 773 unique

intervals separated by at least 250 kilobases (kb), represented by the most significant index SNP in a

given window (Supplementary Table 9; Supplementary Data 2-4). For each window, we estimated

a 95% credible set of SNPs, corresponding to a genomic interval containing one or more causal

variants driving a given association signal. For the EUR-only and the meta-analyzed GWAS, we used

SuSiE-R with a "blended" LD matrix (Figure 3A; Methods). The number of causal SNPs we identified

(posterior inclusion probability, PIP>0.5 and P<5×10-8) was 51 for EUR only, 245 for AFR+EUR, 83 for

EUR+EAS, and 366 for AFR+EUR+EAS (Supplementary Table 10). Additionally, fine-mapping

between the unique pairs of distinct ancestries (AFR+EUR, EUR+EAS, AFR+EAS) was performed

using MESuSiE (Figure 3A; Supplementary Tables 11-18; Methods). Lastly, for the three distinct

ancestries (AFR+EUR+EAS), fine-mapping was conducted with SuSiEx (Figure 3A; Methods),

which is less conservative than MESuSiE as it considers all comparisons among ancestries. The

number of SNPs with PIP > 0.5 was 248 for AFR+EUR, 41 for EUR+EAS, 68 for AFR+EAS, and 261

for AFR+EUR+EAS (Supplementary Tables 19-20).

We observed higher posterior probabilities following meta-analysis of EUR with EAS and AFR

results (Figure 3B) and shorter genomic intervals (kb spanned by credible SNPs) (Figure 3C). In the

EUR only analysis, out of 773 unique intervals separated by at least 250 kb, 606 indexes had at least

one credible set defined, with 72 SNPs exhibiting a PIP greater than 0.5 and 51 SNPs reaching

genome-wide significance (P<5×10-8). In the AFR+EUR analysis, 671 unique indexes were identified,

including 1,056 SNPs with a PIP greater than 0.5 and 245 SNPs that were genome-wide significant.

For the EUR+EAS analysis, we found 678 unique indexes with at least one credible set, among which

208 SNPs had a PIP greater than 0.5 and 83 SNPs were genome-wide significant. Lastly, the
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AFR+EUR+EAS analysis revealed 697 unique indexes, with 1,353 SNPs having a PIP greater than

0.5 and 366 SNPs reaching genome-wide significance.

Figure 3 | Improved fine-mapping resolution in cros-ancestry schizophrenia GWAS. (A) Overview of fine-mapping
approaches employed and their particular handling of cross-ancestry LD information. (B) Distribution of PIP values for
SNPs in credible sets identified for PGC-EUR (6,234), EUR meta-analysis (8,066), EUR and EAS (7,931), EUR and AFR
(2,514), and cross-ancestry meta-analysis of EUR, EAS, and AFR (3,467). Values are transformed to the log10-scale (C)
Comparative improvements in fine-mapping resolution from cross-ancestry versus EUR-only analyses. Each point
represents a credible set of SNPs in a given meta-analysis; points above the dotted line indicate a smaller credible set
size in the trans-ancestry meta-analysis; grey points along axes indicate signals which SuSiE-R did not detect as causal.
Inset panels display these distributions as split violin plots. (D) Regional findings at CACNA1I with EUR with EUR+AFR
meta-analysis results (upper), and deconvolved AFR tracts and haplotype counts (lower).

Leveraging local ancestry in admixed AFR populations

We investigated the impact of admixture in AFR individuals through local ancestry

deconvolution, followed by joint modeling of AFR and EUR haplotype tracts using an adaptation of

the tractor approach25 (Methods). We observed extended genomic regions that harbored significant

(P<10-6) associations between the number of AFR haplotypes carried by an individual and reduced
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disease risk (Extended Data Figure 1A). Comparing standardized effect sizes estimated from AFR

tracts and EUR tracts to PGC-EUR results (PT=5×10-8), we observed a stronger correlation with EUR

tracts (ρ=0.435; P=1.88×10-11) than AFR tracts (ρ=0.263; P=4.29×10-10) (Extended Data Figure 1B).

Similarly, the proportion of same-direction tests was greater for EUR (0.68; Psign=8.67×10-8) than AFR

(0.58; Psign=2.35×10-3) tracts (Extended Data Figure 1C; Supplementary Table 8).

Examination of tract-level results revealed distinct AFR-specific evidence of association near

PLXNA4 (PAFR=6.75×10-5; PEUR=0.999), PMAIP1 (PAFR=7.22×10-5; PEUR=0.985), and TRPA1

(PAFR=5.56×10-4; PEUR=0.207) (Extended Data Figure 2A-C). We observed even stronger tract-level

associations with SNPs in CLEC16A on 16p13.13 (PAFR=3.94×10-7; PEUR=0.6414), DOCK4 on 7q31.1

(PEUR=1.15 ×10-6; PAFR=0.649), and GRIN2B on 12p13.1 (PAFR=8.93×10-8; PEUR=0.696). At GRIN2A,

we observed overlapping but distinct associations based on AFR (PAFR=6.10×10-6; PEUR=2.35×10-3)

and EUR tracts (PEUR=1.42×10-6; PEUR=0.884) (Extended Data Figure 2D-F).

Taken together, these results suggest the intriguing possibility of population-specific haplotypes

or complex patterns of LD that hinder detection of causal schizophrenia-related variation in the

presence of local admixture. We explored the potential for enhanced fine-mapping resolution (i.e.

beyond standard trans-ancestry meta-analysis) by re-estimating credible sets based on meta-analysis

of our overall EUR findings with tract-level AFR statistics. In particular, at the CACNA1I locus, this

approach narrowed the corresponding credible set from 64.7kb to 39kb spanning exons 2 and 3 and

introns 1-3 (Figure 3D). Within this region, 10 SNPs had a PIP greater than 0.9, compared to a

maximum PIP of 0.244 based on EUR results alone.

Comparative estimates of SNP-based heritability

We sought to better characterize the population-specific genetic architectures of schizophrenia

in AFR and EUR populations, by leveraging available individual-level genotype data for the combined

CSP #572 and MVP cohorts. Using common SNPs with MAF ≥ 1%, we obtained near-identical

estimates of SNP-h2 for AFR (0.183±0.013) and EUR (0.183±0.017) participants (Extended Figure
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3A; Supplementary Tables 21-22); including variants with MAF greater than 0.1% yielded

comparable increases in SNP-h2 for AFR (0.268±0.026) and EUR (0.270±0.019). Adjusting these

estimates by the number of SNPs in each population illustrates that, in EUR populations, an

equivalent fraction of variability in individual risk is explained by fewer SNPs (Extended Data Figure

3A). In contrast, calculating SNP-h2 from ~1.2M HapMap3 variants yielded markedly attenuated

estimates for AFR (0.138±0.014) but not EUR (0.196±0.012), highlighting the limitation of using

“convenience sets” of SNPs optimized for EUR populations 26–28.

Given the extensive genetic diversity present in AFR populations, we partitioned SNPs which

were common (MAF>0.1%) in AFR individuals but rare (MAF<0.1%) in EUR, and variants which were

common in both. Among AFR individuals, shared common genome-wide variants explained around a

quarter of the total attributable variance (0.074±0.015), while less common (MAF<1%) variation

explained a 1.5-fold larger fraction of individual variability in liability (0.114±0.027) (Extended Figure

3B; Supplementary Tables 23).

Next, we partitioned SNPs in EUR participants based on the absolute allele frequency

difference (AFD) 29 with AFR populations. We found that a negligible proportion of variance was

explained by population-”specific” variation (0.014±0.029), with most of the attributable variance

explained by SNPs in the third (0.075±0.016) and fourth (0.071±0.013) AFD quartiles (Extended

Figures 3C; Supplementary Table 24). Taken together with the observations above, this suggests

that variation exhibiting greater divergence between populations harbors a larger fraction of

disease-related variance.

Cell-type convergence of EUR and AFR heritability for schizophrenia

Previous studies support the enrichment of EUR schizophrenia risk loci for gene expression

markers related to excitatory and inhibitory neurons24,30,31. We examined whether the genetic

architecture of schizophrenia in AFR converges to similar cell type enrichment. For this purpose, we

used the extensive PsychAD single-cell atlas of 6.3 million nuclei from the human prefrontal cortex32
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and applied the scDRS method33 that considers transcriptional heterogeneity between individual cells

to calculate polygenic risk score for each cell population (Methods). Consistent with multiple lines of

prior evidence 24,30,31, we observed a significant enrichment in all subtypes of excitatory and inhibitory

neurons in EUR (Figure 4B). While the EUR and AFR enrichments are well correlated (Pearson’s r =

0.702; Figure 4C), not all significantly enriched neuronal subtypes were replicated in AFR which can

be attributed to lower GWAS power in AFR. Out of the significant findings, oligodendrocyte precursor

cells (OPCs) were more highly enriched in AFR than EUR GWAS (Figure 4B).

Cell-type transcriptome convergence of EUR and AFR heritability for schizophrenia

We leveraged single-nucleus gene expression data from the prefrontal cortex of 920 EUR and

321 AFR donors that are included in the PsychAD cohort32 to perform an ancestry-stratified

transcriptome-wide association study (TWAS). Across 31 cell-type-specific models, EUR models

could confidently impute 18,219 unique genes across 112,474 gene-cell-type combinations, while

AFR models could confidently impute 16,956 unique genes across 74,002 gene-cell-type

combinations (Methods). Integrative analysis of the 31 cell-type-specific EUR models with the

expanded EUR GWAS identified 2,057 unique genes (Bonferroni-adjusted P-value < 0.05). Similar

analysis using the AFR models with the AFR GWAS identified only 3 unique genes at the same

statistical threshold, likely due to the lower AFR GWAS power. To assess concordance between EUR

and AFR schizophrenia TWAS, we quantified the gene correlation as a function of top ranked genes

(as defined by meta-analysis P-value). Across all well-represented cell-types, we find that correlation

among EUR and AFR TWAS is ~0.7-0.9 for the top ranked genes (Extended Data Figure 4),

highlighting the biological convergence capturing genetically driven schizophrenia-associated gene

expression shared between EUR and AFR.
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Identification of putative causal genes through enhancer-promoter interaction model

Expression quantitative trait loci (eQTL) mapping and colocalization with GWAS variants is a

common method for nominating credible causal genes34; however, eQTLs explain only a small

fraction of GWAS signals due to their clustering near transcription start sites and association with

genes that have simpler regulatory landscapes​​35. To address this limitation, cell-specific

enhancer-promoter (E-P) models36 were trained using single nucleus (sn) multiome (snATAC-seq +

snRNA-seq) and fluorescence activated nuclei sorted (FANS) Hi-C data from early postnatal to late

adulthood human brains37 (Methods), capturing long-range chromatin interactions and providing an

accurate map of regulatory effects on gene expression38. Using these E-P interaction maps, we

connected COJO SNPs with putative regulatory sequences and credible causal genes (Extended

Data Figure 5A and Methods) to detect 1,538 E-P interactions across all cell types. 767 unique

genes that were putatively associated with 40% of the conditionally independent variants (Extended

Data Figure 5B; Supplementary Table 25) primarily affect E-P interactions within one cell type

(Extended Data Figure 5C).

Despite the differences in methodologies and the sources of omics data, we found a significant

overlap of nominated causal genes predicted by the E-P and TWAS approaches for all major cell

types except endothelial cells, for which TWAS reported a markedly lower number of causal genes

due to the low frequency of these cells in the training dataset (Bonferroni P-value between

7.15×10-36-3.30×10-6). A total of 94 prioritized protein-coding identifiers were identified across all cell

types (Figure 4D; Supplementary Table 25). In line with prior research, our analysis revealed that

these genes are significantly associated with abnormalities in both presynaptic and postsynaptic

regions (Figure 4E) as they participate in 11 ontological sets in the synaptic organization, covering a

variety of specific pathways and functions (Supplementary Table 26). For instance, four and three of

the prioritized genes encode components of the postsynaptic density membrane (adjusted
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P-value=0.00175) and the presynaptic active zone membrane (adjusted P-value=0.00175),

respectively, highlighting the disruption of several vital processes essential for synaptic transmission.

Among the 94 shared genes, we discovered a connection between schizophrenia COJO

GWAS variants rs57022825 and rs17486822 located within a glutamatergic-specific enhancer inside

the intronic region of the NALCN gene (Sodium Leak Channel Non-Selective Protein; Figure 4F).

NALCN is a major player in determining the influence of extracellular Na+ on a neuron's basal

excitability and its modulation by hormones and neurotransmitters39. Although NALCN variants have

been reported to be in linkage disequilibrium with schizophrenia and bipolar disorder40,41, this is the

first evidence revealing the cell-specificity of that regulation, providing strong support as it comes from

the consensus of two independent methods. Another example is a novel link between an LD buddy of

schizophrenia COJO SNP rs6065926, situated within a microglial enhancer, and the cluster of

differentiation 40 (CD40) gene (Figure 4G). CD40, a member of the tumor necrosis factor receptor

(TNFR) superfamily, plays a crucial role in regulating immune responses42. Previous research

indicated that receptors initiating NF-κB signaling are transcriptionally dysregulated in

schizophrenia43, but this association had not been established in the context of a common variant

affecting microglia-specific regulation of CD4044,45. These two examples demonstrate the capability of

our model to not only identify causal genes but also, by offering cell-specific contexts, facilitate a

better understanding of the mechanisms through which risk loci act.
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Figure 4 | Cell-type specific heritability patterns and disease regulation in schizophrenia. (A) Enrichment of EUR
and AFR for 27 cell subtypes from the single cell atlas of the prefrontal cortex. (B) UMAP visualizations of single cell atlas
colored by the cell taxonomy (left), EUR enrichment (middle) and AFR enrichment (right). IN: inhibitory neurons /
GABAergic, EN: excitatory neurons / glutamatergic, SMC: smooth muscle cells, VLMC: vascular leptomeningeal cells,
PVM: Perivascular macrophages. (C) Correlation of scDRS z-score across cell subtypes between EUR and AFR. (D)
Number of causal genes per cell type, stratified by E-PABC-MAX, TWAS, and shared nominations (top). Shared nominations
are also displayed separately in the bottom plot for better clarity. (E) Mapping of prioritized genes in the synaptic structure
using the SynGO database46. The sunburst plot positions the synapse at its core, with layers for pre- and post-synaptic
regions in the first ring, followed by specific categories in outer rings. The color coding represents the gene count for each
category. (F-G) Normalized snATAC-seq pseudobulk tracks demonstrating the cell-specific regulation of the NALCN (E)
and CD40 (F) affected by GWAS COJO SNPs rs6065926 and rs17486822/rs57022825.

Penetrance and pleiotropy of schizophrenia polygenic scores

Understanding the penetrance and pleiotropy of schizophrenia PRS is critical for predicting risk

and guiding clinical interventions. We used a “leave-one-out” approach to create an independent PRS
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constructed from AFR-specific weights, and performed phenome-wide association studies (PheWAS)

to explore its relationship with a range of mental and physical health problems.

Across 1,650 unique “phecodes”, PRS were robustly associated with schizophrenia (OR=1.21,

95% CI:[1.18,1.25]; P=6.31×10-44), bipolar disorder (OR=1.11, 95% CI:[1.09,1.14]; P=1.55×10-16),

major depression (OR=1.05, 95% CI:[1.04,1.07]; P<3.89×10-14), alcohol-related (OR=1.05, 95%

CI:[1.04,1.07]; P=1.10×10-12) and tobacco use disorders (OR=1.05, 95% CI:[1.03,1.06];

P=1.48×10-10), and suicidal attempt and ideation (OR=1.09, 95% CI:[1.06,1.12]; P=4.10×10-8) (Figure

5A; Supplementary Table 27). We also replicated previously reported associations 12,47 between

schizophrenia PRS and increased risk of viral hepatitis (OR=1.06, 95% CI:[1.04,1.08]; P=4.10×10-8),

upper respiratory infections (OR=1.04, 95% CI:[1.03,1.06]; P=1.77×10-8), and dental caries (OR=1.05,

95% CI:[1.03,1.06]; P=1.17×10-10), and lower risk of obstructive sleep apnea (OR=0.96, 95%

CI:[0.95,0.98]; P=3.57×10-7) and hypertension (OR=0.96, 95% CI:[0.94,0.98]; P=4.88×10-6).

We extended this analysis to 49 common laboratory measurements, observing additional

significant associations between PRS and increased levels of hematocrit (β=0.020, 95%

CI:[0.014,0.026]; P=2.98×10-11), high density lipoprotein (HDL) cholesterol (β=0.017, 95%

CI:[0.011,0.023]; P=1.50×10-7), and aspartate aminotransferase (AST) (β=0.013, 95%

CI:[0.007,0.020]; P=6.69×10-5) (Extended Data Figure 7; Supplementary Table 28).

Overall, we found that findings largely mirrored corresponding results for EUR-trained PRS

(Supplementary Tables 29-30). We directly compared results based on AFR- and EUR-trained PRS,

observing a high degree of correlation (ρ=0.715; P=3.01×10-56) in effect sizes (Figure 5B; see

Methods). Notably, the relationship between AFR scores and schizophrenia diagnosis (OR=1.21,

95% CI:[1.18,1.25]; P=6.31×10-44) was slightly attenuated compared to EUR scores (OR=1.32, 95%

CI:[1.27,1.36]; P=1.14×10-55), likely reflecting the lower power of our available training data.
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Similarly, direct comparison of effect sizes for PheWAS of AFR PRS in AFR versus EUR

participants highlighted replicable cross-ancestry associations, and significant overall correlations

(ρ=0.6; P=1.10×10-32) (Figure 5C; Supplementary Tables 31-32),

Among AFR replication cohorts, EHR data were uniquely available for AOU, presenting an

opportunity to replicate our findings across healthcare systems. We found that higher PRS increased

the odds of being diagnosed with schizophrenia (OR=1.21, 95% CI:[1.13,1.29]; P=1.45×10-7) and to a

lesser degree, bipolar disorder (OR=1.06 95% CI:[1.01,1.12]; P=0.0329); substance addiction

(OR=1.11, 95% CI:[1.07,1.15]; P=3.47×10-8), and tobacco use disorders (OR=1.04, 95%

CI:[1.10,1.07]; P=5.30×10-5). We replicated our previous findings that higher PRS lowered the odds of

obstructive sleep apnea (OR=0.93, 95% CI:[0.89,0.97]; P=0.0003) and hyperlipidemia (OR=0.95,

95% CI:0.92,0.98]; P=0.00385) (Supplementary Table 33). Effects estimated in AFR participants in

MVP and AOU were significantly correlated (ρ=0.54; P=3.17×10-14; Figure 5D), albeit to a lesser

degree than observed for AFR and EUR individuals in MVP. Comparing phenome-wide prevalences

across datasets, we observed correlations of 0.94 between AFR and EUR participants, and 0.63

between AFR participants in MVP and AOU (Supplementary Note). This finding may reflect different

lifetime exposures and patterns of healthcare utilization between military and civilian populations.
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Figure 5 | Pleiotropic influences of AFR-derived PRS across diseases. (A) PheWAS results for an independent
AFR-derived PRS tested against 1,650 disease categories in MVP. The dotted line indicates the Bonferroni adjusted
P-value threshold for the number of tests. (B) Effect sizes for AFR PRS and EUR PRS tested in AFR participants;
highlighted points were significant in tests of AFR PRS and labeled if replicated using EUR PRS (P<0.05). (C) Effect sizes
of AFR PRS tested in AFR participants in MVP and AOU; highlighted points were significant in AFR participants, and
labeled if replicated in AOU (P<0.05). (D) Effect sizes of AFR PRS tested in AFR and EUR participants in MVP;
highlighted points were significant in AFR participants, and labeled if replicated in EUR (P<0.05). Unfilled points (empty
circles) represented significant findings in MVP AFR that were not replicated.

Discussion

This study significantly advances our understanding of schizophrenia’s genetic underpinnings

by incorporating data for African ancestry populations. The integration of data from the CSP

#572/MVP and AOU Research Programs with four case-control cohorts yielded a sample size of

13,012 affected individuals and 54,266 controls, and increases the sample size of an earlier 2009

study19 by a factor of 10, and our 201920 and 2021 studies7 by 2.2- and 1.75-fold, respectively. This is

the first study to yield independently significant associations in African ancestry populations. Through

detailed investigations of heritability, local ancestry, and cell-type enrichment, we underline the shared

biological underpinnings of schizophrenia across populations, in spite of heterogeneous genetic

effects and pervasive disparities in diagnosis.

The findings reveal both convergent and divergent aspects of the genetic architecture of

schizophrenia across different ancestries. While many loci identified in European populations showed

directionally consistent effects in individuals of African ancestry, our approach also highlighted loci

with potentially population-specific effects. For example, GRIN2A harbors both rare coding48 and

common variants that confer risk for schizophrenia24, with distinct associations between other

non-coding variation, smoking behaviors49, and educational attainment50, results that more closely

mirror the pattern of association observed in AFR populations.

Differences in allele frequency and patterns of LD have the potential to lower GWAS discovery

power, but can also be leveraged via fine-mapping approaches to identify a common, credible set of

putatively causal variants. This “trade-off” between power and resolution is best illustrated by the
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comparatively fewer number of independent SNPs detected in joint analyses of African and European

ancestry datasets compared to EUR-EAS and expanded EUR-only analyses, contrasted with the

larger reductions in credible set size in joint analyses with AFR. The fine-mapping results, particularly

at loci such as CACNA1I, demonstrate how leveraging diverse genetic backgrounds can refine the

localization of causal variants, potentially accelerating the identification of therapeutic targets.

Focusing on African-like populations uncovered population-specific associations upstream of

PLXNA4, which encodes a molecule critical for axonal guidance51–53, and has been implicated in

Alzheimer’s disease54, autism55, and innate inflammatory responses56. Another example is PMAIP1,

which encodes the proapoptotic molecule, Noxa, a crucial determinant of cell fate in developing

oligodendrocytes57 that has been shown to be upregulated in the blood of military service members

with PTSD58 and in frontal brain of mice exposed to olanzapine59. We anticipate that further

expansions in AFR sample sizes will yield further novel, biologically plausible insights, including allelic

heterogeneity and pleiotropic effects. Comparable expansions of EUR sample sizes may yield

diminishing returns in terms of locus discovery, as suggested by an independent EUR analysis of

6,579 cases and 155,490 controls from MVP, which recovered three well-established associations at

ZNF804, LEMD2, and BCL11B.

Given the selected nature of the population utilizing VHA services, and higher rates of

diagnosis among Black and African American individuals, we sought to characterize the common

variant genetic architecture of schizophrenia. Directly measured h2
SNP was virtually indistinguishable

between veterans of African and European ancestry6,7, which supports the assertion that

schizophrenia is no more or less “genetic” in one group versus another. Disparities in the rates of

diagnosis could reflect the consequences of structural racism, both in the negative impact of

exposure to adverse social conditions3, as well implicit biases that label schizophrenia as primarily a

“Black disease”60,61. Notably, we observed that the stark differences in prevalence of schizophrenia

diagnoses appear to have diminished in recent decades (Supplementary Note).
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The investigation into cell-type-specific genetic architectures revealed significant enrichment of

schizophrenia risk loci in excitatory and inhibitory neurons, consistent with previous findings in

European populations24,30,31. Although aberrant myelination is known to play a role in neuropsychiatric

disorders62 and the association between OPCs and schizophrenia is well-established30,31; however,

the higher enrichment of OPCs in African ancestry individuals merits further investigation, as it may

uncover novel biological pathways contributing to schizophrenia risk that are more pronounced in, or

unique to, these populations.

Our exploration of the polygenic manifestations of currently indexable risk demonstrated

resoundingly that AFR-derived scores are robustly transferable across cohorts, settings, and

populations. Our PheWAS successfully recapitulated cross-trait associations with mental and physical

health conditions, including both risk-increasing and apparently protective effects, and many which

remained significant when limiting our analyses to individuals without a formal psychiatric diagnosis.

Despite nearly doubling the sample size of prior AFR GWAS7,20, we were still underpowered

relative to contemporary EUR24 and EAS23 studies. Pointedly, our analysis is on a par with the

discovery phase of a 2013 study that yielded genome-wide significant associations in 12 genomic

regions63. It is important to note that the assembled study cohorts all originated in the United States,

and therefore represent a fraction of the vast genomic (and experiential) diversity present in African

diaspora populations. By definition, heritability is a population-specific phenomenon, and forthcoming

research initiatives across continental Africa and the Caribbean64,65 have tremendous potential to

accelerate genetic discovery and epidemiological insights. Lastly, though schizophrenia is a highly

heritable disorder, there is considerable evidence for the role of social conditions, especially those

related to structural racism2,3. Approaches that integrate social and biological risk factors are

important for improving our understanding of the etiology of schizophrenia.

In conclusion, this study not only contributes valuable data to the field of psychiatric genetics

but also highlights the critical importance of including diverse populations in genetic research.
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Large-scale genome sequencing endeavors should prioritize genetically diverse and otherwise

underrepresented populations in order to fully realize their potential for novel discoveries64,66 and

realize biological insights with equitable public health relevance to patients and communities

worldwide, paving the way for advancements in precision medicine that are inclusive and beneficial

for all populations. ​​

Online Methods

Ethics/study approval

This study was approved by the VA Central Institutional Review Board (IRB), and participating

studies received approval from their respective IRBs. All participants provided written informed

consent.

Study Participants

Details of study ascertainment and assessment for the CSP/MVP, All of Us, COGS, GPC,

PAARTNERS, and MGS are summarized in the Supplementary Note, and have otherwise been

described elsewhere7,12,14–16,18–21,67,68

Genome-wide association studies, replication, and meta-analysis

We performed primary GWAS of schizophrenia in CSP/MVP, COGS, MGS, and PAARTNERS

using imputed allelic dosages and logistic regression, as implemented in PLINK2, adjusting for age,

sex, and 10 ancestry principal components (PCs).

For AOU, we performed logistic regression as implemented in HAIL using whole-genome

sequencing data (release 7), and adjusting for age, sex, and 10 ancestry PCs.

We meta-analyzed AFR cohorts using inverse variance weighted meta-analysis (“fixed

effects”), and combined results across ancestries using Han and Eskin’s random effects model with

heterogeneity (RE2)69. Both models are implemented in the METASOFT software package.
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Heritability estimation

We directly estimated heritability (SNP-h2) from imputed genotypes using genome-based

restricted maximum likelihood (GREML)70 as implemented in the genome-wide complex trait analysis

(GCTA) software70,71. We included the same GWAS covariates and used the [--grm-cutoff .05] flag to

restrict analyses to approximately unrelated individuals. To enhance comparability of results, we

downsampled the CSP/MVP data to include 6,000 cases and 18,000 screened controls of each

ancestry (AFR and EUR). We estimated minor allele frequencies within each ancestry, and the

absolute frequency difference (AFD)29, and partitioned SNPs into bins based on ad hoc MAF

thresholds or AFD quintiles, followed by partitioned heritability analysis70. For ease of interpretability

in the context of the published literature, we performed liability scale transformations assuming a 1%

lifetime prevalence of schizophrenia.

Fine-mapping and credible sets

We used the Sum of Single Effects model (SuSiE)72,73 as implemented in the SuSiE-R

package, to estimate causal credible SNP sets from GWAS meta-analysis results. First, we defined

associated intervals around conditionally independent SNPs, collapsing all COJO variants within 250

kb windows. We calculated reference LD information for “super populations” in the 1000 Genomes

Population Phase 3 data (i.e. EUR, AFR, EAS). Briefly, for each ancestral population represented in a

given GWAS meta-analysis, we applied the following quality control steps: 1) we removed

strand-ambiguous SNPs, multi-allelic SNPs, and SNPs with MAF less than 0.1%; 2) we retained only

common SNPs across these ancestries and present the corresponding LD reference data. Next, we

estimated credible sets at each associated interval, defined as the minimum number of ranked

variants with cumulative posterior inclusion probability (PIP) greater than or equal to 0.95. We

estimated credible sets based on EUR results alone, comparing these to corresponding sets derived

from cross-ancestry GWAS findings. We evaluated improvements in fine-mapping on the basis of the

size (the number of SNPs included in the set) and interval length (the total kb encompassed by each
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set). We used a probability threshold of 0.95 to define credible sets, and tentatively classified as

causal any SNP with a posterior inclusion probability (PIP) >0.5.

We extended these analyses to the direct comparisons of ancestry-specific GWAS results

using a recent extension of SuSiE, multi-ancestry sum of the single effects model (MESuSiE)74.

Briefly, MESuSiE models ancestry-specific information for two populations (e.g., EUR-AFR,

EUR-EAS, AFR-EAS) to enhance the precision and resolution of statistical fine-mapping. Like

SuSiE-R, this method takes summary statistics as input, considers the varied LD patterns present in

distinct ancestries, explicitly models shared and ancestry-specific causal effects, and employs a

scalable variational inference algorithm for computation. SNPs in the resulting 95% credible sets had

a non-zero effect in at least one population, and are classified as either "shared" or "ancestry-specific"

depending on their modeled contribution to the credible set.

We also considered SuSiE-X75, another extension of the SuSiE framework, which has been

shown to enhance precision of cross-population fine-mapping while maintaining well-calibrated false

positive rates, and retaining the capability to identify population-specific causal variants. We followed

the same steps as described above for processing ancestry-specific GWAS and LD information.

Local ancestry inference

We employed RFMix276 to deconvolve local ancestry among admixed AA individuals,

implementing a local ancestry adjusted model analogous to the tractor method25. Specifically, we

simultaneously modeled haploid dosages for AFR- and EUR-derived tracts, along with the number of

AFR haplotypes carried by an individual at a locus (i.e. “hapcount”) using the local covariate

functionality of PLINK277.

To better understand how admixture can impact the “portability” of schizophrenia findings, we

compared conventional GWAS results for AFR and EUR (i.e. with global PC adjustment) with

estimates based on deconvolved haplotypes in admixed AFR individuals. Across 270 replicated

schizophrenia associations, 65% and 90% showed the same direction of effect in AFR (P=1×10-7) and
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EUR participants in MVP. When considering only AFR tracts in AFR participants, only 58% (P=0.007)

of SNPs showed directionally consistent effects, compared to 69% (P=3.4×10-10) based on EUR

tracts.

Cell-type enrichment at single cell resolution

We used the single-cell Disease-Relevance Scoring (scDRS)33 methodology to evaluate the

aggregate expression of potential disease-associated genes obtained from EUR and AFR summary

statistics utilizing Multi-marker Analysis of GenoMic Annotation (MAGMA)78. Each putative disease

gene was weighted by its MAGMA Z-score from GWAS and inversely weighted by its gene-specific

technical noise level in single-cell data obtained from an extensive dataset of 6.3 million nuclei

generated from postmortem human dorsolateral prefrontal cortex of 1,494 donors. This process

generated cell-specific raw disease scores. Additionally, we computed 1,000 sets of cell-specific raw

control scores from matched control gene sets, ensuring similarity in gene set size, mean expression,

and expression variance with the putative disease genes. Subsequently, we normalized both the raw

disease scores and raw control scores for each cell, yielding normalized disease scores and

normalized control scores. The computation of these scores utilized the default settings of the scDRS

compute-score function. For downstream analysis, we conducted cell type-level assessments to link

broad cell types to disease and explore heterogeneity in disease association across cells within each

broad cell type. This was achieved using the scDRS perform-downstream() function with default

settings. To address multiple testing, false discovery rate (FDR) was calculated using the

Benjamini-Hochberg method.

TWAS concordance

To perform TWAS analysis, we utilized brain single nucleus (sn) transcriptomic imputation

models from the PsychAD cohort. S-PrediXcan79 was used to perform ancestry-matched TWASs for

schizophrenia GWASs. Consequently, TWAS z-scores across all cell-type/gene pairs were
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normalized (mean = 0; SD=1) within each ancestry to more easily compare results across ancestries.

To assess concordance, only common cell-type/gene pairs were retained. Genes were ranked by

meta-analysis p-value (performed on scaled z-scores). Correlation was calculated amongst all

common genes in each cell type, and sequentially, genes were restricted to increasingly smaller sets

(top 1,000 genes, 990 genes, etc.) to construct correlation trajectories. Only well-represented

class-level cell types were retained for visualization.

Prediction of enhancer-gene interactions

To study E-P interactions affected by schizophrenia GWAS variants, we leveraged

cell-type-specific E-P maps from a multi-omics dataset (joint snATAC-seq & snRNA-seq and

cell-specific Hi-C) of developing brains using activity-by-contact (ABC) model36,37 (Extended Data

Figure 6A). In line with authors’ instructions36,38, we filtered out E-P interactions that (i) had an ABC

score < 0.015, (ii) involved ubiquitously expressed genes or genes on the Y chromosome, and (iii)

included genes not expressed in major brain cell types. To further refine our focus to schizophrenia

GWAS, we decided to keep only E-P links (i) overlapping conditionally independent SNPs (peaks

participating in E-P links were extended by 100bp on both sides to increase the overlap), (ii) LD

buddies of conditionally independent SNPs (R2 ≥ 0.8), or (iii) SNPs within 95% credible set and PPI >

0.5 (model AFR+EUR+EAS), resulting in 34,436 E-P links. To limit the number of causal genes per

conditionally independent SNPs, we applied the ABC-MAX approach38, allowing only one E-P per

conditionally independent SNP, resulting in 1,538 E-P links (Extended Data Figure 6B).

PRS Profiling

We constructed PGS from published and current GWAS results (the “training” datasets),

testing individual-level scores for association with case-control status in MVP or replication cohorts

(the “target” dataset). We applied a recently-developed Bayesian framework that applies continuous

shrinkage to test statistics, PRS-CSx27, using HapMap 3 SNPs and 1000 Genomes Project LD

reference panel (EUR and AFR). We also constructed scores based on genome-wide significant
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SNPs, following LD-based clumping in the appropriate KGP3 population (r2>0.1; 500kb window).

Scores were constructed by summing the number of tested alleles weighted by their effect estimates

(e.g., the log of the allelic odds ratio). We tested for case-control differences by logistic regression

using age, sex, and the first six ancestry principal components (PCs).

PheWAS and LabWAS

We employed phenome-wide association studies (PheWAS) to explore the relationships

between neuropsychiatric PRSs and “phecodes” representing groupings of related ICD-9/10 billing

codes80.When testing individual phecodes, we required cases and controls to have ≥2 and zero

codes, respectively. We applied logistic regression to test scaled PRSs (mean=0; SD=1) for

association with phecodes within ancestry groups, covarying for age, age2, gender, and six ancestry

principal components (PCs). We performed LabWAS across mean, median, maximum, and minimum

normalized values in individuals with at least two observed measurements using linear regression

and the same covariates as in PheWAS analyses.

We performed a series of sensitivity analyses, co-varying for selected diagnoses or treatment

with antipsychotics, mood-stabilizers, and antidepressants, or removing individuals with any lifetime

diagnosis of psychotic, mood, or substance disorders.

We compared effect sizes across PheWAS results sets using an pseudo-independent set of

phecodes, based on the most significant among ontologically nested terms. We calculated Pearson’s

correlations based on standardized effect sizes (i.e., Z-scores).

Reporting summary

Additional information about our study design is available in the Nature Research Reporting

Summary linked to this paper.
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Data availability

All data produced in the present study are available upon reasonable request to the authors

Code availability

We utilized second generation PLINK for primary quality control and descriptive analyses

(https://www.cog-genomics.org/plink2), For haplotype phasing and genotype imputation, we used

SHAPEIT4 (https://odelaneau.github.io/shapeit4/) and Minimac4

(https://github.com/statgen/Minimac4), respectively. For local ancestry inference and defining

ancestry tracts, we utilized RFMix2 (https://github.com/slowkoni/rfmix). Conditional and joint analysis

(COJO) and heritability estimation utilized GCTA (https://cnsgenomics.com/software/gcta).

Meta-analyses were conducted using METASOFT (https://www.zarlab.xyz/tag/metasoft/). For

statistical fine mapping, we used SuSiE-R (https://github.com/stephenslab/susieR), SuSiE-X

(https://github.com/getian107/SuSiEx), and MESuSiE (https://github.com/borangao/MESuSiE). We

estimated gene-level test statistics using MAGMA (https://cncr.nl/research/magma/) and tested for

cell-type specific enrichment using scDRS (https://github.com/martinjzhang/scDRS). We used

S-PrediXcan (https://github.com/hakyimlab/MetaXcan) to directly impute TWAS results from GWAS

summary statistics. To characterize enhancer-gene links, we adopted the ABC-MAX framework

(https://github.com/EngreitzLab/ABC-Max-pipeline). For PRS, we used PRS-CSx to integrate GWAS

summary statistics from multiple populations and estimate posterior SNP effects via continuous

shrinkage (https://github.com/getian107/PRScsx).
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TABLES AND FIGURES

Figure 1 | Overview of AFR and cross-ancestry meta-analyses. (A) Stages 1 and 2 of AFR
meta-analysis, and incorporation of summary statistics for EUR and EAS, with summaries of GWAS
variants, conditionally independent signals, causal variants, and physical loci. (B) Manhattan plot of
discovery (Stage 1) AFR GWAS of schizophrenia in CSP #572 and MVP. Loci achieving
genome-wide significance in discovery (Stage 1) (light green text) and meta-analysis (Stage 2) (dark
green text) stages are highlighted; empty and filled diamonds represent the corresponding P-values
in each stage. Index variants absent in AFR meta-analysis are displayed by an empty diamond. (C)
Regional association plots for the three genome-wide significant loci in the AFR meta-analysis; (green
dots, where the shade represents the strength of LD with the index variant (a diamond);
corresponding results for EUR meta-analysis are displayed (grey dots).

Figure 2 | Cross-ancestry schizophrenia meta-analyses. (A) Miami plot displaying expanded EUR
results (left; 59,965 cases and 232,748 controls) and cross-ancestry findings (right; 86,981 cases and
303,771 controls). Each conditionally independent lead variant within 1Mb is displayed as a diamond;
novel findings in expanded EUR meta-analyses (blue); novel findings in cross-ancestry GWAS
(orange); novel variants in analyses of two ancestries are also shown (lighter shades). (B) Upset Plot
displaying the distribution of distinct index SNPs across updated EUR meta-analysis and
cross-ancestry meta-analyses. The total number of conditionally independent SNPs for each are
displayed in the lower left panel. Single-ancestry (blue) EUR versus cross-ancestry (orange)
meta-analyses are highlighted. (C) Frequencies and Odds Ratios for COJO SNPs in EUR, AFR, and
cross-ancestry meta-analyses, with respect to the alternative (tested) allele. Corresponding 80%
power lines are displayed. (D) Comparison of directional concordance across single-ancestry
meta-analysis results. (E) Standardized effect estimates for MVP-EUR and AFR at genome-wide
SNPs in PGC3-EUR, with regression lines; panels shaded in grey contain findings with directionally
concordant effects.

Figure 3 | Improved fine-mapping resolution in cros-ancestry schizophrenia GWAS. (A)
Overview of fine-mapping approaches employed and their particular handling of cross-ancestry LD
information. (B) Distribution of PIP values for SNPs in credible sets identified for PGC-EUR (6,234),
EUR meta-analysis (8,066), EUR and EAS (7,931), EUR and AFR (2,514), and cross-ancestry
meta-analysis of EUR, EAS, and AFR (3,467). Values are transformed to the log10-scale (C)
Comparative improvements in fine-mapping resolution from cross-ancestry versus EUR-only
analyses. Each point represents a credible set of SNPs in a given meta-analysis; points above the
dotted line indicate a smaller credible set size in the trans-ancestry meta-analysis; grey points along
axes indicate signals which SuSiE-R did not detect as causal. Inset panels display these distributions
as split violin plots. (D) Regional findings at CACNA1I with EUR with EUR+AFR meta-analysis results
(upper), and deconvolved AFR tracts and haplotype counts (lower).

Figure 4 | Cell-type specific heritability patterns and disease regulation in schizophrenia. (A)
Enrichment of EUR and AFR for 27 cell subtypes from the single cell atlas of the prefrontal cortex. (B)
UMAP visualizations of single cell atlas colored by the cell taxonomy (left), EUR enrichment (middle)
and AFR enrichment (right). IN: inhibitory neurons / GABAergic, EN: excitatory neurons /
glutamatergic, SMC: smooth muscle cells, VLMC: vascular leptomeningeal cells, PVM: Perivascular
macrophages. (C) Correlation of scDRS z-score across cell subtypes between EUR and AFR. (D)
Number of causal genes per cell type, stratified by E-PABC-MAX, TWAS, and shared nominations (top).
Shared nominations are also displayed separately in the bottom plot for better clarity. (E) Mapping of
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prioritized genes in the synaptic structure using the SynGO database46. The sunburst plot positions
the synapse at its core, with layers for pre- and post-synaptic regions in the first ring, followed by
specific categories in outer rings. The color coding represents the gene count for each category.
(F-G) Normalized snATAC-seq pseudobulk tracks demonstrating the cell-specific regulation of the
NALCN (E) and CD40 (F) affected by GWAS COJO SNPs rs6065926 and rs17486822/rs57022825

Figure 5 | Pleiotropic influences of AFR-derived PRS across diseases. (A) PheWAS results for
an independent AFR-derived PRS tested against 1,650 disease categories in MVP. The dotted line
indicates the Bonferroni adjusted P-value threshold for the number of tests. (B) Effect sizes for AFR
PRS and EUR PRS tested in AFR participants; highlighted points were significant in tests of AFR
PRS and labeled if replicated using EUR PRS (P<0.05). (C) Effect sizes of AFR PRS tested in AFR
participants in MVP and AOU; highlighted points were significant in AFR participants, and labeled if
replicated in AOU (P<0.05). (D) Effect sizes of AFR PRS tested in AFR and EUR participants in MVP;
highlighted points were significant in AFR participants, and labeled if replicated in EUR (P<0.05).
Unfilled points (empty circles) represented significant findings in MVP AFR that were not replicated.
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EXTENDED TABLES AND FIGURES

Extended Data Table 1. Sample sizes and characteristics of primary and replication datasets.
For each Study, grouped by broad ancestry group (Pop), Source indicates whether genotypes,
sequencing data, or summary statistics were directly accessed, Dx gives the clinical source for
schizophrenia diagnoses, and Screened indicates whether control participants were screened for
relevant psychiatric conditions.

Pop. Study Source
Cases Controls

NcombinedDx N Screened? N
AFR CSP #572 Genotype SCID 1,920 Yes 6,000 7,920

MVP* Genotype ICD-9/10 4,488 Yes 14,065 18,553
All of Us* WGS ICD-9/10 1,065 Yes 27,866 28,931

GPC Genotype DI-PAD 3,506 Yes 3,849 7,355
COGS Genotype DIGS 498 Yes 405 903
MGS Genotype DIGS 994 Yes 1,277 2,271

PAARTNERS Genotype DIGS 541 No 804 1,345
13,012 54,266 67,278

EUR CSP #572 Genotype SCID 1,236 Yes 29,200 30,436
MVP* Genotype ICD-9/10 5,343 Yes 126,290 131,633
PGC3 Summary statistics Multiple 53,386 Both 77,258 130,644

59,965 232,748 292,713
EAS PGC3 Summary statistics Multiple 14,004 Both 16,757 30,761

Totals 86,981 303,771 390,752
Abbreviations: Cooperative Studies Program (CSP); Genomic Psychiatry Cohort (GPC); Consortium on the
Genomics of schizophrenia (COGS); Molecular Genetics of schizophrenia (MGS); Project Among African-Americans
to Explore Risks for schizophrenia (PAARTNERS); Structured Clinical Interview for DSM-IV (SCID); International
Statistical Classification of Diseases (ICD); Diagnostic Interview for Genetics Studies (DIGS); Whole-genome
sequencing data (WGS).
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Extended Data Table 2. Genome-wide significant (P<5×10-8) associations in AFR GWAS of schizophrenia. For conditionally
independent SNPs, the chromosome and genomic coordinates (GRCh38), Tested or effect allele, and population frequency in the
gnomAD browser (v4.1.0) are displayed. Beta and Std Error are the allelic effect size and its standard error; Plogit is its statistical
significance from the basic logistic regression model; PFE is its significance based inverse variance weighted (fixed effects); PRE2 is its
significance based on Han and Eskin’s random effects heterogeneity model, and Phet is the significance of Cochran’s heterogeneity test.

SNP Chr GRCh38
position Tested Freq

Phase 1 Phase 2

Beta Std Error Plogit Beta Std Error PFE PRE2 Phet

chr3:112442573:A:C 3 112,442,573 A 0.352 -0.122 0.022 3.79×10-8 -0.061 0.016 2.13×10-4 3.47×10-6 6.02×10-3

chr3:114552436:T:A 3 114,552,436 A 0.141 0.178 0.031 1.11×10-8 0.100 0.023 1.03×10-5 3.27×10-7 5.50×10-3

chr7:132080559:C:T 7 132,080,559 T 0.158 0.153 0.029 1.36×10-7 0.120 0.021 1.91×10-8 3.34×10-8 0.202

chr8:72154435:G:A 8 72,154,435 A 0.156 -0.126 0.030 2.90×10-5 -0.123 0.022 2.26×10-8 3.99×10-8 0.899

chr16:10063406:C:A 16 10,063,406 A 0.383 0.121 0.022 1.84×10-8 0.059 0.016 1.84×10-4 2.51×10-6 3.86×10-3

chr17:6264499:G:A 17 6,264,499 A 0.010 0.546 0.097 1.63×10-8 . . . . .

chr17:48458465:TCA:T 17 48,458,465 T 0.009 0.641 0.108 2.48×10-9 . . . . .

chr18:59852986:G:A 18 59,852,986 A 0.272 -0.138 0.025 2.53×10-8 -0.102 0.018 2.02×10-8 2.71×10-8 0.349
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Extended Data Fig. 1. Tract-based GWAS results and cross-ancestry concordance. A) Miami
plot displaying tract-level association results from the joint analysis of EUR tracts (left), AFR tracts
(right), and haplotype count (center). Selected, suggestive findings (P<10-5) within 100kb of a
protein-coding gene are highlighted. In the center panel, the haplotype count results are plotted
directionally to indicate which ancestral haplotype is risk-increasing. B) Standardized effect estimates
for AFR- and EUR-tracts at genome-wide significant SNPs in PGC-EUR, with regression lines; panels
shaded in gray contain findings with directionally concordant effects. C) Comparison of directional
concordance of AFR- and EUR-tract based results with PGC-EUR findings.
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Extended Data Fig. 2. Regional association plots displaying distinct ancestry-specific evidence of association. In each plot, the top
panel displays AFR and multi-ancestry meta-analysis results; the middle panels display EUR and EAS results; and the third panel
displays results for deconvolved AFR and EUR tracts and AFR haplotype count; genic context is displayed underneath.
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Extended Data Fig. 3. SNP-based heritability of schizophrenia in AFR and EUR individuals. A) Estimates of SNP-based h2 based
on progressively more inclusive SNP criteria, comparing HapMap3 SNPs with SNPs with population-specific MAF greater than 1% or
0.1%. B) In AFR individuals, partitioned SNP-h2 for SNPs shared with EUR populations and those unique to the AFR dataset, binned by
AFR-specific MAF. C) In EUR individuals, partitioned SNP-h2 for SNPs present only in EUR and those shared with AFR populations,
binned by absolute frequency difference (AFD) between EUR and AFR. In each figure, the upper panel displays the total SNP-h2 and
the lower panel displays SNP-h2 scaled by the number of SNPs used to calculate the genetic related matrix (GRM), respectively.
SNP-h2 is reported on the liability scale, based on an expected population prevalence of 1%, to enhance interpretability with respect to
the published literature; observed scale estimates are reported in Supplementary Tables 21-24.
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Extended Data Fig. 4. Line represents the pearson correlation between EUR and AFR schizophrenia
TWAS amongst the top X% (x-axis) ranked TWAS genes (ranked by fixed-effect meta-analysis
performed on scaled z-scores from each ancestry TWAS). Color represents the cell-type in which
each TWAS was performed. Genes are limited to those which are imputable within both ancestries in
each cell-type. Imputable genes are considered passing cross-validation R2 (R2

CV) ≥ 0.01, pCV ≤ 0.05
and SNPs in model > 0. R2

CV and pCV values are prediction performance R2 and prediction
performance p-value from the “predict db” software.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312631doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.27.24312631
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 5. A) Schematic of the overall strategy to connect risk variants associated with
schizophrenia to their causal genes. B) Numbers of nominated causal genes and their overlaps
among major brain cell types (minimum intersection size for plotting: 6). C) Histogram of distribution
of E-PABC across major brain cell types.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312631doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.27.24312631
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 6. Association of AFR-trained PRS with common laboratory tests
(LabWAS). A) Volcano plot displaying tested associations in all participants. Highlighted points were
significant following Bonferroni adjustment for multiple-testing. Upwards and downwards facing
triangles indicate if an observed association is with the highest or lowest observed values across
participants’ EHRs. B) Corresponding results based on AFR screened controls. C) Corresponding
results based on case-only analysis.
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